1
|
Li Z, Hao L, Chen S, Fu W, Zhang H, Yin Z, Wang Y, Wang J. Forkhead box C1 promotes the pathology of osteoarthritis in subchondral bone osteoblasts via the Piezo1/YAP axis. Cell Signal 2024; 124:111463. [PMID: 39396563 DOI: 10.1016/j.cellsig.2024.111463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
Subchondral bone sclerosis is a key characteristic of osteoarthritis (OA). Prior research has shown that Forkhead box C1 (FoxC1) plays a role in the synovial inflammation of OA, but its specific role in the subchondral bone of OA has not been explored. Our research revealed elevated expression levels of FoxC1 and Piezo1 in OA subchondral bone tissues. Further experiments on OA subchondral bone osteoblasts with FoxC1 or Piezo1 overexpression showed increased cell proliferation activity, expression of Yes-associated Protein 1 (YAP) and osteogenic markers, and secretion of proinflammatory factors. Mechanistically, the overexpression of FoxC1 through Piezo1 activation, in combination with downstream YAP signaling, led to increased levels of alkaline phosphatase (ALP), collagen type 1 (COL1) A1, RUNX2, Osteocalcin, matrix metalloproteinase (MMP) 3, and MMP9 expression. Notably, inhibition of Piezo1 reversed the regulatory function of FoxC1. The binding of FoxC1 to the targeted area (ATATTTATTTA, residues +612 to +622) and the activation of Piezo1 transcription were verified by the dual luciferase assays. Additionally, Reduced subchondral osteosclerosis and microangiogenesis were observed in knee joints from FoxC1-conditional knockout (CKO) and Piezo1-CKO mice, indicating reduced lesions. Collectively, our study reveals the significant involvement of FoxC1 in the pathologic process of OA subchondral bone via the Piezo1/YAP signaling pathway, potentially establishing a novel therapeutic target.
Collapse
Affiliation(s)
- Zhengyuan Li
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Lin Hao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Shenghong Chen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China; Anhui Province Key Laboratory of Zoonoses, Anhui Medical University, Anhui, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China
| | - Zongsheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| | - Yin Wang
- Department of Wound Repair & Plastic and Aesthetic Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui, China; Anhui Public Health Clinical Center, Anhui, China.
| | - Jun Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, 218 JiXi Road, Hefei 230022, Anhui, China.
| |
Collapse
|
2
|
Gheisari A, Ristaniemi A, Haghighatnejad M, Mohammadi A, Sawatsky A, Saarakkala S, Herzog W, Korhonen RK, Finnilä MAJ. Alterations in mechanical properties of rabbit collateral ligaments eight weeks after anterior cruciate ligament transection. J Biomech 2024; 176:112350. [PMID: 39378770 DOI: 10.1016/j.jbiomech.2024.112350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Anterior cruciate ligament (ACL) injury is a common knee ligament injury among young, active adults; however, little is known about its impact on the viscoelastic properties of the knee joint's collateral ligaments. This study aimed to characterize and compare the viscoelastic properties of rabbit collateral ligaments in healthy control knees, injured knees, and knees contralateral to the injured knees. Unilateral anterior cruciate ligament transection was performed on six New Zealand white rabbits to create an ACL injury model. Medial and lateral collateral ligaments (MCL and LCL) were collected from the injured and contralateral knees eight weeks after ACL transection. Ligaments were also harvested from both knees of four unoperated rabbits. The ligaments underwent tensile stress-relaxation testing at strain levels of 2, 4, 6, and 8 %, and a sinusoidal loading test at 8 % strain with 0.5 % strain amplitude using frequencies of 0.01, 0.05, 0.1, 0.5, 1, and 2 Hz. The results showed that collateral ligaments of ACL-transected knees relaxed slower compared to control knees. Sinusoidal testing revealed that contralateral knee LCLs had significantly higher storage and loss modulus across all test frequencies. The results indicate that contralateral knee LCLs become stiffer compared to LCLs from control and ACL-transected knees, while LCLs from ACL-transected knees become less viscous compared to LCLs from control and contralateral knees. This study suggests that knee ligaments undergo adaptations following an ACL injury that may affect the mechanics of the ACL-transected knee, which should be considered in biomechanical and rehabilitation studies of patients with an ACL injury.
Collapse
Affiliation(s)
- Anahita Gheisari
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland.
| | - Aapo Ristaniemi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | | | - Ali Mohammadi
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Andrew Sawatsky
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Simo Saarakkala
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada; Mechanical & Manufacturing Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Rami K Korhonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Research Unit of Health Sciences and Technology, University of Oulu, Oulu, Finland; Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
3
|
Wang X, Guo Z, Wang M, Xiang C. Association between body roundness index and risk of osteoarthritis: a cross-sectional study. Lipids Health Dis 2024; 23:334. [PMID: 39402634 PMCID: PMC11472493 DOI: 10.1186/s12944-024-02324-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/05/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The link between body roundness index (BRI) and osteoarthritis (OA) has yet to be validated. Our aim was to explore this connection between BRI and OA risk. METHODS This cross-sectional study utilized the 1999-2018 National Health and Nutrition Examination Survey retrieved data. To assess the association between BRI and OA risk, we performed weighted multivariable regression analysis (MVRA), with smooth curve fitting for potential nonlinear association and subgroup analysis and interaction tests for relationships in specific subgroups. A 7:3 ratio was adopted for the random division of the acquired data into training and validation sets. Subsequently, least absolute shrinkage and selection operator regression, along with MVRA, were conducted for the training set to isolate variables for a prediction model. This model was visualized using the nomogram and was followed by evaluation. Finally, the validation set was utilized to validate the model. RESULTS This study enrolled 12,946 individuals. Following the adjustment for all covariables, OA risk increased by 18% with every unit rise in BRI (odd ratio [OR] = 1.18; 95% confidence interval [CI]: 1.13-1.23; P < 0.0001). Upon regarding BRI as a categorical variable, it was divided into quartiles for subsequent analysis. In comparison to quartile 1, the risk of OA was increased in quartile 2 (OR = 1.58; 95% CI: 1.22-2.03; P = 0.0006), quartile 3 (OR = 1.83; 95% CI: 1.40-2.40; P < 0.0001) and quartile 4 (OR = 2.70; 95% CI: 1.99-3.66; P < 0.0001). Smooth curve fitting revealed no non-linear relationships. None of the subgroups showed a statistically significant interaction (all P > 0.05). After selecting the variables, a prediction model was developed. The prediction model exhibited favorable discriminatory power, high accuracy, and potential clinical benefits in training and validation sets. CONCLUSIONS The BRI was positively associated with OA risk. Our predictive model demonstrated that combining BRI with other easily accessible factors was helpful in assessing and managing high-risk OA groups.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Zijian Guo
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
| | - Meng Wang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, P.R. China
| | - Chuan Xiang
- Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, P.R. China.
