1
|
Xu S, Mao H. Crocin Inhibits Orbital Fibroblasts Fibrosis in Thyroid-Associated Ophthalmopathy. Curr Eye Res 2024; 49:330-337. [PMID: 37982317 DOI: 10.1080/02713683.2023.2280441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE To investigate the role of Crocin on proliferation, fibrosis, and migration of orbital fibroblasts, as well as the possible signaling pathway. METHODS Immunofluorescence assay was performed to detect the expression of fibroblast marker proteins vimentin cytokeratin, desmin, and S-100. The quantity of 5‑ethynyl‑2'‑deoxyuridine-positive cells in orbital fibroblast was analyzed. Quantitative real-time PCR and western blots were performed to evaluate the expression level of fibrosis-related marker including alpha-smooth muscle actin, connective-tissue growth factor, collagen 1A1, and fibronectin. Scratch wound assays were performed to assess wound widths of orbital fibroblast. The expression and phosphorylation of extracellular signal-regulated kinase/signal transducer and activator of transcription 3 were evaluated using western blots. The phosphorylation of smad2 and smad3 was evaluated using immunofluorescence assay. RESULTS Crocin treatment reduced 5‑ethynyl‑2'‑deoxyuridine-positive cells, indicating inhibitory effect on orbital fibroblast proliferation. The expression levels of alpha-smooth muscle actin, connective-tissue growth factor, collagen 1A1 and fibronectin were declined in Crocin treatment. Delayed wound closures were observed in Crocin treatment. Furthermore, Crocin did not affect the expression of extracellular signal-regulated kinase and signal transducer and activator of transcription 3, but weakened extracellular signal-regulated kinase and signal transducer and activator of transcription 3 phosphorylation in orbital fibroblast. The phosphorylation of smad2 and smad3 was attenuated by Crocin as well. CONCLUSION In conclusion, Crocin inhibits the phosphorylation of extracellular signal-regulated kinase and signal transducer and activator of transcription 3, contributing to the inhibitory effect on proliferation, fibrosis, and migration of orbital fibroblast, suggesting that Crocin has potential to be a novel therapeutic candidate for thyroid-associated ophthalmopathy treatment.
Collapse
Affiliation(s)
- Shuxian Xu
- Department of Ophthalmology, the Third People's Hospital of Changzhou, Changzhou, China
| | - Hanyan Mao
- Department of Ophthalmology, the Third People's Hospital of Changzhou, Changzhou, China
| |
Collapse
|
2
|
Chapple B, Woodfin S, Moore W. The Perfect Cup? Coffee-Derived Polyphenols and Their Roles in Mitigating Factors Affecting Type 2 Diabetes Pathogenesis. Molecules 2024; 29:751. [PMID: 38398503 PMCID: PMC10891742 DOI: 10.3390/molecules29040751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Type 2 diabetes (T2D) is a growing health concern with an estimated 462 million people having been diagnosed worldwide. T2D is characterized by chronically elevated blood glucose and insulin resistance, which culminate in a diminished function of the β-cell mass in its later stages. This can be perpetuated by and result in inflammation, excess reactive oxygen species production, obesity, and the dysregulation of multiple cellular pathways. Many naturally occurring small molecules have been investigated in terms of their roles in modulating glucose homeostasis and β-cell function. Many of these compounds can be found in commonly used sources of food and drink. Interestingly, a correlation has been observed between coffee consumption and T2D incidence. However, the specific compounds responsible for this correlation and their mechanisms are still somewhat undetermined. This paper reviews recent research findings on the effects of several polyphenols that are either found in coffee or are metabolites of compounds found in coffee (enterodiol, enterolactone, matairesinol, secoisolariciresinol, kaempferol, quercetin, and chlorogenic acid) on glucose homeostasis and health complications associated with glucose dysregulation, with a special emphasis on their potential anti-diabetic effects. The factors that affect polyphenol content in coffee are also addressed.
Collapse
Affiliation(s)
| | | | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA; (B.C.); (S.W.)
| |
Collapse
|
3
|
Li QZ, Zuo ZW, Liu Y. Recent status of sesaminol and its glucosides: Synthesis, metabolism, and biological activities. Crit Rev Food Sci Nutr 2023; 63:12043-12056. [PMID: 35821660 DOI: 10.1080/10408398.2022.2098248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Sesamum indicum is a major and important oilseed crop that is believed to promote human health in many countries, especially in China. Sesame seeds contain two types of lignans: lipid-soluble lignans and water-soluble glucosylated lignans. The major glucosylated lignans are sesaminol glucosides (SGs). So far, four sesaminol isomers and four SGs are identified. During the naturally occurring process of SGs production, sesaminol is generated first from two molecules of E-coniferyl alcohol, and then the sugar is added to the sesaminol one by one, leading to production of SGs. Sesaminol can be prepared from SGs, from sesamolin, and through artificial synthesis. SGs are metabolized in the liver and intestine and are then transported to other tissues. They exhibit several biological activities, most of which are based on their antioxidant and anti-inflammatory activities. In this paper, we present an overview of the current status of research on sesaminol and SGs. We have also discussed their synthesis, preparation, metabolism, and biological activities. It has been suggested that sesaminol and SGs are important biological substances with strong antioxidant properties in vitro and in vivo and are widely used in the food industry, medicine, and cosmetic products. The recovery and utilization of SGs from sesame seed cake after oil processing will generate massive economic benefits.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), and School of Food and Biological Engineering, Hubei University of Technology, Wuhan, Hubei, P. R. China
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Ke K, Lin J, Huang N, Yan L, Liao R, Yang W. Transthyretin promotes the invasion of combined hepatocellular cholangiocarcinoma by tumor-associated macrophages. Cancer Rep (Hoboken) 2023; 6:e1888. [PMID: 37688511 PMCID: PMC10598247 DOI: 10.1002/cnr2.1888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Patients with combined hepatocellular-cholangiocarcinoma (cHCC-CCA) have limited treatment options and poor prognosis. Tumor-associated macrophages (TAMs) are the most abundant infiltrating immune cells in the tumor microenvironment and promote tumor stemness, proliferation, invasion and metastasis. Evidence suggested that transthyretin (TTR) influenced the prolifetation and invasion functions of different tumors and play an essential role in the tumor microenvironment. AIMS To investigate the involvement of TTR in TAMs affecting the invasion of cHCC-CCA. METHODS AND RESULTS Data sets obtained from the Gene Expression Omnibus database were integrated. Differentially expressed genes (DEGs) were obtained using R software, and modules associated with cHCC-CCA were screened by weighted gene co-expression network analysis (WGCNA). Human THP-1 cells were induced to differentiate into macrophages and then co-cultured with HCCC9810 cells and tumor necrosis factor-α (TNF-α) to simulate the inflammatory microenvironment of cHCC-CAA. In addition, small interfering RNA against TTR was transfected into HCCC9810 cells, and recombinant TTR and ERK and AKT-specific inhibitors were added to HCCC9810 cells, respectively; after that, the levels of NF-κB protein and phosphorylated ERK and AKT were measured. The invasive abilities of HCCC9810 cells were also tested. One hundred forty-five DEGs were associated with cHCC-CCA, of which TTR was up-regulated. Turquoise modules containing TTR in WGCNA were most significantly associated with cHCC-CCA. TTR was highly expressed in HCCC9810 compared to Huh-28. HCCC9810 showed enhanced invasive capacity after co-culture with TNF-α + macrophages (p < .05). After interfering with TTR, the invasive ability of HCCC9810 was diminished, accompanied by decreased expression of NF-κB, p-ERK1/2, and p-AKT (p < .05). After treating HCCC9810 with ERK and AKT-specific inhibitors, the invasive ability of HCCC9810 was diminished, accompanied by decreased expression of NF-κB and TTR (p < .05). CONCLUSION TTR can promote the invasive ability of cHCC-CCA by regulating AKT/NF-κB and ERK pathways with the assistance of TAMs.
Collapse
Affiliation(s)
- Kun Ke
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Junqing Lin
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Ning Huang
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Leye Yan
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Rihua Liao
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| | - Weizhu Yang
- Department of Interventional RadiologyFujian Medical University Union HospitalFuzhouChina
| |
Collapse
|
5
|
Maharati A, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal 2023; 21:201. [PMID: 37580737 PMCID: PMC10424373 DOI: 10.1186/s12964-023-01225-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most frequent gastrointestinal malignancies that are considered as a global health challenge. Despite many progresses in therapeutic methods, there is still a high rate of mortality rate among CRC patients that is associated with poor prognosis and distant metastasis. Therefore, investigating the molecular mechanisms involved in CRC metastasis can improve the prognosis. Epithelial-mesenchymal transition (EMT) process is considered as one of the main molecular mechanisms involved in CRC metastasis, which can be regulated by various signaling pathways. PI3K/AKT signaling pathway has a key role in CRC cell proliferation and migration. In the present review, we discussed the role of PI3K/AKT pathway CRC metastasis through the regulation of the EMT process. It has been shown that PI3K/AKT pathway can induce the EMT process by down regulation of epithelial markers, while up regulation of mesenchymal markers and EMT-specific transcription factors that promote CRC metastasis. This review can be an effective step toward introducing the PI3K/AKT/EMT axis to predict prognosis as well as a therapeutic target among CRC patients. Video Abstract.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Zarei M, Malekzadeh K, Omidi M, Mousavi P. Clinical significance of long non-coding RNA ZEB2-AS1 and EMT-related markers in ductal and lobular breast cancer. Cancer Rep (Hoboken) 2023; 6:e1826. [PMID: 37088469 PMCID: PMC10172159 DOI: 10.1002/cnr2.1826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/04/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Breast cancer is considered the most prevalent type of cancer in women and accounts for a high rate of death. A body of research has demonstrated that lncRNAs have a regulatory function in human diseases, especially cancers. ZEB2-AS1 is known as an oncogenic lncRNA in various types of cancers, and its deregulation may contribute to cancer development and progression. Therefore, we aimed to reveal the association of ZEB2-AS1 expression with epithelial-mesenchymal transition (EMT) markers, as a hallmark of cancer progression, in a clinical setting. METHODS A recent study suggested that ZEB2-AS1 is significantly involved in EMT. Here we intended to explore the roles of lncRNA ZEB2-AS1 in breast cancer (BC) using bioinformatics tools and laboratory settings. We first evaluated the expression of ZEB2-AS1 mRNA in tumor and healthy control tissues by lnCAR database. Furthermore, ZEB2-AS1 expression level, ZEB2, E-cadherin, and vimentin was measured via qRT-PCR in 30 paired ductal and lobular carcinoma tissues from breast cancer patients and the normal adjacent ones. The correlation between the lncRNA ZEB2-AS1 expression and clinicopathological characteristics of the breast cancer patients was evaluated. RESULTS ZEB2-AS1 showed an upregulation in breast cancer tissues (p = .04) compared to normal adjacent samples. In addition, its level was higher in breast cancer patients with advanced Stages (III & IV) (n = 18) compared to early Stages (I & II) (n = 12) (p = .04). Moreover, ZEB2 (p = .01) and vimentin (p = .02) expression were upregulated in the BC sample, but the expression level of E-cadherin (p = .02) was downregulated when compared with the adjacent normal tissues. By comparison of the expression of EMT-markers between different stages of breast cancer, overexpression of ZEB2 (p = .04) and vimentin (p = .04) and down expression of E-cadherin (p = .03) was observed in advance stages. CONCLUSIONS Collectively, our findings suggest that ZEB2-AS1 expression is significantly upregulated in tumor tissues, especially in advanced stages and ZEB2-AS1 is associated with the aggressiveness of tumors by functioning as putative oncogenic lncRNA. In addition, a combination of ZEB2-AS1 and these EMT markers in breast cancer potentiates these genes as biomarkers for tumor progression.
