1
|
Huemer M, Stilianu C, Maier O, Fabian MS, Schmidt M, Doerfler A, Bredies K, Zaiss M, Stollberger R. Improved quantification in CEST-MRI by joint spatial total generalized variation. Magn Reson Med 2024; 92:1683-1697. [PMID: 38703028 DOI: 10.1002/mrm.30129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/19/2024] [Accepted: 04/07/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE In this work, the use of joint Total Generalized Variation (TGV) regularization to improve Multipool-Lorentzian fitting of chemical exchange saturation transfer (CEST) Spectra in terms of stability and parameter signal-to-noise ratio (SNR) was investigated. THEORY AND METHODS The joint TGV term was integrated into the nonlinear parameter fitting problem. To increase convergence and weight the gradients, preconditioning using a voxel-wise singular value decomposition was applied to the problem, which was then solved using the iteratively regularized Gauss-Newton method combined with a Primal-Dual splitting algorithm. The TGV method was evaluated on simulated numerical phantoms, 3T phantom data and 7T in vivo data with respect to systematic errors and robustness. Three reference methods were also implemented: The standard nonlinear fitting, a method using a nonlocal-means filter for denoising and the pyramid scheme, which uses downsampled images to acquire accurate start values. RESULTS The proposed regularized fitting method showed significantly improved robustness (compared to the reference methods). In testing, over a range of SNR values the TGV fit outperformed the other methods and showed accurate results even for large amounts of added noise. Parameter values found were closer or comparable to the ground truth. For in vivo datasets, the added regularization increased the parameter map SNR and prevented instabilities. CONCLUSION The proposed fitting method using TGV regularization leads to improved results over a range of different data-sets and noise levels. Furthermore, it can be applied to all Z-spectrum data, with different amounts of pools, where the improved SNR and stability can increase diagnostic confidence.
Collapse
Affiliation(s)
- Markus Huemer
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Clemens Stilianu
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Oliver Maier
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
| | - Moritz Simon Fabian
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Manuel Schmidt
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Arnd Doerfler
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Kristian Bredies
- Department of Mathematics and Scientific Computing, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Moritz Zaiss
- Institute of Neuroradiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
- High-Field Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rudolf Stollberger
- Institute of Biomedical Imaging, Graz University of Technology, Graz, Austria
- BioTechMed Graz, Graz, Austria
| |
Collapse
|
2
|
Xiao G, Zhang XL, Wang SQ, Lai SX, Nie TT, Chen YW, Zhuang CY, Yan G, Wu RH. Quantitative separation of CEST effect by R ex-line-fit analysis of Z-spectra. Sci Rep 2024; 14:21471. [PMID: 39277679 PMCID: PMC11401877 DOI: 10.1038/s41598-024-72141-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
The process of chemical exchange saturation transfer (CEST) is quantified by evaluating a Z-spectra, where CEST signal quantification and Z-spectra fitting have been widely used to distinguish the contributions from multiple origins. Based on the exchange-dependent relaxation rate in the rotating frame (Rex), this paper introduces an additional pathway to quantitative separation of CEST effect. The proposed Rex-line-fit method is solved by a multi-pool model and presents the advantage of only being dependent of the specific parameters (solute concentration, solute-water exchange rate, solute transverse relaxation, and irradiation power). Herein we show that both solute-water exchange rate and solute concentration monotonously vary with Rex for Amide, Guanidino, NOE and MT, which has the potential to assist in solving quantitative separation of CEST effect. Furthermore, we achieve Rex imaging of Amide, Guanidino, NOE and MT, which may provide direct insight into the dependency of measurable CEST effects on underlying parameters such as the exchange rate and solute concentration, as well as the solute transverse relaxation.
Collapse
Affiliation(s)
- Gang Xiao
- School of Mathematics and Statistics, Hanshan Normal University, Chaozhou, 521041, China
| | - Xiao-Lei Zhang
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Si-Qi Wang
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Shi-Xin Lai
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Ting-Ting Nie
- Department of Radiology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Yao-Wen Chen
- College of Engineering, Shantou University, Shantou, 515063, China
| | - Cai-Yu Zhuang
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Gen Yan
- Department of Radiology, Second Affiliated Hospital of Xiamen Medical College, Xiamen, 361021, China.