| |
Collapse
|
4
|
Zhu C, Zhang L, Ding X, Wu W, Zou J. Non-coding RNAs as regulators of autophagy in chondrocytes: Mechanisms and implications for osteoarthritis. Ageing Res Rev 2024; 99:102404. [PMID: 38971322 DOI: 10.1016/j.arr.2024.102404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disease with multiple causative factors such as aging, mechanical injury, and obesity. Autophagy is a complex dynamic process that is involved in the degradation and modification of intracellular proteins and organelles under different pathophysiological conditions. Autophagy, as a cell survival mechanism under various stress conditions, plays a key role in regulating chondrocyte life cycle metabolism and cellular homeostasis. Non-coding RNAs (ncRNAs) are heterogeneous transcripts that do not possess protein-coding functions, but they can act as effective post-transcriptional and epigenetic regulators of gene and protein expression, thus participating in numerous fundamental biological processes. Increasing evidence suggests that ncRNAs, autophagy, and their crosstalk play crucial roles in OA pathogenesis. Therefore, we summarized the complex role of autophagy in OA chondrocytes and focused on the regulatory role of ncRNAs in OA-associated autophagy to elucidate the complex pathological mechanisms of the ncRNA-autophagy network in the development of OA, thus providing new research targets for the clinical diagnosis and treatment of OA.
Collapse
Affiliation(s)
- Chenyu Zhu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lingli Zhang
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Xiaoqing Ding
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai 200438, China.
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
5
|
Cai R, Jiang Q, Chen D, Feng Q, Liang X, Ouyang Z, Liao W, Zhang R, Fang H. Identification of osteoblastic autophagy-related genes for predicting diagnostic markers in osteoarthritis. iScience 2024; 27:110130. [PMID: 38952687 PMCID: PMC11215306 DOI: 10.1016/j.isci.2024.110130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 07/03/2024] Open
Abstract
The development of osteoarthritis (OA) involves subchondral bone lesions, but the role of osteoblastic autophagy-related genes (ARGs) in osteoarthritis is unclear. Through integrated analysis of single-cell dataset, Bulk RNA dataset, and 367 ARGs extracted from GeneCards, 40 ARGs were found. By employing multiple machine learning algorithms and PPI networks, three key genes (DDIT3, JUN, and VEGFA) were identified. Then the RF model constructed from these genes indicated great potential as a diagnostic tool. Furthermore, the model's effectiveness in predicting OA has been confirmed through external validation datasets. Moreover, the expression of ARGs was examined in osteoblasts subject to excessive mechanical stress, human and mouse tissues. Finally, the role of ARGs in OA was confirmed through co-culturing explants and osteoblasts. Thus, osteoblastic ARGs could be crucial in OA development, providing potential diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Rulong Cai
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Qijun Jiang
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
- Department of Urology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Dongli Chen
- Department of Ultrasound, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518053, China
| | - Qi Feng
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Xinzhi Liang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhaoming Ouyang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Weijian Liao
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Rongkai Zhang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Hang Fang
- Department of Joint Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510630, China
- Academy of Orthopedics · Guangdong Province, Guangzhou, 510630, China
- Orthopedic Hospital of Guangdong Province, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
6
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience 2024; 27:109983. [PMID: 38827404 PMCID: PMC11140209 DOI: 10.1016/j.isci.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Christina Finelli
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Chun-Yuh Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
7
|
Huang L, Xia Z, Wade D, Liu J, Zhou G, Yu C, Dawes H, Esser P, Wei S, Song J. Knee osteoarthritis pendulum therapy: In vivo evaluation and a randomised, single-blind feasibility clinical trial. J Orthop Translat 2024; 45:266-276. [PMID: 38617705 PMCID: PMC11015744 DOI: 10.1016/j.jot.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 04/16/2024] Open
Abstract
Background Exercise is recommended as the first-line management for knee osteoarthritis (KOA); however, it is difficult to determine which specific exercises are more effective. This study aimed to explore the potential mechanism and effectiveness of a leg-swinging exercise practiced in China, called 'KOA pendulum therapy' (KOAPT). Intraarticular hydrostatic and dynamic pressure (IHDP) are suggested to partially explain the signs and symptoms of KOA. As such this paper set out to explore this mechanism in vivo in minipigs and in human volunteers alongside a feasibility clinical trial. The objective of this study is 1) to analyze the effect of KOAPT on local mechanical and circulation environment of the knee in experimental animals and healthy volunteers; and 2) to test if it is feasible to run a large sample, randomized/single blind clinical trial. Methods IHDP of the knee was measured in ten minipigs and ten volunteers (five healthy and five KOA patients). The effect of leg swinging on synovial blood flow and synovial fluid content depletion in minipigs were also measured. Fifty KOA patients were randomly divided into two groups for a feasibility clinical trial. One group performed KOAPT (targeting 1000 swings/leg/day), and the other performed walking exercise (targeting 4000 steps/day) for 12 weeks with 12 weeks of follow-up. Results The results showed dynamic intra-articular pressure changes in the knee joint, increases in local blood flow, and depletion of synovial fluid contents during pendulum leg swinging in minipigs. The intra-articular pressure in healthy human knee joints was -11.32 ± 0.21 (cmH2O), whereas in KOA patients, it was -3.52 ± 0.34 (cmH2O). Measures were completed by 100% of participants in all groups with 95-98% adherence to training in both groups in the feasibility clinical trial. There were significant decreases in the Oxford knee score in both KOAPT and walking groups after intervention (p < 0.01), but no significant differences between the two groups. Conclusion We conclude that KOAPT exhibited potential as an intervention to improve symptoms of KOA possibly through a mechanism of normalising mechanical pressure in the knee; however, optimisation of the method, longer-term intervention and a large sample randomized-single blind clinical trial with a minimal 524 cases are needed to demonstrate whether there is any superior benefit over other exercises. The translational potential of this article The research aimed to investigate the effect of an ancient leg-swinging exercise on knee osteoarthritis. A minipig animal model was used to establish the potential mechanism underlying the exercise of knee osteoarthritis pendulum therapy, followed by a randomised, single-blind feasibility clinical trial in comparison with a commonly-practised walking exercise regimen. Based on the results of the feasibility trial, a large sample clinical trial is proposed for future research, in order to develop an effective exercise therapy for KOA.