Collapse
Affiliation(s)
- Mahboobeh Zarei
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Kianoosh Malekzadeh
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Omidi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Pegah Mousavi
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
7
|
Mueed A, Deng Z, Korma SA, Shibli S, Jahangir M. Anticancer potential of flaxseed lignans, their metabolites and synthetic counterparts in relation with molecular targets: current challenges and future perspectives. Food Funct 2023; 14:2286-2303. [PMID: 36820797 DOI: 10.1039/d2fo02208g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lignans are known dietary polyphenols found in cereals, plants and seeds. Flaxseed is one of the major sources of lignans mainly existing in the form of secoisolariciresinol diglucoside (SDG) which can be metabolised by the gut microbes into secoisolariciresinol (SECO) and mammalian lignan (enterodiol and enterolactone) that are easily absorbed through the intestines. Numerous studies reveal that flaxseed lignans (FLs) can be promising chemotherapeutics/chemopreventive agents. Their anticancer activity can occur through the induction of apoptosis, inhibition of cell proliferation, and the hindering of metastasis and angiogenesis. The anti-carcinogenesis of flaxseed lignans is achieved through multiple molecular mechanisms involving biochemical entities such as cellular kinases, cell cycle mediators, transcription factors, inflammatory cytokines, reactive oxygen species, and drug transporters. This review summarizes the bioavailability of FLs, their anticancer mechanisms in relevance to molecular targets, safety, and the scope of future research. Overall, FLs can be utilized in functional foods, dietary supplements, and pharmaceuticals for the management and prevention of cancers.
Collapse
Affiliation(s)
- Abdul Mueed
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Zeyuan Deng
- State key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China.
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, 44519 Zagazig, Egypt
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Khyber-Pakhtunkhwa, Pakistan
| |
Collapse
|
8
|
Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023; 32:265-282. [PMID: 36619215 PMCID: PMC9808697 DOI: 10.1007/s10068-022-01233-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/24/2022] [Accepted: 12/21/2022] [Indexed: 01/04/2023] Open
Abstract
Proteins do not only serve as nutrients to fulfill the demand for food, but also are used as a source of bioactive proteins/polypeptides for regulating physical functions and promoting physical health. Female breast cancer has the highest incidence in the world and is a serious threat to women's health. Bioactive proteins/polypeptides exert strong anti-tumor effects and exhibit inhibition of multiple breast cancer cells. This review discussed the suppressing effects of bioactive proteins/polypeptides on breast cancer in vitro and in vivo, and their mechanisms of migration and invasion inhibition, apoptosis induction, and cell cycle arrest. This may contribute to providing a basis for the development of bioactive proteins/polypeptides for the treatment of breast cancer. Graphical abstract
Collapse
Affiliation(s)
- Qi-Zhang Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Ze-Rong Zhou
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Cui-Yu Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), School of Food and Biological Engineering, Hubei University of Technology, No.28, Nanli Road, Wuhan, 430068 Hubei People’s Republic of China
| | - Xian-Bin Li
- Institute of Computational Science and Technology, Guangzhou University, Guangzhou, Guangdong 510006 People’s Republic of China
| | - Yu-Zhou Chang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210 USA
| | - Yan Liu
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Yu-Liang Wang
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, and Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
9
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
10
|
LINC02870 facilitates SNAIL translation to promote hepatocellular carcinoma progression. Mol Cell Biochem 2022:10.1007/s11010-022-04575-1. [PMID: 36583796 DOI: 10.1007/s11010-022-04575-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/23/2022] [Indexed: 12/31/2022]
Abstract
Exploring the roles of long noncoding RNAs (lncRNAs) in tumorigenesis and metastasis could contribute to the recognition of novel diagnostic and therapeutic targets. LINC02870 is a novel lncRNA, whose role in tumors has not been reported. Herein, we focused on the function and mechanism of LINC02870 in human hepatocellular carcinoma (HCC). We first carried out a pan-cancer study of LINC02870 expression and its relationship to prognosis, and LINC02870 was determined to be a possible oncogene in HCC. Upregulated expressions of LINC02870 were also found in our HCC samples compared to the para-tumor samples. Moreover, overexpression of LINC02870 promoted the growth, migration, and invasion of HCC cells. Subsequently, binding proteins of LINC02870 were identified by a number of in silico analyses, including correlation analysis, signaling network analysis, and survival analysis. Intriguingly, the most promising binding protein of LINC02870 was predicted and confirmed to be eukaryotic translation initiation factor 4 gamma 1 (EIF4G1), an important component of the eukaryotic translation initiation factor 4F complex that initiates cap-dependent translation. Further investigation showed that LINC02870 increased the translation of SNAIL to induce malignant phenotypes in HCC cells. Additionally, HCC patients with higher expression levels of LINC02870 and EIF4G1 had shorter survival times than those with lower expression levels. Thus, our findings suggested that LINC02870 induced SNAIL translation and correlated with poor prognosis and tumor progression in HCC.
Collapse
|
11
|
Liu T, Liao S, Mo J, Bai X, Li Y, Zhang Y, Zhang D, Cheng R, Zhao N, Che N, Guo Y, Dong X, Zhao X. LncRNA n339260 functions in hepatocellular carcinoma progression via regulation of miRNA30e-5p/TP53INP1 expression. J Gastroenterol 2022; 57:784-797. [PMID: 35802258 DOI: 10.1007/s00535-022-01901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/19/2022] [Indexed: 02/04/2023]
Abstract
BACKGROUND Currently, the molecular mechanism of the interaction between lncRNAs and microRNAs (miRNAs) and the target of miRNAs in tumor vasculogenic mimicry (VM) formation have not been clarified. Our aim is to study the interaction between lncRNA n339260 and miRNA30e-5p in the formation of VM. METHODS Animal xenografts were established, 104 hepatocellular carcinoma (HCC) patients' frozen tissues were obtained and HCC cells in vitro were used to observe the role of n339260 in HCC progression. RESULTS In vivo experiment showed lncRNA n339260 promoted tumor growth and VM formation. LncRNA n339260 and miRNA30e-5p were found to be associated with VM formation, metastasis and survival time in HCC patients. In vitro experiment showed that LncRNA n339260 could inhibit miRNA30e-5p expression and TP53INP1 was found to be the downstream targets of miRNA30e-5p. Snail, MMP2, MMP9, VE-cadherin, vimentin and N-cadherin overexpression and the downregulation of TP53INP1 and E-cadherin were observed in HCCLM3 and HepG2 cells overexpressing lncRNA n339260 or in cells with decreased expression of miRNA30e-5p. CONCLUSION LncRNA n339260 promotes the development of VM, and lncRNA n339260 may enhance Snail expression by decreasing the expression of miRNA30e-5p, thereby reducing TP53INP1 expression. Therefore, a potential lncRNA n339260- miRNA30e-5p- TP53INP1 regulatory axis was associated with HCC progression.
Collapse
Affiliation(s)
- Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Shihan Liao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiaoyu Bai
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yanhui Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Runfen Cheng
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, 300060, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China.,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China. .,Department of Pathology, General Hospital of Tianjin Medical University, Tianjin, 300052, China.
| |
Collapse
|
12
|
GLUT3 Promotes Epithelial–Mesenchymal Transition via TGF-β/JNK/ATF2 Signaling Pathway in Colorectal Cancer Cells. Biomedicines 2022; 10:biomedicines10081837. [PMID: 36009381 PMCID: PMC9405349 DOI: 10.3390/biomedicines10081837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023] Open
Abstract
Glucose transporter (GLUT) 3, a member of the GLUTs family, is involved in cellular glucose utilization and the first step in glycolysis. GLUT3 is highly expressed in colorectal cancer (CRC) and it leads to poor prognosis to CRC patient outcome. However, the molecular mechanisms of GLUT3 on the epithelial–mesenchymal transition (EMT) process in metastatic CRC is not yet clear. Here, we identified that activation of the c-Jun N-terminal kinase (JNK)/activating transcription factor-2 (ATF2) signaling pathway by transforming growth factor-β (TGF-β) promotes GLUT3-induced EMT in CRC cells. The regulation of GLUT3 expression was significantly associated with EMT-related markers such as E-cadherin, α- smooth muscle actin (α-SMA), plasminogen activator inhibitor-1 (PAI-1), vimentin and zinc finger E-box binding homeobox 1 (ZEB1). We also found that GLUT3 accelerated the invasive ability of CRC cells. Mechanistically, TGF-β induced the expression of GLUT3 through the phosphorylation of JNK/ATF2, one of the SMAD-independent pathways. TGF-β induced the expression of GLUT3 by increasing the phosphorylation of JNK, the nuclear translocation of the ATF2 transcription factor, and the binding of ATF2 to the promoter region of GLUT3, which increased EMT in CRC cells. Collectively, our results provide a new comprehensive mechanism that GLUT3 promotes EMT process through the TGF-β/JNK/ATF2 signaling pathway, which could be a potential target for the treatment of metastatic CRC.