| | - Ren-Hua Wu
- Department of Radiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
3
|
Gammaraccio F, Villano D, Irrera P, Anemone AA, Carella A, Corrado A, Longo DL. Development and Validation of Four Different Methods to Improve MRI-CEST Tumor pH Mapping in Presence of Fat. J Imaging 2024; 10:166. [PMID: 39057737 PMCID: PMC11277679 DOI: 10.3390/jimaging10070166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
CEST-MRI is an emerging imaging technique suitable for various in vivo applications, including the quantification of tumor acidosis. Traditionally, CEST contrast is calculated by asymmetry analysis, but the presence of fat signals leads to wrong contrast quantification and hence to inaccurate pH measurements. In this study, we investigated four post-processing approaches to overcome fat signal influences and enable correct CEST contrast calculations and tumor pH measurements using iopamidol. The proposed methods involve replacing the Z-spectrum region affected by fat peaks by (i) using a linear interpolation of the fat frequencies, (ii) applying water pool Lorentzian fitting, (iii) considering only the positive part of the Z-spectrum, or (iv) calculating a correction factor for the ratiometric value. In vitro and in vivo studies demonstrated the possibility of using these approaches to calculate CEST contrast and then to measure tumor pH, even in the presence of moderate to high fat fraction values. However, only the method based on the water pool Lorentzian fitting produced highly accurate results in terms of pH measurement in tumor-bearing mice with low and high fat contents.
Collapse
Affiliation(s)
- Francesco Gammaraccio
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Daisy Villano
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Pietro Irrera
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Annasofia A. Anemone
- Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| | - Antonella Carella
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Alessia Corrado
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), 10126 Torino, Italy
| |
Collapse
|
4
|
Shaghaghi M, Cai K. Analytical solution of the Bloch-McConnell equations for steady-state CEST Z-spectra. Magn Reson Imaging 2024; 109:74-82. [PMID: 38430977 PMCID: PMC11463197 DOI: 10.1016/j.mri.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
PURPOSE To derive an analytic expression for the steady-state Chemical Exchange Saturation Transfer (CEST) Z-spectra of a two-pool proton-exchanging system, facilitating simulations and expedited fitting of steady-state Z-spectra. METHOD The analytical expression is derived by directly solving the set of Bloch-McConnell differential equations in matrix form for a two-pool exchanging system, determining water magnetization under steady-state saturation across the entire Z-spectrum. The analytic solution is compared and validated against the numerical solution of Bloch-McConnell equations under prolonged saturation. The study also explores the line shape of a CEST peak, interpolating under-sampled Z-spectra, and Z-spectral fitting in the presence of noise. RESULTS The derived analytic solution accurately reproduces spectra obtained through numerical solutions. Direct fitting of simulated CEST spectra with the analytical solution yields the physical parameters of the exchanging system. The study shows that the analytical solution enables the reproduction of fully sampled spectra from sparsely sampled Z-spectra. Additionally, it confirms the approximation of the CEST spectrum of a single exchanging proton species with a Lorentzian function. Monte Carlo simulations reveal that the accuracy and precision of Z-spectral fittings for physical parameters are significantly influenced by data noise. The study also derives and discusses the analytical solution for three-pool Z-spectra. CONCLUSION The derived analytic solution for steady state Z-spectra can be utilized for simulations and Z-spectrum fitting, significantly reducing fitting times compared to numerical methods employed for fitting CEST Z-spectra.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
5
|
Sheng L, Yuan E, Yuan F, Song B. Amide proton transfer-weighted imaging of the abdomen: Current progress and future directions. Magn Reson Imaging 2024; 107:88-99. [PMID: 38242255 DOI: 10.1016/j.mri.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/13/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
The chemical exchange saturation transfer technique serves as a valuable tool for generating in vivo image contrast based on the content of various proton groups, including amide protons, amine protons, and aliphatic protons. Among these, amide proton transfer-weighted (APTw) imaging has seen extensive development as a means to assess the biochemical status of lesions. The exchange from saturated amide protons to bulk water protons during and following the saturation ratio frequency pulse contributes to detectable APT signals. While APTw imaging has garnered significant attention in the central nervous system, demonstrating noteworthy findings in cerebral neoplasia, stroke, and Alzheimer's disease over the past decade, its application in the abdomen has been a relatively recent progression. Notably, studies have explored its utility in hepatocellular carcinoma, prostate cancer, and cervical carcinoma within the abdominal context. Despite these advancements, there is a paucity of reviews on APTw imaging in abdominal applications. This paper aims to fill this gap by providing a concise overview of the fundamental theories underpinning APTw imaging. Additionally, we systematically summarize its diverse clinical applications in the abdomen, with a particular focus on the digestive and urogenital systems. Finally, the manuscript concludes by discussing technical limitations and factors influencing APTw imaging in abdominal applications, along with prospects for future research.