Collapse
Affiliation(s)
- Lixia Huang
- Tianyuan Translational Medicine R&D Team, Medical School, Jianghan University, Wuhan, Hubei Province, China
| | - Zhidao Xia
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Derick Wade
- Centre for Movement, Occupation and Rehabilitation Sciences (MOReS), Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Jicai Liu
- Tianyuan Translational Medicine R&D Team, Medical School, Jianghan University, Wuhan, Hubei Province, China
| | - Guoyong Zhou
- Tianyuan Translational Medicine R&D Team, Medical School, Jianghan University, Wuhan, Hubei Province, China
| | - Chuanhua Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, Wuhan, Hubei Province, China
| | - Helen Dawes
- Centre for Movement, Occupation and Rehabilitation Sciences (MOReS), Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
- NIHR Exeter BRC, College of Medicine, Department of Public Health & Sports Sciences, Faculty of Health and Life Sciences, University of Exeter, UK
| | - Patrick Esser
- Centre for Movement, Occupation and Rehabilitation Sciences (MOReS), Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Headington, Oxford, OX3 0BP, UK
| | - Shijun Wei
- Department of Orthopaedics, General Hospital of Central Theatre Command of PLA, No. 627, Wuluo Road, Wuhan, Hubei Province, China
| | - Jiuhong Song
- Wuhan FL Medical Science & Technology Ltd., Machi Road, Dongxihu District, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ, Zhou F. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology 2024; 22:72. [PMID: 38374072 PMCID: PMC10877765 DOI: 10.1186/s12951-024-02336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Zhikai Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Qiuyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Jiong Jiong Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
9
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Wang T, Yu T, Zhang Y. Single-cell RNA sequencing reveals the impact of mechanical loading on knee tibial cartilage in osteoarthritis. Int Immunopharmacol 2024; 128:111496. [PMID: 38224628 DOI: 10.1016/j.intimp.2024.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/25/2023] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
Articular cartilage degeneration is one of the major pathogenic alterations observed in knee osteoarthritis (KOA). Mechanical stress has been verified to contribute to KOA development. To gain insight into the pathogenic mechanism of KOA development, we investigated chondrocyte subsets under different mechanical loading conditions via single-cell RNA sequencing (scRNA-seq). Articular cartilage tissues from both high mechanical loading (named the OATL group) and low mechanical loading (named the OATN group) surfaces were obtained from the proximal tibia of KOA patients, and scRNA-seq was conducted. Chondrocyte subtypes, including a new subset, HTC-C (hypertrophic chondrocytes-C), and their functions, development and interactions among cell subsets were identified. Immunohistochemical staining was also conducted to verify the existence and location of each chondrocyte subset. Furthermore, differentially expressed genes (DEGs) and their functions between regions with high and low mechanical loading were identified. Based on Gene Ontology terms for the DEGs in each cell type, the characteristic of cartilage degeneration in the OATL region was clarified. Mitochondrial dysfunction may be involved in the KOA process in the OATN region.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China; Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Municipal Hospital, Qingdao, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
10
|
He XX, Huang YJ, Hu CL, Xu QQ, Wei QJ. Songorine modulates macrophage polarization and metabolic reprogramming to alleviate inflammation in osteoarthritis. Front Immunol 2024; 15:1344949. [PMID: 38415250 PMCID: PMC10896988 DOI: 10.3389/fimmu.2024.1344949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/29/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a prevalent joint disorder characterized by multifaceted pathogenesis, with macrophage dysregulation playing a critical role in perpetuating inflammation and joint degeneration. Methods This study focuses on Songorine, derived from Aconitum soongaricum Stapf, aiming to unravel its therapeutic mechanisms in OA. Comprehensive analyses, including PCR, Western blot, and immunofluorescence, were employed to evaluate Songorine's impact on the joint microenvironment and macrophage polarization. RNA-seq analysis was conducted to unravel its anti-inflammatory mechanisms in macrophages. Metabolic alterations were explored through extracellular acidification rate monitoring, molecular docking simulations, and PCR assays. Oxygen consumption rate measurements were used to assess mitochondrial oxidative phosphorylation, and Songorine's influence on macrophage oxidative stress was evaluated through gene expression and ROS assays. Results Songorine effectively shifted macrophage polarization from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Notably, Songorine induced metabolic reprogramming, inhibiting glycolysis and promoting mitochondrial oxidative phosphorylation. This metabolic shift correlated with a reduction in macrophage oxidative stress, highlighting Songorine's potential as an oxidative stress inhibitor. Discussion In an in vivo rat model of OA, Songorine exhibited protective effects against cartilage damage and synovial inflammation, emphasizing its therapeutic potential. This comprehensive study elucidates Songorine's multifaceted impact on macrophage modulation, metabolic reprogramming, and the inflammatory microenvironment, providing a theoretical foundation for its therapeutic potential in OA.
Collapse
Affiliation(s)
- Xi-Xi He
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuan-Jun Huang
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chun-Long Hu
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qiong-Qian Xu
- Department of Pediatric Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Qing-Jun Wei
- Department of Orthopedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
11
|
Hotta Y, Nishida K, Yoshida A, Nasu Y, Nakahara R, Naniwa S, Shimizu N, Ichikawa C, Lin D, Fujiwara T, Ozaki T. Inhibitory Effect of a Tankyrase Inhibitor on Mechanical Stress-Induced Protease Expression in Human Articular Chondrocytes. Int J Mol Sci 2024; 25:1443. [PMID: 38338721 PMCID: PMC10855100 DOI: 10.3390/ijms25031443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
We investigated the effects of a Tankyrase (TNKS-1/2) inhibitor on mechanical stress-induced gene expression in human chondrocytes and examined TNKS-1/2 expression in human osteoarthritis (OA) cartilage. Cells were seeded onto stretch chambers and incubated with or without a TNKS-1/2 inhibitor (XAV939) for 12 h. Uni-axial cyclic tensile strain (CTS) (0.5 Hz, 8% elongation, 30 min) was applied and the gene expression of type II collagen a1 chain (COL2A1), aggrecan (ACAN), SRY-box9 (SOX9), TNKS-1/2, a disintegrin and metalloproteinase with thrombospondin motifs-5 (ADAMTS-5), and matrix metalloproteinase-13 (MMP-13) were examined by real-time PCR. The expression of ADAMTS-5, MMP-13, nuclear translocation of nuclear factor-κB (NF-κB), and β-catenin were examined by immunocytochemistry and Western blotting. The concentration of IL-1β in the supernatant was examined by enzyme-linked immunosorbent assay (ELISA). TNKS-1/2 expression was assessed by immunohistochemistry in human OA cartilage obtained at the total knee arthroplasty. TNKS-1/2 expression was increased after CTS. The expression of anabolic factors were decreased by CTS, however, these declines were abrogated by XAV939. XAV939 suppressed the CTS-induced expression of catabolic factors, the release of IL-1β, as well as the nuclear translocation of NF-κB and β-catenin. TNKS-1/2 expression increased in mild and moderate OA cartilage. Our results demonstrated that XAV939 suppressed mechanical stress-induced expression of catabolic proteases by the inhibition of NF-κB and activation of β-catenin, indicating that TNKS-1/2 expression might be associated with OA pathogenesis.
