1
|
Zhang Z, Shi W, Ru L, Lv W. Biomarkers of occupational benzene exposure: A Systematic Review to estimate the exposure levels and individual susceptibility at low doses. Toxicol Ind Health 2024; 40:539-555. [PMID: 38864232 DOI: 10.1177/07482337241259053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Benzene is associated with diverse occupational and public health hazards. It exhibits an ability to rapidly permeate the skin and contaminate water and food sources, leading to dermal and ingestion exposures. Despite numerous studies examining the associations between benzene and various indicators of harm, the findings have yielded inconsistent results. Furthermore, relying solely on air concentration as a measure of benzene exposure is limited, as it fails to account for internal exposure dose and individual susceptibility. This study aimed to conduct a comprehensive review in order to present current knowledge on benzene biomarkers and their significance in evaluating exposure levels and associated health hazards. The search methodology adhered to the PRISMA guidelines and involved the application of specific inclusion and exclusion criteria across multiple databases including PubMed, Embase, and Web of Science. Two researchers independently extracted and evaluated the relevant data based on predetermined criteria. Following the screening process, a total of 80 articles were considered eligible out of the initially retrieved 1053 articles after undergoing screening and assessment for inclusion. As the level of exposure decreased, specific biomarkers demonstrated a gradual increase in limitations, including heightened background concentrations and vulnerability to confounding factors. The advancement of sampling and analysis techniques will yield new biomarkers. Additionally, when conducting practical work, it is crucial to employ a comprehensive utilization of diverse biomarkers while excluding individual metabolic variations and combined exposure factors.
Collapse
Affiliation(s)
- Zhijuan Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou, China
| | - Wenmin Shi
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Lihua Ru
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Wei Lv
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Letelier P, Saldías R, Loren P, Riquelme I, Guzmán N. MicroRNAs as Potential Biomarkers of Environmental Exposure to Polycyclic Aromatic Hydrocarbons and Their Link with Inflammation and Lung Cancer. Int J Mol Sci 2023; 24:16984. [PMID: 38069307 PMCID: PMC10707120 DOI: 10.3390/ijms242316984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023] Open
Abstract
Exposure to atmospheric air pollution containing volatile organic compounds such as polycyclic aromatic hydrocarbons (PAHs) has been shown to be a risk factor in the induction of lung inflammation and the initiation and progression of lung cancer. MicroRNAs (miRNAs) are small single-stranded non-coding RNA molecules of ~20-22 nucleotides that regulate different physiological processes, and their altered expression is implicated in various pathophysiological conditions. Recent studies have shown that the regulation of gene expression of miRNAs can be affected in diseases associated with outdoor air pollution, meaning they could also be useful as biomarkers of exposure to environmental pollution. In this article, we review the published evidence on miRNAs in relation to exposure to PAH pollution and discuss the possible mechanisms that may link these compounds with the expression of miRNAs.
Collapse
Affiliation(s)
- Pablo Letelier
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Rolando Saldías
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| | - Pía Loren
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Ismael Riquelme
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Temuco 4810101, Chile;
| | - Neftalí Guzmán
- Laboratorio de Investigación en Salud de Precisión, Departamento de Procesos Diagnósticos y Evaluación, Facultad de Ciencias de la Salud, Universidad Católica de Temuco, Temuco 4813302, Chile; (R.S.); (N.G.)