Collapse
|
13
|
Mueed A, Shibli S, Jahangir M, Jabbar S, Deng Z. A comprehensive review of flaxseed ( Linum usitatissimum L.): health-affecting compounds, mechanism of toxicity, detoxification, anticancer and potential risk. Crit Rev Food Sci Nutr 2022; 63:11081-11104. [PMID: 35833457 DOI: 10.1080/10408398.2022.2092718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Flaxseed consumption (Linum usitatissimum L.) has increased due to its potential health benefits, such as protection against inflammation, diabetes, cancer, and cardiovascular diseases. However, flaxseeds also contains various anti-nutritive and toxic compounds such as cyanogenic glycosides, and phytic acids etc. In this case, the long-term consumption of flaxseed may pose health risks due to these non-nutritional substances, which may be life threatening if consumed in high doses, although if appropriately utilized these may prevent/treat various diseases by preventing/inhibiting and or reversing the toxicity induced by other compounds. Therefore, it is necessary to remove or suppress the harmful and anti-nutritive effects of flaxseeds before these are utilized for large-scale as food for human consumption. Interestingly, the toxic compounds of flaxseed also undergoes biochemical detoxification in the body, transforming into less toxic or inactive forms like α-ketoglutarate cyanohydrin etc. However, such detoxification is also a challenge for the development, scalability, and real-time quantification of these bioactive substances. This review focuses on the health affecting composition of flaxseed, along with health benefits and potential toxicity of its components, detoxification methods and mechanisms with evidence supported by animal and human studies.
Collapse
Affiliation(s)
- Abdul Mueed
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Sahar Shibli
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Muhammad Jahangir
- Department of Food Science & Technology, The University of Haripur, Haripur, Khyber-Pakhtunkhwa, Pakistan
| | - Saqib Jabbar
- Food Science Research Institute, National Agriculture Research Center, Islamabad, Pakistan
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Pharmacological Properties to Pharmacological Insight of Sesamin in Breast Cancer Treatment: A Literature-Based Review Study. Int J Breast Cancer 2022; 2022:2599689. [PMID: 35223101 PMCID: PMC8872699 DOI: 10.1155/2022/2599689] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022] Open
Abstract
The use of dietary phytochemical rather than conventional therapies to treat numerous cancers is now a well-known approach in medical science. Easily available and less toxic dietary phytochemicals present in plants should be introduced in the list of phytochemical-based treatment areas. Sesamin, a natural phytochemical, may be a promising chemopreventive agent aiming to manage breast cancer. In this study, we discussed the pharmacological properties of sesamin that determine its therapeutics opportunity to be used in breast cancer treatment and other diseases. Sesamin is available in medicinal plants, especially in Sesamum indicum, and is easily metabolized by the liver. To better understand the antibreast cancer consequence of sesamin, we postulate some putative pathways related to the antibreast cancer mechanism: (1) regulation of estrogen receptor (ER-α and ER-β) activities, (2) suppressing programmed death-ligand 1 (PD-L1) overexpression, (3) growth factor receptor inhibition, and (4) some tyrosine kinase pathways. Targeting these pathways, sesamin can modulate cell proliferation, cell cycle arrest, cell growth and viability, metastasis, angiogenesis, apoptosis, and oncogene inactivation in various in vitro and animal models. Although the actual tumor intrinsic signaling mechanism targeted by sesamin in cancer treatment is still unknown, this review summarized that this phytoestrogen suppressed NF-κB, STAT, MAPK, and PIK/AKT signaling pathways and activated some tumor suppressor protein in numerous breast cancer models. Cotreatment with γ-tocotrienol, conventional drugs, and several drug carriers systems increased the anticancer potentiality of sesamin. Furthermore, sesamin exhibited promising pharmacokinetics properties with less toxicity in the bodies. Overall, the shreds of evidence highlight that sesamin can be a potent candidate to design drugs against breast cancer. So, like other phytochemicals, sesamin can be consumed for better therapeutic advantages due to having the ability to target a plethora of molecular pathways until clinically trialed standard drugs are not available in pharma markets.
Collapse
|
15
|
Li D, Luo F, Guo T, Han S, Wang H, Lin Q. Targeting NF-κB pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2022; 63:5967-5983. [PMID: 35068283 DOI: 10.1080/10408398.2022.2026871] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Hanqing Wang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
16
|
Modi SJ, Tiwari A, Kulkarni VM. Reversal of TGF-β-induced epithelial-mesenchymal transition in hepatocellular carcinoma by sorafenib, a VEGFR-2 and Raf kinase inhibitor. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100014. [PMID: 34909649 PMCID: PMC8663974 DOI: 10.1016/j.crphar.2021.100014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
The epithelial–mesenchymal transition (EMT) is considered an essential process for cancer development and metastasis. Sorafenib, a RAF kinase and VEGFR-2 inhibitor, exhibits efficacy against advanced hepatocellular carcinoma (HCC), renal carcinoma, and thyroid cancer. It is well established that transforming growth factor-β (TGF-β) activated EMT is involved in the invasion and metastasis of Hep G2 cells in HCC. In this study, we investigated the effects of sorafenib on various biomarkers associated with EMT using flow cytometry. We found that sorafenib upregulated the epithelial marker E-cadherin and downregulated the mesenchymal marker vimentin. Furthermore, sorafenib downregulated the level of the EMT-inducing transcription factor SNAIL. Our findings provide insights into the mechanisms associated with the anti-EMT effects of VEGFR-2/RAF kinase inhibitors. Sorafenib (Nexavar) is potent Raf and VEGFR-2 inhibitor (IC50 = 90 nM), able to suppress aberrant angiogenesis associated with cancer. Sorafenib upregulates epithelial biomarker and downregulates mesenchymal biomarker in Hep G2 cells. It was able to downregulate EMT inducing transcription factor (EMT-TFs), i.e., SNAIL. Sorafenib could be an effective therapeutic option for patients with metastatic cancer.
Collapse
|
17
|
In vitro exposure of sheep ovarian tissue to the xenoestrogens zearalenone and enterolactone: Effects on preantral follicles. Theriogenology 2021; 174:124-130. [PMID: 34428678 DOI: 10.1016/j.theriogenology.2021.08.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022]
Abstract
The aim of this study was to evaluate the effect of 1 μmol/L zearalenone (ZEN) and 1 μmol/L enterolactone (ENL), alone or in combination, on the survival and morphology of in vitro cultured ovarian preantral follicles. Ovaries from 10 sheep were collected at a local abattoir and fragmented, and the ovarian pieces were submitted to in vitro culture for 3 days in the presence or absence of the test compounds. The morphology of primordial and primary follicles was impaired by ZEN, whereas that of cultured secondary follicles was improved by ENL. However, the combination of ENL with ZEN impaired the quality of primary and secondary follicles. Both ZEN and ENL induced apoptosis, but only ZEN was responsible for oocyte autophagy. None of these xenoestrogens affected endoplasmic reticulum stress as observed by the unaltered expression of ERP29. Differently from ZEN, ENL increased the expression of the efflux transporter ABCG2. In conclusion, although ENL can counteract the negative effects of ZEN on primordial and primary follicles, this positive effect is not similar to that observed in ovarian tissue cultures in the presence of ENL alone.
Collapse
|
18
|
Yu D, Yang X, Lin J, Cao Z, Lu C, Yang Z, Zheng M, Pan R, Cai W. Super-Enhancer Induced IL-20RA Promotes Proliferation/Metastasis and Immune Evasion in Colorectal Cancer. Front Oncol 2021; 11:724655. [PMID: 34336707 PMCID: PMC8319729 DOI: 10.3389/fonc.2021.724655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/02/2021] [Indexed: 12/15/2022] Open
Abstract
Unveiling key oncogenic events in malignancies is the key to improving the prognosis and therapeutic outcome of malignancies. Lines of evidence have shown that super-enhancers control the expression of genes that determine the cell fate, but the oncogenic super-enhancers in colorectal cancer (CRC) and their impact on carcinogens remain largely unexplored. Here, we identified a new oncogenic super-enhancer-regulated gene, IL-20RA, in CRC. Using the integrative analysis of H3K27ac ChIP-seq and RNA-seq in CRC tumors and normal colon tissues, we obtained a series of oncogenic super-enhancers in CRC. We found that super-enhancer inhibition by JQ-1 or iBET-151 suppressed the growth of tumor cells and inhibited the expression of IL-20RA. We found that IL-20RA was highly expressed in the tumor tissue of CRC and related to the advanced stage. Further functional studies showed that knockdown of IL-20RA inhibited the growth and metastasis of CRC. In addition, we found that IL-20RA was involved in regulating oncogenic and immune pathways and affecting the expression of genes related to cell proliferation and immune evasion in CRC. Together, our study demonstrated a novel oncogene in CRC and shed new light on oncogenic super-enhancer contributions to cell proliferation and immune escape.
Collapse
Affiliation(s)
- Dingye Yu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zichao Cao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenghao Lu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zheyu Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruijun Pan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of General Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
TGF-β promote epithelial-mesenchymal transition via NF-κB/NOX4/ROS signal pathway in lung cancer cells. Mol Biol Rep 2021; 48:2365-2375. [PMID: 33792826 DOI: 10.1007/s11033-021-06268-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/05/2021] [Indexed: 01/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT), transforming growth factor β(TGF-β) and reactive oxygen species(ROS) plays a central role in cancer metastasis. Moreover, nicotinamide adenine dinucleotide phosphate 4(NOX4) is one of the main sources of ROS in lung cancer cells suggesting that NOX4 is associated with tumor cell migration. NF-κB(Nuclear factor-Kappa-B) is known to regulate ROS-mediated EMT process by activating Snail transcription factor in A549 cells. The purpose of this study was to explore the relationship between NF-κB and NOX4 in ROS production during TGF-β induced EMT process. Several fractions have been pooled to evaluates the EMT process on lung cancer cells through real-time PCR, Western Blot and flow cytometry with DCFH-DA probe etc. Cells proliferation and migration activities were monitored by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay and wound healing assay respectively. The result showed that TGF-β induction decreased the expression of E-cadherin, increased the Vimentin and the EMT transcription factor Snail in A549 cells. DPI (Diphenyleneiodonium chloride, an inhibitor of NOX4) inhibited the NOX4 expression and reduced ROS production induced by TGF-β, but didn't affect the activation of NF-κB induced by TGF-β (P > 0.05). BAY11-7082 (an inhibitor of NF-κB) inhibited the NF-κB (p65) expression and prevented the increase of NOX4 expression and ROS production induced by TGF-β (P < 0.001), which has also verified reduced TGF-β induced cell migration by inhibiting the EMT process, and also reduced cell proliferation of A549 cells (P < 0.001). The current research confirmed the TGF-β mediated EMT process via NF-κB/NOX4/ROS signaling pathway, NF-κB and NOX4 are likely to be the potential therapeutic targets for lung cancer metastasis.