Collapse
Affiliation(s)
- Yoshifumi Hotta
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Keiichiro Nishida
- Locomotive Pain Center, Okayama University Hospital, Okayama 700-8558, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshihisa Nasu
- Department of Orthopaedic Surgery, Okayama University Hospital, Okayama 700-8558, Japan
| | - Ryuichi Nakahara
- Department of Orthopaedic Surgery, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shuichi Naniwa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Noriyuki Shimizu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Chinatsu Ichikawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Deting Lin
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Hospital, Okayama 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
12
|
Jahn J, Ehlen QT, Huang CY. Finding the Goldilocks Zone of Mechanical Loading: A Comprehensive Review of Mechanical Loading in the Prevention and Treatment of Knee Osteoarthritis. Bioengineering (Basel) 2024; 11:110. [PMID: 38391596 PMCID: PMC10886318 DOI: 10.3390/bioengineering11020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
In this review, we discuss the interaction of mechanical factors influencing knee osteoarthritis (KOA) and post-traumatic osteoarthritis (PTOA) pathogenesis. Emphasizing the importance of mechanotransduction within inflammatory responses, we discuss its capacity for being utilized and harnessed within the context of prevention and rehabilitation of osteoarthritis (OA). Additionally, we introduce a discussion on the Goldilocks zone, which describes the necessity of maintaining a balance of adequate, but not excessive mechanical loading to maintain proper knee joint health. Expanding beyond these, we synthesize findings from current literature that explore the biomechanical loading of various rehabilitation exercises, in hopes of aiding future recommendations for physicians managing KOA and PTOA and athletic training staff strategically planning athlete loads to mitigate the risk of joint injury. The integration of these concepts provides a multifactorial analysis of the contributing factors of KOA and PTOA, in order to spur further research and illuminate the potential of utilizing the body's own physiological responses to mechanical stimuli in the management of OA.
Collapse
Affiliation(s)
- Jacob Jahn
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Quinn T Ehlen
- University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Chun-Yuh Huang
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33146, USA
| |
Collapse
|
13
|
Wang J, Sun Z, Yu C, Zhao H, Yan M, Sun S, Han X, Jiang T, Wang T, Yu T, Zhang Y. Single-cell RNA sequencing reveals differences between force application and bearing in ankle cartilage. Cell Biol Toxicol 2023; 39:3235-3253. [PMID: 37783808 DOI: 10.1007/s10565-023-09829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
Chondrocytes are the major functional elements of articular cartilage. Force has been demonstrated to influence the structure and function of articular cartilage and chondrocytes. Therefore, it is necessary to evaluate chondrocytes under different force conditions to gain deep insight into chondrocyte function. Six cartilage tissues from the distal tibia (referred to as the AT group) and five cartilage tissues from the trochlear surface of the talus (referred to as the ATa group) were obtained from 6 donors who had experienced fatal accidents. Single-cell RNA sequencing was used on these samples. A total of 149,816 cells were analyzed. Nine chondrocyte subsets were ultimately identified. Pseudotime analyses, enrichment analyses, cell-cell interaction studies, and single-cell regulatory network inference and clustering were performed for each cell type, and the differences between the AT and ATa groups were analyzed. Immunohistochemical staining was used to verify the existence of each chondrocyte subset and its distribution. The results suggested that reactive oxygen species related processes were active in the force-applied region, while tissue repair processes were common in the force-bearing region. Although the number of prehypertrophic chondrocytes was small, these chondrocytes seemed to play an important role in the ankle.
Collapse
Affiliation(s)
- Junjie Wang
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zewen Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haibo Zhao
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mingyue Yan
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shenjie Sun
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Emergency, Qingdao Municipal Hospital, Qingdao, China
| | - Xu Han
- Qingdao Medical College, Qingdao University, Qingdao, China
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tengbo Yu
- Department of Orthopaedic Surgery, Qingdao Hospital of the University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China.
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Ritter J, Menger M, Herath SC, Histing T, Kolbenschlag J, Daigeler A, Heinzel JC, Prahm C. Translational evaluation of gait behavior in rodent models of arthritic disorders with the CatWalk device - a narrative review. Front Med (Lausanne) 2023; 10:1255215. [PMID: 37869169 PMCID: PMC10587608 DOI: 10.3389/fmed.2023.1255215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/21/2023] [Indexed: 10/24/2023] Open
Abstract
Arthritic disorders have become one of the main contributors to the global burden of disease. Today, they are one of the leading causes of chronic pain and disability worldwide. Current therapies are incapable of treating pain sufficiently and preventing disease progression. The lack of understanding basic mechanisms underlying the initiation, maintenance and progression of arthritic disorders and related symptoms represent the major obstacle in the search for adequate treatments. For a long time, histological evaluation of joint pathology was the predominant outcome parameter in preclinical arthritis models. Nevertheless, quantification of pain and functional limitations analogs to arthritis related symptoms in humans is essential to enable bench to bedside translation and to evaluate the effectiveness of new treatment strategies. As the experience of pain and functional deficits are often associated with altered gait behavior, in the last decades, automated gait analysis has become a well-established tool for the quantitative evaluation of the sequalae of arthritic disorders in animal models. The purpose of this review is to provide a detailed overview on the current literature on the use of the CatWalk gait analysis system in rodent models of arthritic disorders, e.g., Osteoarthritis, Monoarthritis and Rheumatoid Arthritis. Special focus is put on the assessment and monitoring of pain-related behavior during the course of the disease. The capability of evaluating the effect of distinct treatment strategies and the future potential for the application of the CatWalk in rodent models of arthritic disorders is also addressed in this review. Finally, we discuss important consideration and provide recommendations on the use of the CatWalk in preclinical models of arthritic diseases.
Collapse
Affiliation(s)
- Jana Ritter
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Maximilian Menger
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Steven C Herath
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Adrien Daigeler
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| | - Johannes C Heinzel
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
- Ludwig Boltzmann Institute for Traumatology - The Research Center in Cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
15
|
Sampath SJP, Venkatesan V, Ghosh S, Kotikalapudi N. Obesity, Metabolic Syndrome, and Osteoarthritis-An Updated Review. Curr Obes Rep 2023; 12:308-331. [PMID: 37578613 DOI: 10.1007/s13679-023-00520-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/07/2023] [Indexed: 08/15/2023]
Abstract
PURPOSE OF REVIEW Metabolic syndrome (MetS), also called the 'deadly quartet' comprising obesity, diabetes, dyslipidemia, and hypertension, has been ascertained to have a causal role in the pathogenesis of osteoarthritis (OA). This review is aimed at discussing the current knowledge on the contribution of metabolic syndrome and its various components to OA pathogenesis and progression. RECENT FINDINGS Lately, an increased association identified between the various components of metabolic syndrome (obesity, diabetes, dyslipidemia, and hypertension) with OA has led to the identification of the 'metabolic phenotype' of OA. These metabolic perturbations alongside low-grade systemic inflammation have been identified to inflict detrimental effects upon multiple tissues of the joint including cartilage, bone, and synovium leading to complete joint failure in OA. Recent epidemiological and clinical findings affirm that adipokines significantly contribute to inflammation, tissue degradation, and OA pathogenesis mediated through multiple signaling pathways. OA is no longer perceived as just a 'wear and tear' disease and the involvement of the metabolic components in OA pathogenesis adds up to the complexity of the disease. Given the global surge in obesity and its allied metabolic perturbations, this review aims to throw light on the current knowledge on the pathophysiology of MetS-associated OA and the need to address MetS in the context of metabolic OA management. Better regulation of the constituent factors of MetS could be profitable in preventing MetS-associated OA. The identification of key roles for several metabolic regulators in OA pathogenesis has also opened up newer avenues in the recognition and development of novel therapeutic agents.