| |
Collapse
|
3
|
Dai K, Wang C, Yao W, Hao C. Expression level and function analysis of serum miRNAs in workers with occupational exposure to benzene series. CHEMOSPHERE 2023; 313:137460. [PMID: 36473519 DOI: 10.1016/j.chemosphere.2022.137460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Benzene series are ubiquitous in industrial production and daily life, and can have an impact on health even at low concentrations. miRNAs have been proved to be a biomarker of a variety of diseases and carcinogens. The purpose of this study was to explore the distribution characteristics and biological function of miRNAs in subjects exposed to benzene series. In this study, serum miRNAs were measured in 247 occupationally exposed subjects and 256 controls. The relationship between cumulative exposure dose of benzene series and miRNAs was analyzed by Generalized linear model, Spearman's rank correlation, and chi-square test for trend. The function of MiRNAs target gene was analyzed by means of bioinformatics method. The results showed that the expressions of miR-181a-5p, 221-3p, 223-3p, and 342-3p were down-regulated, whilst the expression of miR-638 was up-regulated in the occupational exposure group. miR-181a-5p, 221-3p, 223-3p, 342-3p, and 638 showed dose-response relationship with benzene series, and were closely related to multiple tumor pathways. miR-181a-5p, 221-3p, 223-3p, 342-3p, and 638 may be involved in the carcinogenic process of benzene series, and can be used to evaluate the early biological effects and monitor the exposure level of benzene series. miRNAs are potential biomarkers of benzene series exposure.
Collapse
Affiliation(s)
- Kai Dai
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Chen Wang
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Wu Yao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Changfu Hao
- Department of Occupational Health and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
4
|
Mozzoni P, Poli D, Pinelli S, Tagliaferri S, Corradi M, Cavallo D, Ursini CL, Pigini D. Benzene Exposure and MicroRNAs Expression: In Vitro, In Vivo and Human Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1920. [PMID: 36767288 PMCID: PMC9914606 DOI: 10.3390/ijerph20031920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on human health is established and interest in them is progressively increasing. Environmental and occupational risk factors affecting human health include chemical agents. Benzene represents a pollutant of concern due to its ubiquity and because it may alter gene expression by epigenetic mechanisms, including miRNA expression changes. This review summarizes recent findings on miRNAs associated with benzene exposure considering in vivo, in vitro and human findings in order to better understand the molecular mechanisms through which benzene induces toxic effects and to evaluate whether selected miRNAs may be used as biomarkers associated with benzene exposure. Original research has been included and the study selection, data extraction and assessments agreed with PRISMA criteria. Both in vitro studies and human results showed a variation in miRNAs' expression after exposure to benzene. In vivo surveys also exhibited this trend, but they cannot be regarded as conclusive because of their small number. However, this review confirms the potential role of miRNAs as "early warning" signals in the biological response induced by exposure to benzene. The importance of identifying miRNAs' expression, which, once validated, might work as sentinel molecules to better understand the extent of the exposure to xenobiotics, is clear. The identification of miRNAs as a molecular signature associated with specific exposure would be advantageous for disease prevention and health promotion in the workplace.
Collapse
Affiliation(s)
- Paola Mozzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Diana Poli
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Silvana Pinelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Sara Tagliaferri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- CERT, Center of Excellent Research in Toxicology, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Cinzia Lucia Ursini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| | - Daniela Pigini
- INAIL Research, Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Via Fontana Candida, 1, 00078 Monte Porzio Catone, Italy
| |
Collapse
|
5
|
Goodman S, Chappell G, Guyton KZ, Pogribny IP, Rusyn I. Epigenetic alterations induced by genotoxic occupational and environmental human chemical carcinogens: An update of a systematic literature review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108408. [PMID: 35690411 PMCID: PMC9188653 DOI: 10.1016/j.mrrev.2021.108408] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 01/03/2023]
Abstract
Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.