Collapse
|
20
|
Abolfathi H, Sheikhpour M, Shahraeini SS, Khatami S, Nojoumi SA. Studies in lung cancer cytokine proteomics: a review. Expert Rev Proteomics 2021; 18:49-64. [PMID: 33612047 DOI: 10.1080/14789450.2021.1892491] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Proteins are molecules that have role in the progression of the diseases. Proteomics is a tool that can play an effective role in identifying diagnostic and therapeutic biomarkers for lung cancer. Cytokines are proteins that play a decisive role in activating body's immune system in lung cancer. They can increase the growth of the tumor (oncogenic cytokines) or limit tumor growth (anti-tumor cytokines) by regulating related signaling pathways such as proliferation, growth, metastasis, and apoptosis. AREAS COVERED In the present study, a total of 223 papers including 196 research papers and 27 review papers, extracted from PubMed and Scopus and published from 1997 to present, are reviewed. The most important involved-cytokines in lung cancer including TNF-α, IFN- γ, TGF-β, VEGF and interleukins such as IL-6, IL-17, IL-8, IL-10, IL-22, IL-1β and IL-18 are introduced. Also, the pathological and biological role of such cytokines in cancer signaling pathways is explained. EXPERT OPINION In lung cancer, the cytokine expression changes under the physiological conditions of the immune system, and inflammatory cytokines are associated with the progression of lung cancer. Therefore, the cytokine expression profile can be used in the diagnosis, prognosis, prediction of therapeutic responses, and survival of patients with lung cancer.
Collapse
Affiliation(s)
- Hanie Abolfathi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Mao R, Yang F, Zhang Y, Liu H, Guo P, Liu Y, Zhang T. High expression of CD52 in adipocytes: a potential therapeutic target for obesity with type 2 diabetes. Aging (Albany NY) 2021; 13:11043-11060. [PMID: 33705353 PMCID: PMC8109061 DOI: 10.18632/aging.202714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022]
Abstract
The aim of the present study was to evaluate the involvement of CD52 in adipocytes as well as to explore its effect on type 2 diabetes mellitus (T2DM), and to improve our understanding of the potential molecular events of obesity with type 2 diabetes. Global changes in the CD52 expression patterns were detected in adipocytes and preadipocytes derived from obese and lean individuals. In particular, CD52 was identified as significantly differentially upregulated and was analyzed, both in vitro and in vivo, using various approaches. In vitro experiments, CD52 was a significantly up-regulated mRNA in mature adipocytes and preadipocytes. In addition, CD52 gradually increased with the differentiation of preadipocytes. In vivo experiments, the expression of CD52 in high-fat diet (HFD) -fed mice tended to be higher than that in regular diet (RD) -fed mice. Further analysis showed that CD52 expression was positively correlated with Smad3 and TGF-β in mice, and the downregulation of CD52 was accompanied by increased glucose tolerance and insulin sensitivity. Moreover, a comparison of CD4+CD52high T cells and CD4+CD52low T cells showed that many T2DM-related genes were aberrantly expressed. Overall, CD52 may functioned as an important potential target for obesity with T2DM via TGF-β/Smad3 axis.
Collapse
Affiliation(s)
- Rui Mao
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Fan Yang
- Emergency Department, Third Clinical Medical College, Peking University, Beijing 100191, China
| | - Yu Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Hongtao Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Pengsen Guo
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Yanjun Liu
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China
| | - Tongtong Zhang
- The Center of Gastrointestinal and Minimally Invasive Surgery, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu 610031, China.,Medical Research Center, The Third People's Hospital of Chengdu, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu 610031, China
| |
Collapse
|
22
|
Tiwari A, Modi SJ, Gabhe SY, Kulkarni VM. Evaluation of piperine against cancer stem cells (CSCs) of hepatocellular carcinoma: Insights into epithelial-mesenchymal transition (EMT). Bioorg Chem 2021; 110:104776. [PMID: 33743225 DOI: 10.1016/j.bioorg.2021.104776] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are involved in recurrent hepatocellular carcinoma (HCC), yet there is a lack of effective treatment that targets these CSCs. CD44+ and CD133+ CSCs are markedly expressed in HepG2 cells and were isolated and characterized using fluorescence-activated cell sorting (FACS) analysis. Since piperine is known as an effective molecule against metastasis, we thought to investigate the effect of piperine against CD44+/CD133+ CSCs. Herein, piperine was found to be active against these CSCs. Also, it was found appropriate to respite at the 'subG0/G1 and G0/G1' phase of the cell cycle analysis, respectively. TGF-β activated epithelial-mesenchymal transition (EMT) has been involved in the invasion and metastasis of HepG2 cells in hepatocellular carcinoma. Therefore, we next investigated the effect of piperine on different biomarkers that remarkably takes part in the process of EMT using flow cytometric analysis. Piperine was found able to repress the epithelial marker (E-cadherin) but was unable to restore the level of Vimentin (mesenchymal marker) and SNAIL (EMT-inducing transcription factor). Therefore, the findings of this study revealed that piperine could be an effective treatment strategy for recurrent hepatocarcinogenesis.
Collapse
Affiliation(s)
- Anshuly Tiwari
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India
| | - Siddharth J Modi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India
| | - Satish Y Gabhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India.
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune 411038, Maharashtra, India.
| |
Collapse
|
23
|
Zhang L, Wu X, Li Y, Teng X, Zou L, Yu B. LncRNA SNHG5 promotes cervical cancer progression by regulating the miR-132/SOX4 pathway. Autoimmunity 2021; 54:88-96. [PMID: 33622094 DOI: 10.1080/08916934.2020.1864731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The long non-coding RNA (lncRNA) small nucleolar RNA host gene 5 (SNHG5) has been verified as a crucial regulator in many types of tumours but not clear in cervical cancer (CC). This study aims to investigate the effect and further mechanisms of lncRNA SNHG5 in CC. METHODS The expression of SNHG5 and miR-132, as well as SOX4 (sex-determining region Y-box 4) mRNA expression were determined by quantitative real-time PCR (qRT-PCR). The protein level of SOX4 and epithelial-mesenchymal transition (EMT)-related proteins were evaluated by western blot. Then, Edu and Transwell assay were performed to assess the proliferation, migration and invasion of CC cells. RNA immunoprecipitation (RIP) and RNA pull-down assay were conducted to explore the relationship between SNHG5 and miR-132. RESULTS SNHG5 and SOX4 were upregulated, and miR-132 was downregulated in CC tissues and cell lines. SNHG5 was positively correlated with FIGO stage (p = .003) and lymph node metastasis (p = .001). Pearson's correlation analysis conveyed that SNHG5 was positively correlated with SOX4, and miR-132 was negatively correlated with SOX4 and SNHG5. Knockdown of SNHG5 in vitro reduced CC cell proliferation, migration and invasion through regulating miR-132. Moreover, overexpression of miR-132 restrained CC cell proliferation, migration, and invasion through targeting SOX4, and SNHG5 enhanced SOX4 expression via negatively regulating miR-132. CONCLUSION SNHG5 promotes SOX4 expression to accelerate CC cell proliferation, migration and invasion through negatively regulating miR-132.
Collapse
Affiliation(s)
- Liqin Zhang
- Department of Laboratory, Jinhua People's Hospital, China
| | - Xiaoming Wu
- Department of Laboratory, Hangzhou Jianggan District People's Hospital, Hangzhou, China
| | - Yue Li
- Department of Laboratory, Jinhua People's Hospital, China
| | - Xianlin Teng
- Department of Laboratory, Jinhua People's Hospital, China
| | - Libo Zou
- Department of Laboratory, Jinhua People's Hospital, China
| | - Beiwei Yu
- Department of Laboratory, Hangzhou Jianggan District People's Hospital, Hangzhou, China
| |
Collapse
|
24
|
Tannous S, Haykal T, Dhaini J, Hodroj MH, Rizk S. The anti-cancer effect of flaxseed lignan derivatives on different acute myeloid leukemia cancer cells. Biomed Pharmacother 2020; 132:110884. [PMID: 33080470 DOI: 10.1016/j.biopha.2020.110884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Flaxseeds have been known for their anti-cancerous effects due to the high abundance of lignans released upon ingestion. The most abundant lignan, secoisolariciresinol diglucoside (SDG), is ingested during the dietary intake of flax, and is then metabolized in the gut into two mammalian lignan derivatives, Enterodiol (END) and Enterolactone (ENL). These lignans were previously reported to possess anti-tumor effects against breast, colon, and lung cancer. This study aims to investigate the potential anti-cancerous effect of the flaxseed lignans SDG, END and ENL on acute myeloid leukemia cells (AML) in vitro and to decipher the underlying molecular mechanism. AML cell lines, (KG-1 and Monomac-1) and a normal lymphoblastic cell line were cultured and treated with the purified lignans. ENL was found to be the most promising lignan, as it exhibits a significant selective dose- and time-dependent cytotoxic effect in both AML cell lines, contrary to normal cells. The cytotoxic effects observed were attributed to apoptosis induction, as revealed by an increase in Annexin V staining of AML cells with increasing ENL concentrations. The increase in the percentage of cells in the pre-G phase, in addition to cell death ELISA analysis, validated cellular and DNA fragmentation respectively. Analysis of protein expression using western blots confirmed the activation of the intrinsic apoptotic pathway upon ENL treatment. This was also accompanied by an increase in ROS production intracellularly. In conclusion, this study demonstrates that ENL has promising anti-cancer effects in AML cell lines in vitro, by promoting DNA fragmentation and the intrinsic apoptotic pathway, highlighting the protective health benefits of flax seeds in leukemia.