Collapse
Affiliation(s)
- Samuel Joshua Pragasam Sampath
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India.
| | | | - Sudip Ghosh
- Molecular Biology Division, Indian Council of Medical Research - National Institute of Nutrition, Hyderabad, Telangana, 500007, India
| | - Nagasuryaprasad Kotikalapudi
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School Teaching Hospital, Boston, MA, 02115, USA
| |
Collapse
|
16
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo Signaling Modulates the Inflammatory Response of Chondrocytes to Mechanical Compressive Loading. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544419. [PMID: 37662374 PMCID: PMC10473729 DOI: 10.1101/2023.06.09.544419] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Knee osteoarthritis (KOA) is a degenerative disease resulting from mechanical overload, where direct physical impacts on chondrocytes play a crucial role in disease development by inducing inflammation and extracellular matrix degradation. However, the signaling cascades that sense these physical impacts and induce the pathogenic transcriptional programs of KOA remain to be defined, which hinders the identification of novel therapeutic approaches. Recent studies have implicated a crucial role of Hippo signaling in osteoarthritis. Since Hippo signaling senses mechanical cues, we aimed to determine its role in chondrocyte responses to mechanical overload. Here we show that mechanical loading induces the expression of inflammatory and matrix-degrading genes by activating the nuclear factor-kappaB (NFκB) pathway in a Hippo-dependent manner. Applying mechanical compressional force to 3-dimensional cultured chondrocytes activated NFκB and induced the expression of NFκB target genes for inflammation and matrix degradation (i.e., IL1β and ADAMTS4). Interestingly, deleting the Hippo pathway effector YAP or activating YAP by deleting core Hippo kinases LATS1/2 blocked the NFκB pathway activation induced by mechanical loading. Consistently, treatment with a LATS1/2 kinase inhibitor abolished the upregulation of IL1β and ADAMTS4 caused by mechanical loading. Mechanistically, mechanical loading activates Protein Kinase C (PKC), which activates NFκB p65 by phosphorylating its Serine 536. Furthermore, the mechano-activation of both PKC and NFκB p65 is blocked in LATS1/2 or YAP knockout cells, indicating that the Hippo pathway is required by this mechanoregulation. Additionally, the mechanical loading-induced phosphorylation of NFκB p65 at Ser536 is blocked by the LATS1/2 inhibitor Lats-In-1 or the PKC inhibitor AEB-071. Our study suggests that the interplay of the Hippo signaling and PKC controls NFκB-mediated inflammation and matrix degradation in response to mechanical loading. Chemical inhibitors targeting Hippo signaling or PKC can prevent the mechanoresponses of chondrocytes associated with inflammation and matrix degradation, providing a novel therapeutic strategy for KOA.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- These authors contributed equally to this work
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- These authors contributed equally to this work
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, FL
| | | | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, FL
- Department of Orthopedics, University of Miami, Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Chun-Yuh Huang
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
- Department of Biomedical Engineering, University of Miami, FL
- UHealth Sports Medicine Institute, University of Miami, Miami, FL
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, FL
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
17
|
Zhang S, Li T, Feng Y, Zhang K, Zou J, Weng X, Yuan Y, Zhang L. Exercise improves subchondral bone microenvironment through regulating bone-cartilage crosstalk. Front Endocrinol (Lausanne) 2023; 14:1159393. [PMID: 37288291 PMCID: PMC10242115 DOI: 10.3389/fendo.2023.1159393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Articular cartilage degeneration has been proved to cause a variety of joint diseases, among which osteoarthritis is the most typical. Osteoarthritis is characterized by articular cartilage degeneration and persistent pain, which affects the quality of life of patients as well as brings a heavy burden to society. The occurrence and development of osteoarthritis is related to the disorder of the subchondral bone microenvironment. Appropriate exercise can improve the subchondral bone microenvironment, thus playing an essential role in preventing and treating osteoarthritis. However, the exact mechanism whereby exercise improves the subchondral bone microenvironment remains unclear. There is biomechanical interaction as well as biochemical crosstalk between bone and cartilage. And the crosstalk between bone and cartilage is the key to bone-cartilage homeostasis maintenance. From the perspective of biomechanical and biochemical crosstalk between bone and cartilage, this paper reviews the effects of exercise-mediated bone-cartilage crosstalk on the subchondral bone microenvironment, aiming to provide a theoretical basis for the prevention and treatment of degenerative bone diseases.
Collapse
Affiliation(s)
- Shihua Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Tingting Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yao Feng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Keping Zhang
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Jun Zou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiquan Weng
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Yu Yuan
- School of Exercise and Health, Guangzhou Sport University, Guangzhou, China
| | - Lan Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
- College of Sports and Health, Shandong Sport University, Jinan, China
| |
Collapse
|
18
|
Song F, Mao X, Dai J, Shan B, Zhou Z, Kang Y. Integrin αVβ3 Signaling in the Progression of Osteoarthritis Induced by Excessive Mechanical Stress. Inflammation 2023; 46:739-751. [PMID: 36480128 PMCID: PMC10024670 DOI: 10.1007/s10753-022-01770-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is believed to be linked with cartilage degeneration, subchondral bone sclerosis, and synovial inflammation that lead to joint failure, and yet treatment that can effectively reverse the pathological process of the disease still not exists. Recent evidence suggests excessive mechanical stress (eMS) as an essential role in the pathogenesis of OA. Increased levels of integrin αVβ3 have been detected in osteoarthritic cartilage and were previously implicated in OA pathogenesis. However, the role of integrin αVβ3 in the process of eMS-induced OA remains unclear. Here, histologic and proteomic analyses of osteoarthritic cartilage in a rat destabilization of the medial meniscus model demonstrated elevated expression of integrin αVβ3 as well as more serious cartilage degeneration in the medial weight-bearing area. Furthermore, results of in vitro study demonstrated that eMS led to a significant increase of integrin αVβ3 expression and phosphorylation of downstream signaling molecules such as FAK and ERK, as well as upregulated expressions of inflammatory and degradative mediators. In addition, we found that inhibition of integrin αVβ3 could alleviate chondrocyte inflammation triggered by eMS both in vivo and in vitro. Our findings suggest a central role for upregulation of integrin αVβ3 signaling in OA pathogenesis and demonstrate that activation of integrin αVβ3 signaling in cartilage contributes to inflammation and joint destruction in eMS-induced OA. Taken together, our data presented here provide a possibility for targeting integrin αVβ3 signaling pathway as a disease-modifying therapy.