Collapse
Affiliation(s)
- Samantha Goodman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | | | | | - Igor P Pogribny
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
Mueller S, Dennison G, Liu S. An Assessment on Ethanol-Blended Gasoline/Diesel Fuels on Cancer Risk and Mortality. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6930. [PMID: 34203568 PMCID: PMC8297295 DOI: 10.3390/ijerph18136930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/28/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022]
Abstract
Although cancer is traditionally considered a genetic disease, the epigenetic abnormalities, including DNA hypermethylation, histone deacetylation, and/or microRNA dysregulation, have been demonstrated as a hallmark of cancer. Compared with gene mutations, aberrant epigenetic changes occur more frequently, and cellular epigenome is more susceptible to change by environmental factors. Excess cancer risks are positively associated with exposure to occupational and environmental chemical carcinogens, including those from gasoline combustion exhausted in vehicles. Of note, previous studies proposed particulate matter index (PMI) as a measure for gasoline sooting tendency, and showed that, compared with the other molecules in gasoline, 1,2,4-Trimethylbenzene, 2-methylnaphthalene and toluene significantly contribute to PMI of the gasoline blends. Mechanistically, both epigenome and genome are important in carcinogenicity, and the genotoxicity of chemical agents has been thoroughly studied. However, less effort has been put into studying the epigenotoxicity. Moreover, as the blending of ethanol into gasoline substitutes for carcinogens, like benzene, toluene, xylene, butadiene, and polycyclic aromatic hydrocarbons, etc., a reduction of secondary aromatics has been achieved in the atmosphere. This may lead to diminished cancer initiation and progression through altered cellular epigenetic landscape. The present review summarizes the most important findings in the literature on the association between exposures to carcinogens from gasoline combustion, cancer epigenetics and the potential epigenetic impacts of biofuels.
Collapse
Affiliation(s)
- Steffen Mueller
- Energy Resources Center, The University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gail Dennison
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| | - Shujun Liu
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA;
| |
Collapse
|
7
|
Vargas GC. Micro RNA (miRNA) Differential Expression and Exposure to Crude-Oil-Related Compounds. Microrna 2021; 10:97-108. [PMID: 34086553 PMCID: PMC9178514 DOI: 10.2174/2211536610666210604122131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/09/2021] [Accepted: 04/14/2021] [Indexed: 11/22/2022]
Abstract
This review summarizes studies on miRNA differential regulation related to exposure to crude oil and 20 different crude oil chemicals, such as hydrocarbons, sulphur, nitrogen, and metal- containing compounds. It may be interesting to explore the possibility of using early post-transcriptional regulators as a potential novel exposure biomarker. Crude oil has been defined as a highly complex mixture of solids, liquids, and gases. Given the toxicological properties of the petroleum components, its extraction and elaboration processes represent high-risk activities for the environment and human health, especially when accidental spills occur. The effects on human health of short-term exposure to petroleum are well known, but chronic exposure effects may variate depending on the exposure type (i.e., work, clean-up activities, or nearby residence). As only two studies are focused on miRNA differential expression after crude-oil exposure, this review will also analyse the bibliography concerning different crude-oil or Petroleum-Related Compounds (PRC) exposure in Animalia L. kingdom and how it is related to differential miRNA transcript levels. Papers include in vitro, animal, and human studies across the world. A list of 10 miRNAs (miR-142-5p, miR-126-3p, miR-24-3p, miR-451a, miR-16-5p, miR-28-5p, let-7b-5p, miR-320b, miR-27a-3p and miR-346) was created based on bibliography analysis and hypothesised as a possible “footprint” for crude-oil exposure. miRNA differential regulation can be considered a Big-Data related challenge, so different statistical programs and bioinformatics tools were used to have a better understanding of the biological significate of the most interesting data.