Collapse
Affiliation(s)
- Stephanie Tannous
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Tony Haykal
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Jana Dhaini
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | | | - Sandra Rizk
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
25
|
Man AW, Zhou Y, Xia N, Li H. Involvement of Gut Microbiota, Microbial Metabolites and Interaction with Polyphenol in Host Immunometabolism. Nutrients 2020; 12:E3054. [PMID: 33036205 PMCID: PMC7601750 DOI: 10.3390/nu12103054] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022] Open
Abstract
Immunological and metabolic processes are inextricably linked and important for maintaining tissue and organismal health. Manipulation of cellular metabolism could be beneficial to immunity and prevent metabolic and degenerative diseases including obesity, diabetes, and cancer. Maintenance of a normal metabolism depends on symbiotic consortium of gut microbes. Gut microbiota contributes to certain xenobiotic metabolisms and bioactive metabolites production. Gut microbiota-derived metabolites have been shown to be involved in inflammatory activation of macrophages and contribute to metabolic diseases. Recent studies have focused on how nutrients affect immunometabolism. Polyphenols, the secondary metabolites of plants, are presented in many foods and beverages. Several studies have demonstrated the antioxidant and anti-inflammatory properties of polyphenols. Many clinical trials and epidemiological studies have also shown that long-term consumption of polyphenol-rich diet protects against chronic metabolic diseases. It is known that polyphenols can modulate the composition of core gut microbiota and interact with the immunometabolism. In the present article, we review the mechanisms of gut microbiota and its metabolites on immunometabolism, summarize recent findings on how the interaction between microbiota and polyphenol modulates host immunometabolism, and discuss future research directions.
Collapse
Affiliation(s)
| | | | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; (A.W.C.M.); (Y.Z.); (N.X.)
| |
Collapse
|
26
|
Modi SJ, Kulkarni VM. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma. Eur J Med Chem 2020; 207:112851. [PMID: 33002846 DOI: 10.1016/j.ejmech.2020.112851] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/02/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignancy characterized by neoangiogenesis, which is an augmented production of proangiogenic factors by the tumor and its adjacent infected cells. These dysregulated angiogenic factors are the therapeutic targets in anti-angiogenic drug development. The signaling pathway of vascular endothelial growth factor (VEGF)/VEGFR-2 is crucial for controlling the angiogenic responses in endothelial cells (ECs). In this study, we carried out a rational drug design approach wherein we have identified the novel orally bioavailable compound VS 8 as a potent VEGFR-2 inhibitor, which remarkably suppresses hVEGF and hVEGFR-2 expression in HUVECs and exhibits significant anti-angiogenic effects in CAM assay. Besides, VS 8 significantly induces apoptosis in HCC cell line (Hep G2). Later we examined its effectiveness against CD44+ and CD133+ CSCs. Here, VS 8 was found to be active against CSCs, and adequate for the cessation of the cell cycle at 'G0/G1' and 'S' phase in CD44+ and CD133+ CSCs respectively. Factually, transforming growth factor-β (TGF-β) stimulated epithelial-mesenchymal transition (EMT) induces invasion and migration of HCC cells, which results in the metastasis. Therefore, we studied the effect of VS 8 on EMT markers using flow cytometry, which suggested that VS 8 significantly upregulates E-cadherin (epithelial biomarker) and downregulates vimentin (mesenchymal biomarker). Further, VS 8 downregulates the expression of EMT-inducing transcription factors (EMT-TFs), i.e., SNAIL. Altogether, our findings indicate that VS 8 could be a promising drug candidate for cancer therapy.
Collapse
Affiliation(s)
- Siddharth J Modi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India
| | - Vithal M Kulkarni
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, 411038, Maharashtra, India.
| |
Collapse
|
27
|
Wei XM, Wumaier G, Zhu N, Dong L, Li CW, Xia JW, Zhang YZ, Zhang P, Zhang XJ, Zhang YY, Li SQ. Protein tyrosine phosphatase L1 represses endothelial-mesenchymal transition by inhibiting IL-1β/NF-κB/Snail signaling. Acta Pharmacol Sin 2020; 41:1102-1110. [PMID: 32152438 PMCID: PMC7470836 DOI: 10.1038/s41401-020-0374-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 02/04/2020] [Indexed: 12/21/2022] Open
Abstract
Endothelial-mesenchymal transition (EnMT) plays a pivotal role in various diseases, including pulmonary hypertension (PH), and transcription factors like Snail are key regulators of EnMT. In this study we investigated how these factors were regulated by PH risk factors (e.g. inflammation and hypoxia) in human umbilical vein endothelial cells (HUVECs). We showed that treatment with interleukin 1β (IL-1β) induced EnMT of HUVECs via activation of NF-κB/Snail pathway, which was further exacerbated by knockdown of protein tyrosine phosphatase L1 (PTPL1). We demonstrated that PTPL1 inhibited NF-κB/Snail through dephosphorylating and stabilizing IκBα. IL-1β or hypoxia could downregulate PTPL1 expression in HUVECs. The deregulation of PTPL1/NF-κB signaling was validated in a monocrotaline-induced rat PH (MCT-PH) model and clinical PH specimens. Our findings provide novel insights into the regulatory mechanisms of EnMT, and have implications for identifying new therapeutic targets for clinical PH.
Collapse
|
28
|
Mahboobeh Z, Pegah M, Fatemeh S, Elham K, Hanieh A, Milad R, Mohammad S. lncRNA ZEB2‐AS1
: A promising biomarker in human cancers. IUBMB Life 2020; 72:1891-1899. [DOI: 10.1002/iub.2338] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Zarei Mahboobeh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Mousavi Pegah
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Sadri Fatemeh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Karimi Elham
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Azari Hanieh
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Rafat Milad
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| | - Shekari Mohammad
- Department of Medical Genetics, School of MedicineHormozgan University of Medical Sciences Bandar Abbas Iran
| |
Collapse
|
29
|
The SNAIL1 promoter contains G-quadruplex structures regulating its gene expression and DNA replication. Exp Cell Res 2020; 394:112158. [PMID: 32610184 DOI: 10.1016/j.yexcr.2020.112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 01/17/2023]
Abstract
SNAIL1 is a key regulator of epithelial-mesenchymal transition (EMT) and its expression is associated with tumor progression and poor clinical prognosis of cancer patients. Compared to the studies of SNAIL1 stability and its transcriptional regulation, very limited knowledge is available regarding effective approaches to directly target SNAIL1. In this study, we revealed the potential regulation of SNAIL1 gene expression by G-quadruplex structures in its promoter. We first revealed that the negative strand of the SNAIL1 promoter contained a multi-G-tract region with high potential of forming G-quadruplex structures. In circular dichroism studies, the oligonucleotide based on this region showed characteristic molar ellipticity at specific wavelengths of G-quadruplex structures. We also utilized native polyacrylamide gel electrophoresis, gel-shift assays, immunofluorescent staining, dimethyl sulfate footprinting and chromatin immunoprecipitation studies to verify the G-quadruplex structures formed by the oligonucleotide. In reporter assays, disruption of G-quadruplex potential increased SNAIL1 promoter-mediated transcription, suggesting that G-quadruplexes played a negative role in SNAIL1 expression. In a DNA synthesis study, we detected G-quadruplex-mediated retardation in the SNAIL1 promoter replication. Consistently, we discovered that the G-quadruplex region of the SNAIL1 promoter is highly enriched for mutations, implicating the clinical relevance of G-quadruplexes to the altered SNAIL1 expression in cancer cells.
Collapse
|
30
|
Li QH, Liu ZZ, Ge YΝ, Liu X, Xie XD, Zheng ZD, Ma YH, Liu B. Small breast epithelial mucin promotes the invasion and metastasis of breast cancer cells via promoting epithelial‑to‑mesenchymal transition. Oncol Rep 2020; 44:509-518. [PMID: 32627029 PMCID: PMC7336452 DOI: 10.3892/or.2020.7640] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/23/2020] [Indexed: 01/13/2023] Open
Abstract
The aim of the present study was to observe the influence of the small breast epithelial mucin (MUCL1) (also known as SBEM) gene on migration and invasion ability of breast cancer cells and to explore the potentially involved mechanism. SBEM‑interference plasmid and SBEM‑overexpressing plasmid were constructed. SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 breast cancer cells were established by lentivirus‑mediated stable transfection method. The scratch wound‑healing assay and Transwell chamber experiment were used to detect the influence of the SBEM gene on the migration and invasion abilities of MCF‑7 and MDA‑MB‑231 cells. Real‑time PCR (polymerase chain reaction) and western blotting were used to detect the expression of epithelial‑to‑mesenchymal transition (EMT)‑related markers and regulators. The cell morphology was observed after transfection. The SBEM‑knockdown or SBEM‑overexpressing MCF‑7 and MDA‑MB‑231 cells were established successfully. The migration and invasion abilities were decreased after SBEM was downregulated, and were increased after SBEM was overexpressed both in MCF‑7 and MDA‑MB‑231 cell lines. The mRNA and protein expressions of N‑cadherin, Twist and vimentin were elevated following SBEM overexpression, while the expression of E‑cadherin and claudin‑1 were found to be decreased following SBEM overexpression. In conclusion, SBEM has the potential to promote migration and invasion ability of breast cancer cells via promoting epithelial‑to‑mesenchymal transition.
Collapse
Affiliation(s)
- Qiu-Hua Li
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Zhao-Zhe Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Ya-Νan Ge
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xing Liu
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Xiao-Dong Xie
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Zhen-Dong Zheng
- Oncology Department, General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yue-Hai Ma
- Oncology Department, The Second Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110034, P.R. China
| | - Bin Liu
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
31
|
Li J, Wu DM, Han R, Yu Y, Deng SH, Liu T, Zhang T, Xu Y. Low-Dose Radiation Promotes Invasion and Migration of A549 Cells by Activating the CXCL1/NF-κB Signaling Pathway. Onco Targets Ther 2020; 13:3619-3629. [PMID: 32431513 PMCID: PMC7197943 DOI: 10.2147/ott.s243914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose Radiation has well-known and well-characterized direct toxic effects on cells and tissues. However, low-dose ionizing irradiation (LDIR) can also enhance the invasion and migration of tumor cells, and the mechanisms underlying these effects remain unclear. The present study aimed to investigate changes induced in the migration and invasion of A549 cells after LDIR and to explore the potential molecular mechanism. Materials and Methods A549 cells were irradiated with X-rays at different doses (0, 2, 4, and 6 Gy) and cultured for 24 or 48 h. Apoptosis and proliferation were evaluated by lactate dehydrogenase release, CCK8, colony formation, and flow cytometry assays. Wound-healing and transwell assays were performed to detect migration and invasion ability. CXCL1 or p65 were knocked down using lentivirus-mediated siRNA in A549 cell lines. Knockdown efficiency of CXCL1 and p65 was assessed by RT-qPCR. Western blotting and immunofluorescence were used to determine the changes in protein levels. Results In cells irradiated with a dose of 6 Gy, after 48 h, apoptosis was clearly induced while proliferation was inhibited. Irradiation with 4 Gy resulted in the upregulation of CXCL1 expression and activation of the NF-κB signaling pathway. Moreover, upon 4 Gy irradiation, migration, invasion, and epithelial–mesenchymal transition (EMT) were significantly enhanced in A549 cells. Importantly, CXCL1 or p65 knockdown inhibited radiation-induced migration, invasion, and EMT. Conclusion Low-dose radiation upregulates CXCL1 expression and activates the NF-κB signaling to regulate EMT in A549 cells, thereby promoting invasion and migration. These results provide new insights into the prevention of tumor invasion and metastasis induced by radiotherapy.