Collapse
Affiliation(s)
- Fanglong Song
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Xiaoyu Mao
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Jun Dai
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Bingchen Shan
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Zhentao Zhou
- Department of Orthopedics, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yifan Kang
- Department of Orthopedics, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
19
|
Zebaze R, Ebeling PR. Disorganization and Musculoskeletal Diseases: Novel Insights into the Enigma of Unexplained Bone Abnormalities and Fragility Fractures. Curr Osteoporos Rep 2022; 21:154-166. [PMID: 36494594 DOI: 10.1007/s11914-022-00759-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Describe the potential contribution of disorganized tissue to the pathogenesis of bone abnormalities and fractures. Especially, fractures that are unexplained by bone loss (osteoporosis) or structural deterioration. RECENT FINDINGS Currently, bone fragility is primarily viewed as due to loss, or decay (osteoporosis). However, it is also acknowledged that this view is limited because it does not explain many fractures or abnormalities such as necrosis, sclerosis, or infarcts. Atypical femoral fractures (AFFs) during antiresorptive therapy are an example. Hence, it is proposed that another distinct mechanism is responsible for bone diseases. A remarkable bone property distinct from mass and decay is the organization (arrangement) of its components. Components must be perfectly assembled or well-stacked to ensure "the right amount of bone, at the right place". Disorganization is an aberration that is conspicuous in many diseases, more so in conditions poorly associated with bone mass and decay such as osteogenesis imperfecta, hypophosphatasia, and AFFs. However, despite the likely critical role of disorganization, this feature has received limited clinical attention. This review focuses on the potential contribution of disorganization to bone in health and diseases. Particularly, we propose that disorganization, by causing ineffective transfer of loads, may produce not only bone abnormalities (pain, necrosis, infarct, sclerosis, delayed healing) but also fractures, especially AFFs or stress fractures. A disorganized element is one that is where it shouldn't be (improperly stacked elements). Hence, disorganization can be measured by quantifying the extent to which a tissue (pixel within an image) is at an incorrect location.
Collapse
Affiliation(s)
- Roger Zebaze
- Department of Medicine, School of Clinical Sciences, Monash University, Level 5, Block E, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia.
| | - Peter Robert Ebeling
- Department of Medicine, School of Clinical Sciences, Monash University, Level 5, Block E, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, 3168, Australia
- Department of Endocrinology, Monash Health, Clayton, Victoria, Australia
| |
Collapse
|
20
|
Wang T, Wang J, Sun Z, Zhang L, Yu C, Zhao H, Yan M, Sun S, Ye Z, Zhang Y, Yu T. Single-cell RNA sequence presents atlas analysis for chondrocytes in the talus and reveals the potential mechanism in coping with mechanical stress. Front Cell Dev Biol 2022; 10:1047119. [PMID: 36438550 PMCID: PMC9685414 DOI: 10.3389/fcell.2022.1047119] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/12/2022] [Indexed: 09/02/2023] Open
Abstract
Chondrocytes are indispensable for the function of cartilage because they provide the extracellular matrix. Therefore, gaining insight into the chondrocytes may be helpful in understanding cartilage function and pinpointing potential therapeutical targets for diseases. The talus is a part of the ankle joint, which serves as the major large joint that bears body weight. Compared with the distal tibial and fibula, the talus bears much more mechanical loading, which is a risk factor for osteoarthritis (OA). However, in most individuals, OA seems to be absent in the ankle, and the cartilage of the talus seems to function normally. This study applied single-cell RNA sequencing to demonstrate atlas for chondrocyte subsets in healthy talus cartilage obtained from five volunteers, and chondrocyte subsets were annotated. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses for each cell type, cell-cell interactions, and single-cell regulatory network inference and clustering for each cell type were conducted, and hub genes for each cell type were identified. Immunohistochemical staining was used to confirm the presence and distribution of each cell type. Two new chondrocyte subsets were annotated as MirCs and SpCs. The identified and speculated novel microenvironment may pose different directions in chondrocyte composition, development, and metabolism in the talus.
Collapse
Affiliation(s)
- Tianrui Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junjie Wang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zewen Sun
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Lu Zhang
- Medical Research Center, Institute of Orthopaedics and Traumatology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chenghao Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mingyue Yan
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shenjie Sun
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhenhao Ye
- LC-Bio Technologies, Co., Ltd., Hangzhou, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Department of Orthopaedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
21
|
Chastain K, Wach A, Pekmezian A, Wimmer MA, Warren RF, Torzilli PA, Chen T, Maher SA. ACL transection results in a posterior shift and increased velocity of contact on the medial tibial plateau. J Biomech 2022; 144:111335. [DOI: 10.1016/j.jbiomech.2022.111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 10/31/2022]
|
22
|
Wu R, Fu G, Li M, Ma Y, Li Q, Deng Z, Zheng Q. Contralateral advanced radiographic knee osteoarthritis predicts radiographic progression and future arthroplasty in ipsilateral knee with early-stage osteoarthritis. Clin Rheumatol 2022; 41:3151-3157. [PMID: 35687166 DOI: 10.1007/s10067-022-06235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/13/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
PURPOSE To explore whether the severity of contralateral knee osteoarthritis (OA) is associated with OA progression in ipsilateral knee with early OA. METHODS Knees in early OA (Kellgren-Lawrence grade (KLG):1-2) with intact baseline demographic and clinical data were retrieved from OAI database and defined as target knees. The target knees were divided into the exposure group (contralateral knees KLG 3 to 4) and the control group (contralateral knees KLG 0 to 2). Both groups underwent propensity score matching (PSM) concerning demographic data, as well as radiographic and clinical outcomes at the baseline. The primary outcome was the upgrade of KLG in the target knee in the first 12 and 24 months. The secondary outcome was the incidence of knee arthroplasty in ipsilateral knee during the first 108 months. RESULTS One thousand seven hundred fifty-two knees were included, with 449 in the exposure cohort and 1276 in the control cohort. Four hundred thirty-four knees in each group were matched after PSM. Target knees in the exposure cohort showed a significantly higher rate of radiographic progression in the first 12 months (12.9% vs. 5.1%, P < 0.001) and 24 months (19.6% vs. 8.1%, P < 0.001). As for the risk of future arthroplasty, a significant difference was also found between the two groups (7.8% vs. 4.0%, P = 0.02). Kaplan-Meier analysis showed that the 108-month accumulated knee survival rate was significantly lower in the exposure group (P = 0.01). CONCLUSION The ipsilateral knee with early-stage OA is prone to have worse early to mid-, and long-term prognosis in the circumstance of contralateral radiographic advanced knee OA. Key Points •Identifying early knee osteoarthritis (OA) with a high risk of radiographic progression and future arthroplasty enables early personalized intervention. •This is a novel study to investigate the relationship between the risk of future arthroplasty and contralateral knee status. •Propensity score matching holds promise to minimize selection bias in observational studies. •Knees with early OA are prone to have a high risk of radiographic progression and future arthroplasty in the circumstance of contralateral advanced knee OA.