Collapse
|
8
|
Wang TS, Tian W, Fang Y, Guo KR, Li AQ, Sun Y, Wu HT, Zheng GQ, Feng NN, Xing CH, Au WW, Sun DY, Xia ZL. Changes in miR-222 expression, DNA repair capacity, and MDM2-p53 axis in association with low-dose benzene genotoxicity and hematotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142740. [PMID: 33071125 DOI: 10.1016/j.scitotenv.2020.142740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023]
Abstract
Mechanisms for hematotoxicity and health effects from exposure to low doses of benzene (BZ) remain to be identified. To address the information gap, our investigation was focused onto using appropriate populations and cell cultures to investigate novel BZ-induced effects such as disruption of DNA repair capacity (DRC). From our study, abnormal miRNAs were identified and validated using lymphocytes from 56 BZ-poisoned workers and 53 controls. In addition, 173 current BZ-exposed workers and 58 controls were investigated for key miRNA expression using RT-PCR and for cellular DRC using a challenge assay. Subsequently, the observed activities in lymphocytes were verified using human HL-60 (p53 null) and TK6 (p53 wild-type) cells via 1,4-benzoquinone (1,4-BQ) treatment and miR-222 interferences. The targeting of MDM2 by miR-222 was validated using a luciferase reporter. Our results indicate induction of genotoxicity in lymphocytes from workers with low exposure doses to BZ. In addition, miR-222 expression was up-regulated among both BZ-poisoned and BZ-exposed workers together with inverse association with DRC. Our in vitro validation studies using both cell lines indicate that 1,4-BQ exposure increased expression of miR-222 and Comet tail length but decreased DRC. Loss of miR-222 reduced DNA damage, but induced S-phase arrest and apoptosis. However, silencing of MDM2 failed to activate p53 in TK6 cells. In conclusion, our in vivo observations were confirmed by in vitro studies showing that BZ/1,4-BQ exposures caused genotoxicity and high expression of miR-222 which obstructed expression of the MDM2-p53 axis that led to failed activation of p53, abnormal DRC and serious biological consequences.
Collapse
Affiliation(s)
- Tong-Shuai Wang
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Wei Tian
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yan Fang
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Kong-Rong Guo
- Department of Occupational Disease, Shanghai Pulmonary Hospital/Shanghai Hospital for Occupational Disease Prevention and Treatment, Shanghai 200082, China
| | - An-Qi Li
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuan Sun
- Shanghai Institute of Occupational Disease for Chemical Industry (Shanghai Institute of Occupational Safety & Health), Shanghai, 200040, China
| | - Han-Tian Wu
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Guo-Qiao Zheng
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China
| | - Nan-Nan Feng
- School of Public Health, School of Medicine of Shanghai Jiaotong University, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital, Shanghai 200050, China
| | - Cai-Hong Xing
- Key Laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100032, China
| | - William W Au
- University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania; Shantou University Medical College, Shantou 515000, China
| | - Dao-Yuan Sun
- Department of Occupational Disease, Shanghai Pulmonary Hospital/Shanghai Hospital for Occupational Disease Prevention and Treatment, Shanghai 200082, China.
| | - Zhao-Lin Xia
- Department of Occupation Health and Toxicology, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
9
|
Aoki H, Tani H, Nakamura K, Sato H, Torimura M, Nakazato T. MicroRNA biomarkers for chemical hazard screening identified by RNA deep sequencing analysis in mouse embryonic stem cells. Toxicol Appl Pharmacol 2020; 392:114929. [PMID: 32105654 DOI: 10.1016/j.taap.2020.114929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/19/2022]
Abstract
We investigated the responses of microRNAs (miRNAs) using mouse embryonic stem cells (mESCs) exposed to nine chemicals (bis(2-ethylhexyl)phthalate, p-cresol, p-dichlorobenzene, phenol, pyrocatecol, chloroform, tri-n-butyl phosphate, trichloroethylene, and benzene), which are listed as "Class I Designated Chemical Substances" from the Japan Pollutant Release and Transfer Register. Using deep sequencing analysis (RNA-seq), several miRNAs were identified that show a substantial response to general chemical toxicity (i.e., to these nine chemicals considered as a group) and several miRNA biomarkers that show a substantial and specific response to benzene. The functions of the identified miRNAs were investigated in accordance with Gene Ontology terms of their predicted target genes, indicating regulation of cellular processes. We compared the results with those for the long non-coding RNAs (ncRNAs) and mRNAs reported in our previous studies in addition to previously identified miRNAs that are either up- or down-regulated in response to the benzene as stimuli. We also observed that the changes in expression of miRNAs were smaller than those for long ncRNAs and mRNAs. Taken together the current and previous results revealed that toxic chemical stimuli regulate the expression of miRNAs. We believe that the use of miRNAs, including the thus identified miRNAs, as biomarkers contribute to predicting the potential toxicity of particular chemicals or identifying human individuals that have been exposed to chemical hazards.