Collapse
Affiliation(s)
- Jing Li
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Dong-Ming Wu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Rong Han
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ye Yu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Shi-Hua Deng
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Teng Liu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ting Zhang
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| | - Ying Xu
- Clinical Laboratory, The First Affiliated Hospital, Collaborative Innovation Center of Sichuan for Elderly Care and Health of Chengdu Medical College, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
32
|
Tang L, Chen Y, Chen H, Jiang P, Yan L, Mo D, Tang X, Yan F. DCST1-AS1 Promotes TGF-β-Induced Epithelial-Mesenchymal Transition and Enhances Chemoresistance in Triple-Negative Breast Cancer Cells via ANXA1. Front Oncol 2020; 10:280. [PMID: 32226772 PMCID: PMC7080863 DOI: 10.3389/fonc.2020.00280] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/18/2020] [Indexed: 12/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic breast cancer subtype, and the primary systemic treatment strategy involves conventional chemotherapy. DC-STAMP domain containing 1-antisense 1 (DCST1-AS1) is a long non-coding RNA that promotes TNBC migration and invasion. Studying the role of DCST1-AS1 in promoting epithelial–mesenchymal transition (EMT) and chemoresistance will provide a new strategy for TNBC therapy. In the present study, we found that DCST1-AS1 regulates the expression or secretion of EMT-related proteins E-cadherin, snail family zinc finger 1 (SNAI1), vimentin, matrix metallopeptidase 2 (MMP2), and matrix metallopeptidase 9 (MMP9). Interference with DCST1-AS1 impaired TGF-β-induced TNBC cell invasion and migration. DCST1-AS1 directly binds to ANXA1 in BT-549 cells and affects the expression of ANXA1. DCST1-AS1 enhances TGF-β/Smad signaling in BT-549 cells through ANXA1 to promote EMT. The combination of DCST1-AS1 and ANXA1 also contributes to enhancement of the resistance of BT-549 cells to doxorubicin and paclitaxel. In conclusion, DCST1-AS1 promotes TGF-β-induced EMT and enhances chemoresistance in TNBC cells through ANXA1, and therefore represents a potentially promising target for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Li Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuli Chen
- Department of Clinical Laboratory, Nanjing Qixia District Hospital, Nanjing, China
| | - Huanhuan Chen
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Pan Jiang
- The Fourth Clinical Medical School, Nanjing Medical University, Nanjing, China
| | - Linping Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Dongping Mo
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xun Tang
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & the Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
33
|
Xu J, Shi J, Tang W, Jiang P, Guo M, Zhang B, Ma G. ROR2 promotes the epithelial-mesenchymal transition by regulating MAPK/p38 signaling pathway in breast cancer. J Cell Biochem 2020; 121:4142-4153. [PMID: 32048761 DOI: 10.1002/jcb.29666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 12/09/2019] [Indexed: 01/06/2023]
Abstract
Receptor tyrosine kinase-like orphan receptor 2 (ROR2) is a tyrosine-protein kinase receptor highly implicated in the growth plate and cartilage development, which may be involved in epithelial-mesenchymal transition (EMT) in breast cancer (BC) cells. Although ROR2 is known to promote the migration of BC cells, the detailed mechanism of this event is still not clear. Here, we found that ROR2 expression was significantly increased in BC lymphatic metastatic tissue as well as BC samples compared to normal adjacent breast tissues. A higher expression of ROR2 in MDA-MB-231 and a lower expression of ROR2 in MCF-7 cells were observed. MDA-MB-231-siROR2 cells with ROR2 knockdown inhibited MDA-MB-231 cell invasion, migration, and clonal formation, while MCF-7-OvROR2 cells with overexpression showed the opposite results. The underlying mechanisms involved in ROR2-induced EMT in MDA-MB-231 and MCF-7 cells were further investigated. ROR2 may activate EMT progression in BC cells by altering MAPK kinase 3/6 (MKK3/6) expression. The expressions of transforming growth factor-β, matrix metalloproteinase-2 (MMP-2), and MMP-9, which were related to tumor cell invasion activities, were notably increased in MCF-7-OvROR2 cells. The EMT markers, including snail, N-cadherin, tissue inhibitor of metalloproteinases-1, and vimentin, were significantly upregulated in MCF-7-OvROR2 cells. On the contrary, E-cadherin was obviously reduced expressed in MCF-7-OvROR2 cells. ROR2 may regulate the malignant phenotype of BC cells possibly via activation of mitogen-activated protein kinase (MAPK)/p38 signaling pathway. Collectively, ROR2 promotes BC carcinogenesis by mediating the MAPK/p38 pathway, which is independent of Wnt5α.
Collapse
Affiliation(s)
- Jin Xu
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.,Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| | - Junfeng Shi
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weiwei Tang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Jiang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Muhong Guo
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Bin Zhang
- Department of Thyroid and Mammary Gland Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Ge Ma
- Department of Breast Surgery, The First Affiliated Hospital With Nanjing Medical University, Nanjing, China
| |
Collapse
|
34
|
Wu X, Ding M, Lin J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. Oncol Lett 2019; 19:301-308. [PMID: 31897142 PMCID: PMC6923981 DOI: 10.3892/ol.2019.11118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 10/23/2019] [Indexed: 12/15/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a specific type of breast cancer with poor overall survival (OS) time. Previous studies revealed that microRNAs (miRNAs/miRs) serve important roles in the pathogenesis, progression and prognosis of TNBC. The present study analyzed the miRNA expression and clinical data of patients with TNBC downloaded from The Cancer Genome Atlas. A total of 194 differentially expressed miRNAs were identified between TNBC and matched normal tissues using the cut-off criteria of P<0.05 and |log2 fold change|>2. Of these miRNAs, 65 were downregulated and 129 were upregulated. Using Kaplan-Meier survival analysis, a total of 77 miRNAs that were closely associated with OS time were identified (P<0.05). The intersection of the 77 miRNAs and 194 differentially expressed miRNAs revealed six miRNAs. Log-rank tests based on survival curves were performed and two miRNAs were eliminated. The prognostic value of the remaining four miRNAs was evaluated with a Cox proportional hazards model using multiple logistic regression with forward stepwise selection of variables. Three miRNAs (miR-21-3p, miR-659-5p and miR-200b-5p) were subsequently identified as independent risk factors associated with OS time in the model. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses revealed that the target genes of these three miRNAs were mainly involved in ‘cell protein metabolism’, ‘RNA transcriptional regulation’, ‘cell migration’, ‘MAPK signaling pathway’, ‘ErbB signaling pathway’, ‘prolactin signaling pathway’ and ‘adherens junctions’. Taken together, the results obtained in the present study suggested that the three-miRNA signature may serve as a prognostic biomarker for patients with TNBC.
Collapse
Affiliation(s)
- Xinquan Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Mingji Ding
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| | - Jianqin Lin
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, P.R. China
| |
Collapse
|
35
|
LncRNA-CTS promotes metastasis and epithelial-to-mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer. Cancer Lett 2019; 465:105-117. [DOI: 10.1016/j.canlet.2019.09.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/17/2019] [Accepted: 09/04/2019] [Indexed: 01/05/2023]
|
36
|
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019; 11:cancers11101618. [PMID: 31652660 PMCID: PMC6827047 DOI: 10.3390/cancers11101618] [Citation(s) in RCA: 514] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Mihail Buse
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | | | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 40015 Cluj-Napoca, Romania.
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 601 77 Brno, Czech Republic.
| | - Calin Ionescu
- th Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania.
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
37
|
Chen T, Zhu J, Cai T, Du W, Zhang Y, Zhu Q, Liu Z, Huang JA. Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2 signaling pathway. J Cancer 2019; 10:6014-6024. [PMID: 31762811 PMCID: PMC6856587 DOI: 10.7150/jca.35017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. SMAD family member 2 (SMAD2) is a key element downstream of the transforming growth factor beta (TGF-β) signaling pathway that regulates cancer metastasis by promoting the epithelial-mesenchyme transition (EMT). MicroRNA miR-486-5p is a tumor suppressor in NSCLC progression. However, it remains unclear whether miR-486-5p is implicated in TGF-β signaling and EMT in NSCLC. In the present study, high expression of SMAD2 mRNA was detected in NSCLC tissues and cell lines, and was associated with poor survival of patients with NSCLC. By contrast, miR-486-5p was downregulated in NSCLC tissues and cell lines. In silico prediction showed that SMAD2 was a potential target of miR-486-5p. The prediction was verified using a dual-luciferase reporter assay. Transwell assays showed that knockdown of SMAD2 inhibited TGF-β-induced EMT and migration and invasion in NSCLC cells. Similarly, miR-486-5p overexpression suppressed TGF-β-induced EMT and migration and invasion of NSCLC cells. The present study provides a new insight into the role of miR-486-5p in regulating TGF-β-mediated EMT and invasion in NSCLC.
Collapse
Affiliation(s)
- Tao Chen
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Jianjie Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Tingting Cai
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Wenwen Du
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Yang Zhang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Qingqing Zhu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China
| | - Zeyi Liu
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| | - Jian-An Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou 215006, China.,Suzhou Key Laboratory for Respiratory Diseases, Suzhou 215006, China.,Institute of Respiratory Diseases, Soochow University, Suzhou 215006, China
| |
Collapse
|
38
|
Zhang Z, Tang H, Chen P, Xie H, Tao Y. Demystifying the manipulation of host immunity, metabolism, and extraintestinal tumors by the gut microbiome. Signal Transduct Target Ther 2019; 4:41. [PMID: 31637019 PMCID: PMC6799818 DOI: 10.1038/s41392-019-0074-5] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 02/06/2023] Open
Abstract
The trillions of microorganisms in the gut microbiome have attracted much attention recently owing to their sophisticated and widespread impacts on numerous aspects of host pathophysiology. Remarkable progress in large-scale sequencing and mass spectrometry has increased our understanding of the influence of the microbiome and/or its metabolites on the onset and progression of extraintestinal cancers and the efficacy of cancer immunotherapy. Given the plasticity in microbial composition and function, microbial-based therapeutic interventions, including dietary modulation, prebiotics, and probiotics, as well as fecal microbial transplantation, potentially permit the development of novel strategies for cancer therapy to improve clinical outcomes. Herein, we summarize the latest evidence on the involvement of the gut microbiome in host immunity and metabolism, the effects of the microbiome on extraintestinal cancers and the immune response, and strategies to modulate the gut microbiome, and we discuss ongoing studies and future areas of research that deserve focused research efforts.