Collapse
Affiliation(s)
- Rongjie Wu
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
- Guangdong Province, Shantou University Medical College, Shantou, People's Republic of China
| | - Guangtao Fu
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Mengyuan Li
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Yuanchen Ma
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Qingtian Li
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Zhantao Deng
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Qiujian Zheng
- Department of Orthopedics, Guangdong Province, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China.
- The Second School of Clinical Medicine, Guangdong Province, Southern Medical University, Guangzhou, People's Republic of China.
| |
Collapse
|
23
|
Subchondral Bone Alterations in a Novel Model of Intermediate Post Traumatic Osteoarthritis In Mice. J Biomech 2022; 142:111233. [DOI: 10.1016/j.jbiomech.2022.111233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/05/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022]
|
24
|
Nedunchezhiyan U, Varughese I, Sun AR, Wu X, Crawford R, Prasadam I. Obesity, Inflammation, and Immune System in Osteoarthritis. Front Immunol 2022; 13:907750. [PMID: 35860250 PMCID: PMC9289681 DOI: 10.3389/fimmu.2022.907750] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
Obesity remains the most important risk factor for the incidence and progression of osteoarthritis (OA). The leading cause of OA was believed to be overloading the joints due to excess weight which in turn leads to the destruction of articular cartilage. However, recent studies have proved otherwise, various other factors like adipose deposition, insulin resistance, and especially the improper coordination of innate and adaptive immune responses may lead to the initiation and progression of obesity-associated OA. It is becoming increasingly evident that multiple inflammatory cells are recruited into the synovial joint that serves an important role in pathological changes in the synovial joint. Polarization of macrophages and macrophage-produced mediators are extensively studied and linked to the inflammatory and destructive responses in the OA synovium and cartilage. However, the role of other major innate immune cells such as neutrophils, eosinophils, and dendritic cells in the pathogenesis of OA has not been fully evaluated. Although cells of the adaptive immune system contribute to the pathogenesis of obesity-induced OA is still under exploration, a quantity of literature indicates OA synovium has an enriched population of T cells and B cells compared with healthy control. The interplay between a variety of immune cells and other cells that reside in the articular joints may constitute a vicious cycle, leading to pathological changes of the articular joint in obese individuals. This review addresses obesity and the role of all the immune cells that are involved in OA and summarised animal studies and human trials and knowledge gaps between the studies have been highlighted. The review also touches base on the interventions currently in clinical trials, different stages of the testing, and their shortcomings are also discussed to understand the future direction which could help in understanding the multifactorial aspects of OA where inflammation has a significant function.
Collapse
Affiliation(s)
- Udhaya Nedunchezhiyan
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Ibin Varughese
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Antonia RuJia Sun
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Xiaoxin Wu
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- Department of Orthopedic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ross Crawford
- Orthopedic Department, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Indira Prasadam
- Centre for Biomedical Technologies, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Indira Prasadam,
| |
Collapse
|
25
|
Rösch G, El Bagdadi K, Muschter D, Taheri S, Dorn C, Meurer A, Straub RH, Zaucke F, Schilling AF, Grässel S, Jenei-Lanzl Z. Sympathectomy aggravates subchondral bone changes during osteoarthritis progression in mice without affecting cartilage degeneration or synovial inflammation. Osteoarthritis Cartilage 2022; 30:461-474. [PMID: 34864169 DOI: 10.1016/j.joca.2021.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) pathogenesis involves the interaction of articular cartilage with surrounding tissues, which are innervated by tyrosine hydroxylase-positive (TH+) sympathetic nerve fibers suggesting a role of the sympathetic nervous system (SNS) during OA progression. We analyzed the effects of sympathectomy (Syx) in a murine OA model. METHODS Peripheral Syx was generated by 6-hydroxydopamine (6-OHDA) injections in male C57BL/6 mice. OA was induced in wild-type (WT) and Syx mice by destabilization of the medial meniscus (DMM). TH+ fibers and splenic NE were analyzed to evaluate Syx efficiency. OA progression was examined by OARSI and synovitis scores and micro-CT. Expression of TH, α2A- and β2-adrenergic receptors (AR), and activity of osteoblasts (ALP) and osteoclasts (TRAP) was investigated by stainings. RESULTS Syx resulted in synovial TH+ fiber elimination and splenic NE decrease. Cartilage degradation and synovitis after DMM were comparably progressive in both WT and Syx mice. Calcified cartilage (CC) and subchondral bone plate (SCBP) thickness and bone volume fraction (BV/TV) increased in Syx mice due to increased ALP and decreased TRAP activities compared to WT 8 weeks after DMMWT and Syx mice developed osteophytes and meniscal ossicles without any differences between the groups. AR numbers decreased in cartilage but increased in synovium and osteophyte regions after DMM in both WT and Syx mice. CONCLUSION Peripheral dampening of SNS activity aggravated OA-specific cartilage calcification and subchondral bone thickening but did not influence cartilage degradation and synovitis. Therefore, SNS might be an attractive target for the development of novel therapeutic strategies for pathologies of the subchondral bone.
Collapse
Affiliation(s)
- G Rösch
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt/Main, 60528, Germany.
| | - K El Bagdadi
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt/Main, 60528, Germany.
| | - D Muschter
- Department of Orthopedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg Regensburg, 93053, Germany.
| | - S Taheri
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, Universitätsmedizin Göttingen Göttingen, 37075, Germany.
| | - C Dorn
- Institute of Pharmacy, University of Regensburg Regensburg, 93053, Germany.
| | - A Meurer
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt/Main, 60528, Germany.
| | - R H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg Regensburg, 93053, Germany.
| | - F Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt/Main, 60528, Germany.
| | - A F Schilling
- Department of Trauma Surgery, Orthopedic Surgery and Plastic Surgery, Universitätsmedizin Göttingen Göttingen, 37075, Germany.
| | - S Grässel
- Department of Orthopedic Surgery, Experimental Orthopaedics, Centre for Medical Biotechnology, University of Regensburg Regensburg, 93053, Germany.
| | - Z Jenei-Lanzl
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Orthopedics (Friedrichsheim), University Hospital Frankfurt, Goethe University Frankfurt/Main, 60528, Germany.
| |
Collapse
|
26
|
Liang W, Wu X, Dong Y, Chen X, Zhou P, Xu F. Mechanical stimuli-mediated modulation of bone cell function-implications for bone remodeling and angiogenesis. Cell Tissue Res 2021; 386:445-454. [PMID: 34665321 DOI: 10.1007/s00441-021-03532-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/21/2021] [Indexed: 12/20/2022]
Abstract
Bone remodeling, expressed as bone formation and turnover, is a complex and dynamic process closely related to its form and function. Different events, such as development, aging, and function, play a critical role in bone remodeling and metabolism. The ability of the bone to adapt to new loads and forces has been well known and has proven useful in orthopedics and insightful for research in bone and cell biology. Mechanical stimulation is one of the most important drivers of bone metabolism. Interestingly, different types of forces will have specific consequences in bone remodeling, and their beneficial effects can be traced using different biomarkers. In this narrative review, we summarize the major mediators and events in bone remodeling, focusing on the effects of mechanical stimulation on bone metabolism, cell populations, and ultimately, bone health.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| | - Xudong Wu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China
| | - Yongqiang Dong
- Department of Orthopaedics, Xinchang People's Hospital, Shaoxing, 312500, Zhejiang Province, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Ping Zhou
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, 312000, Zhejiang Province, People's Republic of China
| | - Fangming Xu
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan 316000, Zhejiang Province, People's Republic of China.