Collapse
Affiliation(s)
- Hiroshi Aoki
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan.
| | - Hidenori Tani
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Kaoru Nakamura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Hiroaki Sato
- Research Institute of Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Masaki Torimura
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Tetsuya Nakazato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
10
|
Chung FFL, Herceg Z. The Promises and Challenges of Toxico-Epigenomics: Environmental Chemicals and Their Impacts on the Epigenome. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:15001. [PMID: 31950866 PMCID: PMC7015548 DOI: 10.1289/ehp6104] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND It has been estimated that a substantial portion of chronic and noncommunicable diseases can be caused or exacerbated by exposure to environmental chemicals. Multiple lines of evidence indicate that early life exposure to environmental chemicals at relatively low concentrations could have lasting effects on individual and population health. Although the potential adverse effects of environmental chemicals are known to the scientific community, regulatory agencies, and the public, little is known about the mechanistic basis by which these chemicals can induce long-term or transgenerational effects. To address this question, epigenetic mechanisms have emerged as the potential link between genetic and environmental factors of health and disease. OBJECTIVES We present an overview of epigenetic regulation and a summary of reported evidence of environmental toxicants as epigenetic disruptors. We also discuss the advantages and challenges of using epigenetic biomarkers as an indicator of toxicant exposure, using measures that can be taken to improve risk assessment, and our perspectives on the future role of epigenetics in toxicology. DISCUSSION Until recently, efforts to apply epigenomic data in toxicology and risk assessment were restricted by an incomplete understanding of epigenomic variability across tissue types and populations. This is poised to change with the development of new tools and concerted efforts by researchers across disciplines that have led to a better understanding of epigenetic mechanisms and comprehensive maps of epigenomic variation. With the foundations now in place, we foresee that unprecedented advancements will take place in the field in the coming years. https://doi.org/10.1289/EHP6104.
Collapse
Affiliation(s)
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| |
Collapse
|
11
|
Kotsyfakis M, Patelarou E. MicroRNAs as biomarkers of harmful environmental and occupational exposures: a systematic review. Biomarkers 2019; 24:623-630. [PMID: 31373233 DOI: 10.1080/1354750x.2019.1652348] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Environmental exposure is a growing public health burden associated with several negative health effects. An estimated 4.2 million deaths occur each year from ambient air pollution alone. Biomarkers that reflect specific exposures have the potential to measure the real integrated internal dose from all routes of complex environmental exposure. MicroRNAs (miRNAs), small non-coding RNAs that regulate gene expression, have been studied as biomarkers in various diseases and have also shown potential as environmental exposure biomarkers. Here, we review the available human epidemiological and experimental evidence of miRNA expression changes in response to specific environmental exposures including airborne particulate matter. In doing so, we establish that miRNA exposure biomarker development remains in its infancy and future studies will need to carefully consider biological and analytical 'design rules' in order to facilitate clinical translation.