Collapse
Affiliation(s)
- Ziying Zhang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
- Department of Oncology, Third Xiangya Hospital, Central South University, 410013 Changsha, China
| | - Haosheng Tang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| | - Peng Chen
- Department of Urology, Xiangya Hospital, Central South University, 410008 Changsha, China
| | - Hui Xie
- Department of Thoracic and Cardiovascular Surgery, Second Xiangya Hospital of Central South University, 410011 Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, 410078 Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078 Changsha, Hunan China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011 Changsha, China
| |
Collapse
|
39
|
Positive Correlative over-Expression between eIF4E and Snail in Nasopharyngeal Carcinoma Promotes its Metastasis and Resistance to Cisplatin. Pathol Oncol Res 2019; 26:1639-1649. [PMID: 31512056 DOI: 10.1007/s12253-019-00733-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 08/27/2019] [Indexed: 02/07/2023]
Abstract
EIF4E is the rate-limiting factor in the mRNA translation of specific set of oncogenes. Snail is the core transcription factor of epithelial-mesenchymal transition (EMT), a key step of cancer metastasis. The connection between the two oncoproteins has not been well established in the human cancer tissues and in nasopharyngeal carcinoma (NPC). Here we showed that the positive correlative over-expression was seen between eIF4E and Snail in NPC tissues, and the expression was significantly higher in the metastatic NPC than in the un-metastatic NPC. In NPC cells, eIF4E knockdown significantly reduced Snail mRNA and protein levels, increased the mRNA level of E-cad (a direct downstream gene of Snail and a negative EMT marker), attenuated the invasive ability of the cells, and sensitized the cells to cisplatin in invasion. In contrast, enforced the expression of eIF4E significantly increased Snail mRNA and protein levels, and promoted the invasive ability in NPC cells. Under the condition of the high eIF4E expression, Snail knockdown significantly increased E-cad mRNA level and weaken the invasive ability of NPC cells. Finally, eIF4E directly bound Snail mRNA for translation initiation displayed by the RIP assay. Therefore, the results firstly suggested that eIF4E enhanced the Snail expression in both transcription and translation manner in human cancer tissues and targeting the eIF4E/Snail axis might intervene with the EMT and metastasis of NPC. This finding provided a new clue for further understanding the metastatic mechanism of human cancers and for preventing and treating NPC metastasis.
Collapse
|
40
|
Dendrobium officinale Polysaccharides Inhibit 1-Methyl-2-Nitro-1-Nitrosoguanidine Induced Precancerous Lesions of Gastric Cancer in Rats through Regulating Wnt/β-Catenin Pathway and Altering Serum Endogenous Metabolites. Molecules 2019; 24:molecules24142660. [PMID: 31340453 PMCID: PMC6680496 DOI: 10.3390/molecules24142660] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/24/2022] Open
Abstract
Dendrobium officinale is a herb in traditional Chinese medicine where D. officinale polysaccharides (DOP) are the main active ingredient. This study aimed at evaluating DOP efficiency at inhibiting 1-Methyl-2-nitro-1-nitrosoguanidine (MNNG) induced precancerous lesions of gastric cancer (PLGC) in rats through the Wnt/b-catenin pathway and analyzing the variations of serum endogenous metabolites. PLGC was established in male Sprague-Dawley (SD) rats by administering 150 μg/mL MNNG in drinking water for 7 months and giving 0.1 mL of 10% NaCl once weekly during the initial 20 weeks. Treatment with DOP inhibited the progress of PLGC through decreasing the expression of β-catenin by immunohistochemical analysis. The futher study indicated DOP downregulated gene expression of Wnt2β, Gsk3β, PCNA, CyclinD1, and β-catenin, as well as protein expression of Wnt2β, PCNA, and β-catenin. On the other hand, there were nine endogenous metabolites identified after the DOP treatment. Among these, the most significant one is betaine because of its strong antioxidant activity, leading to an anti-tumor effect. DOP can inhibit MNNG-induced PLGC models via regulating Wnt/β-catenin pathway and by changing endogenous metabolites.
Collapse
|
41
|
Huang C, Wu XF, Wang XL. Trichostatin a inhibits phenotypic transition and induces apoptosis of the TAF-treated normal colonic epithelial cells through regulation of TGF-β pathway. Int J Biochem Cell Biol 2019; 114:105565. [PMID: 31278993 DOI: 10.1016/j.biocel.2019.105565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022]
Abstract
Tumor-associated fibroblasts (TAFs) contribute to transdifferentiation of stromal cells in tumor microenvironment. Epithelial-mesenchymal transition (EMT) is a procedure of phenotypic remodeling of epithelial cells and extensively exists in local tumoral stroma. Histone deacetylase (HDAC) inhibitor Tricostatin A (TSA) and sodium butyrate (SB) are reported to play important roles in the regulation of biological behaviour of cancer cells. However, whether TSA or SB is involved in control of EMT in colon epithelial cells induced by TAFs remains unidentified. In present study, we used conditioned medium (CM) form TAF-like CCD-18Co cells to stimulate 2D- and 3D-cultured colon epithelial HCoEpiC cells for 24 h and 4 d. We found that the CCD-18Co CM triggered multiple morphological changes in HCoEpiCs including prolonged cell diameters, down-regulation of E-cadherin and up-regulation of vimentin and α-SMA. Besides, ZEB1 and Snail expression and migration were also promoted by the CM. These phenomena were abolised by 5 μg/ml LY364947, a TGF-β receptor inhibitor. CCD-18Co induced up-regulation of HDAC1 and HDAC2 in the 2D and 3D models, while no change of HDAC4 exprerssion was found. Treatment of 2 μg/ml TSA reversed the CCD-18Co-induced morphological changes and migration of the HCoEpiCs, and suppressed the downregulation of E-cadherin and upregulation of vimentin, α-SMA, ZEB1 and Snail. However, the suppressive effect of 4 mg/ml SB on the EMT was not observed. TSA down-regulated the expressions of Smad2/3, p-Smad2/3 amd HDAC4. Besides, TSA promoted the apoptosis rate (36.84 ± 6.52%) comparing with the CCD-18Co-treated HCoEpiCs (3.52 ± 0.85%, P < 0.05), with promotion of Bax (0.5893±0.0498 in 2D and 0.8867±0.0916 in 3D) and reduction of Bcl-2 (0.0476±0.0053 in 2D and 0.0294±0.0075 in 3D). TSA stimulated expression of phosphorylated-p38 MAPK in 2D (0.3472±0.0249) and 3D (0.3188±0.0248). After pre-treatment with p38 MAPK inhibitor VX-702 (0.5 mg/ml), the apoptosis rate of TSA was decreased in 2D (10.32%) and 3D (5.26%). Our observations demonstrate that epigenetic treatment with HDAC inhibitor TSA may be a useful therapeutic tool for the reversion of TAF-induced EMT in colon epithelium through mediating canonical Smads pathway and non-canonical p38 MAPK signalling.
Collapse
Affiliation(s)
- Chao Huang
- Department of Traditional Chinese Medicine, Affiliated Bao'an Hospital of Shenzhen, Southern Medical University, Shenzhen, 518100, China.
| | - Xiao-Fen Wu
- Department of Endocrinology, The 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, 730050, China
| | - Xiu-Lian Wang
- Health Management Centre, Affiliated Bao'an Hospital of Traditional Chinese Medicine of Shenzhen, Traditional Chinese Medicine University Of Guangzhou, Shenzhen, 518100, China
| |
Collapse
|
42
|
Olea-Flores M, Zuñiga-Eulogio MD, Mendoza-Catalán MA, Rodríguez-Ruiz HA, Castañeda-Saucedo E, Ortuño-Pineda C, Padilla-Benavides T, Navarro-Tito N. Extracellular-Signal Regulated Kinase: A Central Molecule Driving Epithelial-Mesenchymal Transition in Cancer. Int J Mol Sci 2019; 20:E2885. [PMID: 31200510 PMCID: PMC6627365 DOI: 10.3390/ijms20122885] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/18/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a reversible cellular process, characterized by changes in gene expression and activation of proteins, favoring the trans-differentiation of the epithelial phenotype to a mesenchymal phenotype. This process increases cell migration and invasion of tumor cells, progression of the cell cycle, and resistance to apoptosis and chemotherapy, all of which support tumor progression. One of the signaling pathways involved in tumor progression is the MAPK pathway. Within this family, the ERK subfamily of proteins is known for its contributions to EMT. The ERK subfamily is divided into typical (ERK 1/2/5), and atypical (ERK 3/4/7/8) members. These kinases are overexpressed and hyperactive in various types of cancer. They regulate diverse cellular processes such as proliferation, migration, metastasis, resistance to chemotherapy, and EMT. In this context, in vitro and in vivo assays, as well as studies in human patients, have shown that ERK favors the expression, function, and subcellular relocalization of various proteins that regulate EMT, thus promoting tumor progression. In this review, we discuss the mechanistic roles of the ERK subfamily members in EMT and tumor progression in diverse biological systems.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miriam Daniela Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Miguel Angel Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Hugo Alberto Rodríguez-Ruiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Eduardo Castañeda-Saucedo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Carlos Ortuño-Pineda
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n Chilpancingo, Gro. 39090, Mexico.
| |
Collapse
|
43
|
De Silva SF, Alcorn J. Flaxseed Lignans as Important Dietary Polyphenols for Cancer Prevention and Treatment: Chemistry, Pharmacokinetics, and Molecular Targets. Pharmaceuticals (Basel) 2019; 12:E68. [PMID: 31060335 PMCID: PMC6630319 DOI: 10.3390/ph12020068] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer causes considerable morbidity and mortality across the world. Socioeconomic, environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory effects, which explain their promotion for human health. The past several decades have contributed to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the diverse targets of the lignans will aid continued research into their potential for use in combination with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.