| |
Collapse
|
27
|
Wang T, Guo Y, Shi XW, Gao Y, Zhang JY, Wang CJ, Yang X, Shu Q, Chen XL, Fu XY, Xie WS, Zhang Y, Li B, Guo CQ. Acupotomy Contributes to Suppressing Subchondral Bone Resorption in KOA Rabbits by Regulating the OPG/RANKL Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8168657. [PMID: 34335838 PMCID: PMC8298142 DOI: 10.1155/2021/8168657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/11/2020] [Accepted: 04/11/2021] [Indexed: 01/19/2023]
Abstract
Subchondral bone lesions, as the crucial inducement for accelerating cartilage degeneration, have been considered as the initiating factor and the potential therapeutic target of knee osteoarthritis (KOA). Acupotomy, the biomechanical therapy guided by traditional Chinese meridians theory, alleviates cartilage deterioration by correcting abnormal mechanics. Whether this mechanical effect of acupotomy inhibits KOA subchondral bone lesions is indistinct. This study aimed to investigate the effects of acupotomy on inhibiting subchondral bone resorption and to define the possible mechanism in immobilization-induced KOA rabbits. After KOA modeling, 8 groups of rabbits (4w/6w acupotomy, 4w/6w electroacupuncture, 4w/6w model, and 4w/6w control groups) received the indicated intervention for 3 weeks. Histological and bone histomorphometry analyses revealed that acupotomy prevented both cartilage surface erosion and subchondral bone loss. Further, acupotomy suppressed osteoclast activity and enhanced osteoblast activity in KOA subchondral bone, showing a significantly decreased expression of tartrate-resistant acid phosphatase (TRAP), matrix metalloproteinases-9 (MMP-9), and cathepsin K (Ctsk) and a significantly increased expression of osteocalcin (OCN); this regulation may be mediated by blocking the decrease in osteoprotegerin (OPG) and the increase in NF-κB receptor activated protein ligand (RANKL). These findings indicated that acupotomy inhibited osteoclast activity and promoted osteoblast activity to ameliorate hyperactive subchondral bone resorption and cartilage degeneration in immobilization-induced KOA rabbits, which may be mediated by the OPG/RANKL signaling pathway. Taken together, our results indicate that acupotomy may have therapeutic potential in KOA by restoring the balance between bone formation and bone resorption to attenuate subchondral bone lesions.
Collapse
Affiliation(s)
- Tong Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Guo
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Xiao-Wei Shi
- Massage Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Gao
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jia-Yi Zhang
- Traditional Chinese Medicine Department, Beijing Nankou Hospital, Beijing 102200, China
| | - Chun-Jiu Wang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xue Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Shu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xi-Lin Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xin-Yi Fu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wen-Shan Xie
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yi Zhang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine affiliated with Capital Medical University, Beijing 100010, China
| | - Chang-Qing Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
28
|
Gigout A, Harazin D, Topping LM, Merciris D, Lindemann S, Brenneis C, Nissim A. Early detection of osteoarthritis in the rat with an antibody specific to type II collagen modified by reactive oxygen species. Arthritis Res Ther 2021; 23:113. [PMID: 33853645 PMCID: PMC8045329 DOI: 10.1186/s13075-021-02502-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 04/03/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a disease of the whole joint, with articular cartilage breakdown as a major characteristic. Inflammatory mediators, proteases, and oxidants produced by chondrocytes are known to be responsible for driving cartilage degradation. Nevertheless, the early pathogenic events are still unclear. To investigate this, we employed an antibody that is specific to oxidative post-translationally modified collagen type II (anti-oxPTM-CII) to detect early cartilage pathogenic changes in two rat models of OA. METHODS The animals underwent surgery for destabilization of the medial meniscus (DMM) and were sacrificed after 3, 5, 7, 14, and 28 days. Alternatively, anterior cruciate ligament transection with partial meniscectomy (ACLT+pMx) was performed and animals were sacrificed after 1, 3, 5, 7, and 14 days. Joints were stained with toluidine blue and saffron du Gatinais for histological scoring, anti-oxPTM-CII, and anti-collagen type X antibodies (anti-CX). RESULTS We observed positive oxPTM-CII staining as early as 1 or 3 days after ACLT+pMx or DMM surgeries, respectively, before overt cartilage lesions were visible. oxPTM-CII was located mostly in the deep zone of the medial tibial cartilage, in the pericellular and territorial matrix of hypertrophic chondrocytes, and co-localized with CX staining. Staining was weak or absent for the lateral compartment or the contralateral knees except at later time points. CONCLUSION The results demonstrate that oxidant production and chondrocyte hypertrophy occur very early in the onset of OA, possibly initiating the pathogenic events of OA. We propose to use anti-oxPTM-CII as an early biomarker for OA ahead of radiographic changes.
Collapse
Affiliation(s)
- Anne Gigout
- Osteoarthritis Research, Merck KGaA, Darmstadt, Germany
| | | | - Louise M Topping
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Chaterhouse Square, London, EC1M 6BQ, UK
| | | | | | | | - Ahuva Nissim
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Chaterhouse Square, London, EC1M 6BQ, UK.
| |
Collapse
|
29
|
Molecular mechanisms of mechanical load-induced osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2021; 45:1125-1136. [PMID: 33459826 DOI: 10.1007/s00264-021-04938-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/07/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Mechanical loading enhances the progression of osteoarthritis. However, its molecular mechanisms have not been established. OBJECTIVE The aim of this review was to summarize the probable mechanisms of mechanical load-induced osteoarthritis. METHODS A comprehensive search strategy was used to search PubMed and EMBASE databases (from the 15th of January 2015 to the 20th of October 2020). Search terms included "osteoarthritis", "mechanical load", and "mechanism". RESULTS Abnormal mechanical loading activates the interleukin-1β, tumour necrosis factor-α, nuclear factor kappa-B, Wnt, transforming growth factor-β, microRNAs pathways, and the oxidative stress pathway. These pathways induce the pathological progression of osteoarthritis. Mechanical stress signal receptors such as integrin, ion channel receptors, hydrogen peroxide-inducible clone-5, Gremlin-1, and transient receptor potential channel 4 are present in the articular cartilages. CONCLUSION This review highlights the molecular mechanisms of mechanical loading in inducing chondrocyte apoptosis and extracellular matrix degradation. These mechanisms provide potential targets for osteoarthritis prevention and treatment.
Collapse
|