1
|
Rabeeah I, Billington E, Nal B, Sadeyen JR, Pathan AA, Iqbal M, Temperton NJ, Zipfel PF, Skerka C, Kishore U, Shelton H. Mapping the interaction sites of human and avian influenza A viruses and complement factor H. Front Immunol 2024; 15:1352022. [PMID: 38698856 PMCID: PMC11064062 DOI: 10.3389/fimmu.2024.1352022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/18/2024] [Indexed: 05/05/2024] Open
Abstract
The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.
Collapse
Affiliation(s)
- Iman Rabeeah
- Pirbright Institute, Woking, United Kingdom
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | - Béatrice Nal
- Aix-Marseille Université, CNRS, INSERM, CIML, Marseille, France
| | | | - Ansar A. Pathan
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | | | | | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
| | - Uday Kishore
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- Zayed Centre for Biomedical Sciences, U.A.E. University, Al Ain, United Arab Emirates
| | | |
Collapse
|
2
|
A delicate balancing act: immunity and immunopathology in human H7N9 influenza virus infections. Curr Opin Infect Dis 2020; 32:191-195. [PMID: 30888978 DOI: 10.1097/qco.0000000000000538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW A delicate balance exists between a protective and detrimental immune response to an invading viral pathogen. Here, we review the latest advancements in our understanding of immunity and immunopathology during H7N9 influenza A virus (IAV) infections and its relevance to disease management and diagnosis. RECENT FINDINGS Recent studies have highlighted the role of specific leukocytes in the pathogenesis of H7N9 IAV infections and potential diagnostic role that host cytokine profiles can play in forecasting disease severity. Furthermore, alterations in diet have emerged as a possible preventive measure for severe IAV infections. SUMMARY The recent emergence and continued evolution of H7N9 IAVs have emphasized the threat that these avian viruses pose to human health. Understanding the role of the host immune response in both disease protection and pathogenesis is an essential first step in the creation of novel therapeutic and preventive measures for H7N9 IAV infections.
Collapse
|
3
|
Zheng Z, Lu Y, Short KR, Lu J. One health insights to prevent the next HxNy viral outbreak: learning from the epidemiology of H7N9. BMC Infect Dis 2019; 19:138. [PMID: 30744562 PMCID: PMC6371560 DOI: 10.1186/s12879-019-3752-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Background With an increased incidence of viral zoonoses, there is an impetus to strengthen collaborations between public health, agricultural and environmental departments. This interdisciplinary cooperation, also known as the ‘One Health’ approach, has received significant support from various stakeholders. However, current efforts and policies still fall short of those needed for an effective One Health approach towards disease control and prevention. The avian-origin H7N9 influenza A virus outbreak in China serves as an ideal case study to emphasise this point. Discussion Here, we present the features and epidemiology of human infections with H7N9 influenza virus. At the early stages of the H7N9 epidemic, there was limited virus surveillance and limited prevention measures implemented in live poultry markets. As a result, zoonotic infections with H7N9 influenza viruses continued to enlarge in both numbers and geographic distribution. It was only after the number of human infections with H7N9 influenza virus spiked in the 5th wave of the epidemic that inter-departmental alliances were formed. This resulted in the rapid control of the number of human infections. We therefore further discuss the barriers that prevented the implementation of an effective One Health approach in China and what this means for other emerging, zoonotic viral diseases. Summary Effective implementation of evidence-based disease management approaches in China will result in substantial health and economic gains. The continual threat of avian influenza, as well as other emerging zoonotic viral infections, emphasizes the need to remove the barriers that prevent the effective implementation of One Health policies in disease management.
Collapse
Affiliation(s)
- Zhe Zheng
- School of Public Health, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China
| | - Yi Lu
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, 1 University Place, Rensselaer, NY, 12144, USA
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, St Lucia, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - Jiahai Lu
- School of Public Health, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, 510080, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Zhongshan 2nd Road, Guangzhou, Guangdong, China. .,One Health Center of Excellence for Research &Training, Zhongshan 2nd Road, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Chen L, Ruan F, Sun Y, Chen H, Liu M, Zhou J, Qin K. Establishment of sandwich ELISA for detecting the H7 subtype influenza A virus. J Med Virol 2019; 91:1168-1171. [PMID: 30680746 DOI: 10.1002/jmv.25408] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 12/25/2022]
Abstract
Avian H7N9 subtype influenza virus infects human with high case-fatality rate since it emerged in 2013. Although the vaccination has been rapidly used in poultry due to the emergence of highly pathogenic strain, this virus remains prevalent in this region. Thus, rapid diagnosis both in poultry and human clinic is critically important for the control and prevention of H7N9 infection. In this study, a batch of H7 subtype-specific monoclonal antibodies (mAbs) were developed and a pair of mAb, 2B6, and 5E9 were used to establish a double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) to quantify H7 protein and detect influenza A virus baring H7 subtype HA. The lowest detection limit for the recombinant H7 protein was 10 ng/mL and 0.5 HAU/50 μL of A/Guangdong/17SF003/2016(H7N9), 2 HAU/50 μL of A/Netherlands/219/2003(H7N7) and A/Anhui/1/2013(H7N9) for live virus, respectively. The ELISA could not only detect the prevailing H7N9 virus, but also antigenic drift H7 subtype viruses, showing excellent sensitivity and high specificity. Hence, it could serve as a valuable approach to diagnose H7 subtype virus which showed great potential to cause pandemic, as well as antigen quantification.
Collapse
Affiliation(s)
- Lingling Chen
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Feier Ruan
- Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, P. R. China
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Ying Sun
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| | - Haiying Chen
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Mingbin Liu
- Nanchang Center for Disease Control and Prevention, Nanchang, Jiangxi, P. R. China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| | - Kun Qin
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory for Medical Virology, National Health Commission, Beijing, P. R. China
| |
Collapse
|
5
|
Yip TF, Selim ASM, Lian I, Lee SMY. Advancements in Host-Based Interventions for Influenza Treatment. Front Immunol 2018; 9:1547. [PMID: 30042762 PMCID: PMC6048202 DOI: 10.3389/fimmu.2018.01547] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022] Open
Abstract
Influenza is a major acute respiratory infection that causes mortality and morbidity worldwide. Two classes of conventional antivirals, M2 ion channel blockers and neuraminidase inhibitors, are mainstays in managing influenza disease to lessen symptoms while minimizing hospitalization and death in patients with severe influenza. However, the development of viral resistance to both drug classes has become a major public health concern. Vaccines are prophylaxis mainstays but are limited in efficacy due to the difficulty in matching predicted dominant viral strains to circulating strains. As such, other potential interventions are being explored. Since viruses rely on host cellular functions to replicate, recent therapeutic developments focus on targeting host factors involved in virus replication. Besides controlling virus replication, potential targets for drug development include controlling virus-induced host immune responses such as the recently suggested involvement of innate lymphoid cells and NADPH oxidases in influenza virus pathogenesis and immune cell metabolism. In this review, we will discuss the advancements in novel host-based interventions for treating influenza disease.
Collapse
Affiliation(s)
- Tsz-Fung Yip
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Aisha Sami Mohammed Selim
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| | - Ida Lian
- School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore, Singapore
| | - Suki Man-Yan Lee
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|