Collapse
Affiliation(s)
- Michail Kotsyfakis
- Biology Center of the Czech Academy of Sciences , Ceske Budejovice , Czechia.,Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| | - Evridiki Patelarou
- Nursing Department, Hellenic Mediterranean University , Heraklion , Greece
| |
Collapse
|
12
|
Wang D, Yang X, Zhang Y, Lin D, Li P, Zhang Z, Huang X, Gu D, Loo JFC. Platelet mitochondrial cytochrome c oxidase subunit I variants with benzene poisoning. J Thorac Dis 2018; 10:6811-6818. [PMID: 30746226 DOI: 10.21037/jtd.2018.11.82] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background Chronic benzene poisoning (CBP) is one of the most common chronic occupational poisoning which is associated with mitochondrial oxidative damage, and lead to increasing risk of respiratory diseases such as lung cancer. Cytochrome c oxidase subunit I (COI) is one of the key enzymes that plays an important role in oxidative damage regulation by eliminating reactive oxygen species (ROS). This study investigated the relationship between COI gene variants and the risk of CBP. Methods We investigated 44 non-smoking patients who were diagnosed with CBP and 57 unexposed non-smoking controls between the ages of 23 and 60 with their background including work experience, lifestyle and medical records. Peripheral blood (2 mL) was collected in EDTA tube and the platelet was purified from the collected blood. Variants of COI were analyzed by PCR and sequencing. Multivariable linear regression analysis was used to assess the association between CBP exposure and variants. Results The frequency of the mitochondrial DNA (mtDNA) T6392C, G6962 variants were 10, 7 out of 44 CBP group patients, which was higher when compared to that of 4, 2 out of 57 in the control group, suggesting these variants could be the risk factor for CBP [odds ratio (OR) 3.897, 95% CI: 1.131-13.425, P=0.023; OR 5.203, 95% CI: 1.024-26.442, P=0.034]. There was a significant difference (P<0.05) of COI variants, including T6392C and G6962A, in platelet mtDNA between patients and control samples. Meanwhile, the frequency of the mtDNA C7196A variant were 13 out of 44 control group, which was higher when compared to that of 2 of 57 in the CBP group patients, suggesting this variant could be the protective factor for CBP (OR 6.205, 95% CI: 1.320-29.162, P=0.010). Conclusions Our study suggests that T6392C, G6962A and C7196A from platelet mtDNA variants play a significant role in the etiology of CBP and facilitate the development of molecular biomarker on CBP diagnosis.
Collapse
Affiliation(s)
- Dianpeng Wang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Xiangli Yang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Yanfang Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Dafeng Lin
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Paimao Li
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Zhiming Zhang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Xianqing Huang
- Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen 518020, China
| | - Dayong Gu
- Shenzhen International Travel Health Care Center and Shenzhen Academy of Inspection and Quarantine, Shenzhen 518033, China
| | - Jacky Fong-Chuen Loo
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Kok MGM, de Ronde MWJ, Moerland PD, Ruijter JM, Creemers EE, Pinto-Sietsma SJ. Small sample sizes in high-throughput miRNA screens: A common pitfall for the identification of miRNA biomarkers. BIOMOLECULAR DETECTION AND QUANTIFICATION 2017; 15:1-5. [PMID: 29276692 PMCID: PMC5737945 DOI: 10.1016/j.bdq.2017.11.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/02/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
Abstract
Since the discovery of microRNAs (miRNAs), circulating miRNAs have been proposed as biomarkers for disease. Consequently, many groups have tried to identify circulating miRNA biomarkers for various types of diseases including cardiovascular disease and cancer. However, the replicability of these experiments has been disappointingly low. In order to identify circulating miRNA candidate biomarkers, in general, first an unbiased high-throughput screen is performed in which a large number of miRNAs is detected and quantified in the circulation. Because these are costly experiments, many of such studies have been performed using a low number of study subjects (small sample size). Due to lack of power in small sample size experiments, true effects are often missed and many of the detected effects are wrong. Therefore, it is important to have a good estimate of the appropriate sample size for a miRNA high-throughput screen. In this review, we discuss the effects of small sample sizes in high-throughput screens for circulating miRNAs. Using data from a miRNA high-throughput experiment on isolated monocytes, we illustrate that the implementation of power calculations in a high-throughput miRNA discovery experiment will avoid unnecessarily large and expensive experiments, while still having enough power to be able to detect clinically important differences.
Collapse
Affiliation(s)
- M G M Kok
- Departments of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - M W J de Ronde
- Departments of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Departments of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - P D Moerland
- Departments of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - J M Ruijter
- Departments of Anatomy, Embryology and Physiology, University of Amsterdam, Amsterdam, The Netherlands
| | - E E Creemers
- Departments of Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - S J Pinto-Sietsma
- Departments of Vascular Medicine, University of Amsterdam, Amsterdam, The Netherlands.,Departments of Clinical Epidemiology, Biostatistics and Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|