Collapse
Affiliation(s)
- S Franklyn De Silva
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| | - Jane Alcorn
- Drug Discovery & Development Research Group, College of Pharmacy and Nutrition, 104 Clinic Place, Health Sciences Building, University of Saskatchewan, Saskatoon, Saskatchewan (SK), S7N 2Z4, Canada.
| |
Collapse
|
44
|
Amerizadeh F, Bahrami A, Khazaei M, Hesari A, Rezayi M, Talebian S, Maftouh M, Moetamani-Ahmadi M, Seifi S, Shahidsales S, Joudi-Mashhad M, Ferns GA, Ghasemi F, Avan A. Current status and future prospects of transforming growth factor-β as a potential prognostic and therapeutic target in the treatment of breast cancer. J Cell Biochem 2019; 120:6962-6971. [PMID: 30672016 DOI: 10.1002/jcb.27831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 09/14/2018] [Indexed: 01/24/2023]
Abstract
The transforming growth factor-β (TGF-β) signaling pathway is one of the important pathways involved in the cancer cell proliferation, invasion, migration, angiogenesis, apoptosis, as well as in metastasis by agitation or invasion of metastasis-related factors, including matrix metalloproteinase (MMP), epithelial-to-mesenchymal transition (EMT), tumor microenvironment (TME), cancer stem cells (CSCs), and cell adhesion molecules (CAMs). These data suggest its potential value as a therapeutic object in the treatment of malignancies including breast cancer. Several pharmacological approaches have been established to suppress TGF-β pathway; such as vaccines, small molecular inhibitors, antisense oligonucleotides, and monoclonal antibodies. Some of these are now approved by the US Food and Drug Administration for targeting the TGF-β signaling pathway. This study attempts to summarize the current data about the functions of TGF-β in cancer cells, and their probable application in the cancer therapy with a specific emphasis on recent preclinical and clinical research in the treatment of breast cancer and its prognostic value.
Collapse
Affiliation(s)
- Forouzan Amerizadeh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsane Bahrami
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - AmirReza Hesari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Talebian
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Maftouh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sima Seifi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mona Joudi-Mashhad
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton and Sussex Medical School, Brighton, UK
| | - Faezeh Ghasemi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Mali AV, Padhye SB, Anant S, Hegde MV, Kadam SS. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur J Pharmacol 2019; 852:107-124. [PMID: 30771348 DOI: 10.1016/j.ejphar.2019.02.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023]
Abstract
Currently cancer is the second leading cause of death globally and worldwide incidence and mortality rates of all cancers of males and females are rising tremendously. In spite of advances in chemotherapy and radiation, metastasis and recurrence are considered as the major causes of cancer related deaths. Hence there is a mounting need to develop new therapeutic modalities to treat metastasis and recurrence in cancers. A significant amount of substantiation from epidemiological, clinical and laboratory research highlights the importance of diet and nutrition in cancer chemoprevention. Enterolactone (EL) is a bioactive phenolic metabolite known as a mammalian lignan derived from dietary lignans. Here in we review the reported anti-cancer properties of EL at preclinical as well as clinical level. Several in-vivo and in-vitro studies have provided strong evidence that EL exhibits potent anti-cancer and/or protective properties against different cancers including breast, prostate, colo-rectal, lung, ovarian, endometrial, cervical cancers and hepatocellular carcinoma. Reported laboratory studies indicate a clear role for EL in preventing cancer progression at various stages including cancer cell proliferation, survival, angiogenesis, inflammation and metastasis. In clinical settings, EL has been reported to reduce risk, decrease mortality rate and improve overall survival particularly in breast, prostate, colon, gastric and lung cancer. Further, the in-vitro human cell culture studies provide strong evidence of the anticancer and antimetastatic mechanisms of EL in several cancers. This comprehensive review supports an idea of projecting EL as a promising candidate for developing anticancer drug or adjunct dietary supplements and nutraceuticals.
Collapse
Affiliation(s)
- Aniket V Mali
- Center for Innovation in Nutrition Health and Disease (CINHD), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra 411043, India; Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| | - Subhash B Padhye
- Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune 411001, India; Cancer Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Shrikant Anant
- Cancer Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| | - Mahabaleshwar V Hegde
- Center for Innovation in Nutrition Health and Disease (CINHD), Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Dhankawadi, Pune, Maharashtra 411043, India.
| | - Shivajirao S Kadam
- Pharmaceutical Sciences, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be University), Pune, Maharashtra 411038, India
| |
Collapse
|
46
|
Zhao GX, Xu YY, Weng SQ, Zhang S, Chen Y, Shen XZ, Dong L, Chen S. CAPS1 promotes colorectal cancer metastasis via Snail mediated epithelial mesenchymal transformation. Oncogene 2019; 38:4574-4589. [PMID: 30742066 DOI: 10.1038/s41388-019-0740-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 12/26/2018] [Accepted: 01/15/2019] [Indexed: 01/02/2023]
Abstract
Colorectal cancer (CRC) is a common gastrointestinal cancer with high mortality rate mostly due to metastasis. Ca2+-dependent activator protein for secretion 1 (CAPS1) was originally identified as a soluble factor that reconstitutes Ca2+-dependent secretion. In this study, we discovered a novel role of CAPS1 in CRC metastasis. CAPS1 is frequently up-regulated in CRC tissues. Increased CAPS1 expression is associated with frequent metastasis and poor prognosis of CRC patients. Overexpression of CAPS1 promotes CRC cell migration and invasion in vitro, as well as liver metastasis in vivo, without affecting cell proliferation. CAPS1 induces epithelial-mesenchymal transition (EMT), including decreased E-cadherin and ZO-1, epithelial marker expression, and increased N-cadherin and Snail, mesenchymal marker expression. Snail knockdown reversed CAPS1-induced EMT, cell migration and invasion. This result indicates that Snail is required for CAPS1-mediated EMT process and metastasis in CRC. Furthermore, CAPS1 can bind with Septin2 and p85 (subunit of PI3K). LY294002 and wortmanin, PI3K/Akt inhibitors, can abolish CAPS1-induced increase of Akt/GSK3β activity, as well as increase of Snail protein level. Taken together, CAPS1 promotes colorectal cancer metastasis through PI3K/Akt/GSK3β/Snail signal pathway-mediated EMT process.
Collapse
Affiliation(s)
- Guang-Xi Zhao
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.,Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying-Ying Xu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shu-Qiang Weng
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China
| | - Si Zhang
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Ying Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xi-Zhong Shen
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Shanghai Institute of Liver Diseases, Zhongshan Hospital of Fudan University, Shanghai, 200032, China.
| | - She Chen
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
47
|
Olea-Flores M, Juárez-Cruz JC, Mendoza-Catalán MA, Padilla-Benavides T, Navarro-Tito N. Signaling Pathways Induced by Leptin during Epithelial⁻Mesenchymal Transition in Breast Cancer. Int J Mol Sci 2018; 19:E3493. [PMID: 30404206 PMCID: PMC6275018 DOI: 10.3390/ijms19113493] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 12/12/2022] Open
Abstract
Leptin is an adipokine that is overexpressed in obese and overweight people. Interestingly, women with breast cancer present high levels of leptin and of its receptor ObR. Leptin plays an important role in breast cancer progression due to the biological processes it participates in, such as epithelial⁻mesenchymal transition (EMT). EMT consists of a series of orchestrated events in which cell⁻cell and cell⁻extracellular matrix interactions are altered and lead to the release of epithelial cells from the surrounding tissue. The cytoskeleton is also re-arranged, allowing the three-dimensional movement of epithelial cells into the extracellular matrix. This transition provides cells with the ability to migrate and invade adjacent or distal tissues, which is a classic feature of invasive or metastatic carcinoma cells. In recent years, the number of cases of breast cancer has increased, making this disease a public health problem worldwide and the leading cause of death due to cancer in women. In this review, we focus on recent advances that establish: (1) leptin as a risk factor for the development of breast cancer, and (2) leptin as an inducer of EMT, an event that promotes tumor progression.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Juan Carlos Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, México.
| |
Collapse
|
48
|
FBXL7 Upregulation Predicts a Poor Prognosis and Associates with a Possible Mechanism for Paclitaxel Resistance in Ovarian Cancer. J Clin Med 2018; 7:jcm7100330. [PMID: 30301218 PMCID: PMC6209951 DOI: 10.3390/jcm7100330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/25/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Paclitaxel (PTX) is a common regimen used to treat patients with ovarian cancer. Although approximately 60% of ovarian cancer patients exhibit a pathologic complete response (pCR), approximately 40% of patients appear to be insensitive to PTX adjuvant therapy. Thus, identifying a useful biomarker to predict pCR would be of great help to ovarian cancer patients who decide to receive PTX treatment. We found that FBXL7 was downregulated in OVSAHO (PTX-sensitive) but upregulated in KURAMOCHI (PTX-resistant) cells after PTX treatment at cytotoxic concentrations. Moreover, our data showed that the fold change of FBXL7 expression post-treatment with PTX was causally correlated with the 50% inhibitory concentrations (IC50) of PTX in a panel of ovarian cancer cell lines. In assessments of progression-free survival probability, high levels of FBXL7 transcript strongly predicted a poor prognosis and unfavorable response to PTX-based chemotherapy in patients with ovarian cancer. The knockdown of FBXL7 predominantly enhanced the cytotoxic effectiveness of PTX on the PTX-resistant KURAMOCHI cells. FBXL7 may be a useful biomarker for predicting complete pathologic response in ovarian cancer patients who decide to receive post-operative PTX therapy.
Collapse
|
49
|
Effects of Astaxanthin on the Proliferation and Migration of Breast Cancer Cells In Vitro. Antioxidants (Basel) 2018; 7:antiox7100135. [PMID: 30287735 PMCID: PMC6210693 DOI: 10.3390/antiox7100135] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/21/2022] Open
Abstract
Astaxanthin (ASX) is a marine-based ketocarotenoid; an accessory pigment in plants in that it has many different potential functions. ASX is an antioxidant that is notably more potent than many other antioxidants. Antioxidants have anti-inflammatory and oxidative stress-reducing properties to potentially reduce the incidence of cancer or inhibit the expansion of tumor cells. In this study, we tested the hypothesis that ASX would inhibit proliferation and migration of breast cancer cells in vitro. We found that application of ASX significantly reduced proliferation rates and inhibited breast cancer cell migration compared to control normal breast epithelial cells. Based on these results, further investigation of the effects of ASX on not only breast cancer cells, but other forms of tumor cells, should be carried out.
Collapse
|