Collapse
Affiliation(s)
- Liuji Sheng
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Enyu Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Radiology, Sanya People's Hospital, Sanya, Hainan, China.
| |
Collapse
|
6
|
Wang ZX, Wei XH, Cai KJ, Zhu WZ, Su CL. Noninvasive Characterization of Metabolic Changes in Ischemic Stroke Using Z-spectrum-fitted Multiparametric Chemical Exchange Saturation Transfer-weighted Magnetic Resonance Imaging. Curr Med Sci 2023; 43:970-978. [PMID: 37697160 DOI: 10.1007/s11596-023-2785-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVE This study aimed to noninvasively characterize the metabolic alterations in ischemic brain tissues using Z-spectrum-fitted multiparametric chemical exchange saturation transfer-weighted magnetic resonance imaging (CEST-MRI). METHODS Three sets of Z-spectrum data with saturation power (B1) values of 1.5, 2.5, and 3.5 µT, respectively, were acquired from 17 patients with ischemic stroke. Multiple contrasts contributing to the Z-spectrum, including fitted amide proton transfer (APTfitted), +2 ppm peak (CEST@2ppm), concomitantly fitted APTfitted and CEST@2ppm (APT&CEST@2ppm), semisolid magnetization transfer contrast (MT), aliphatic nuclear Overhauser effect (NOE), and direct saturation of water (DSW), were fitted with 4 and 5 Lorentzian functions, respectively. The CEST metrics were compared between ischemic lesions and contralateral normal white matter (CNWM), and the correlation between the CEST metrics and the apparent diffusion coefficient (ADC) was assessed. The differences in the Z-spectrum metrics under varied B1 values were also investigated. RESULTS Ischemic lesions showed increased APTfitted, CEST@2ppm, APT&CEST@2ppm, NOE, and DSW as well as decreased MT. APT&CEST@2ppm, MT, and DSW showed a significant correlation with ADC [APT&CEST@2ppm at the 3 B1 values: R=0.584/0.467/0.551; MT at the 3 B1 values: R=-0.717/-0.695/-0.762 (4-parameter fitting), R=-0.734/-0.711/-0.785 (5-parameter fitting); DSW of 4-/5-parameter fitting: R=0.794/0.811 (2.5 µT), R=0.800/0.790 (3.5 µT)]. However, the asymmetric analysis of amide proton transfer (APTasym) could not differentiate the lesions from CNWM and showed no correlation with ADC. Furthermore, the Z-spectrum contrasts varied with B1. CONCLUSION The Z-spectrum-fitted multiparametric CEST-MRI can comprehensively detect metabolic alterations in ischemic brain tissues.
Collapse
Affiliation(s)
- Zhen-Xiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xin-Hua Wei
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ke-Jia Cai
- Department of Radiology, Department of Bioengineering, and The Center for MR Research, University of Illinois at Chicago, Chicago, 60612, USA
| | - Wen-Zhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chang-Liang Su
- Department of Radiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Chen Y, Dang X, Zhao B, Chen Z, Zhao Y, Zhao F, Zheng Z, He X, Peng J, Song X. Frequency importance analysis for chemical exchange saturation transfer magnetic resonance imaging using permuted random forest. NMR IN BIOMEDICINE 2023; 36:e4744. [PMID: 35434864 DOI: 10.1002/nbm.4744] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/07/2022] [Accepted: 04/14/2022] [Indexed: 05/23/2023]
Abstract
Chemical exchange saturation transfer magnetic resonance imaging (CEST MRI) is a promising molecular imaging tool that allows sensitive detection of endogenous metabolic changes. However, because the CEST spectrum does not display a clear peak like MR spectroscopy, its signal interpretation is challenging, especially under 3-T field strength or with a large saturation B1 . Herein, as an alternative to conventional Z-spectral fitting approaches, a permuted random forest (PRF) method is developed to determine featured saturation frequencies for lesion identification, so-called CEST frequency importance analysis. Briefly, voxels in the CEST dataset were labeled as lesion and control according to multicontrast MR images. Then, by considering each voxel's saturation signal series as a sample, a permutation importance algorithm was employed to rank the contribution of saturation frequency offsets in the differentiation of lesion and normal tissue. Simulations demonstrated that PRF could correctly determine the frequency offsets (3.5 or -3.5 ppm) for classifying two groups of Z-spectra, under a range of B0 , B1 conditions and sample sizes. For ischemic rat brains, PRF only displayed high feature importance around amide frequency at 2 h postischemia, reflecting that the pH changes occurred at an early stage. By contrast, the data acquired at 24 h postischemia exhibited high feature importance at multiple frequencies (amide, water, and lipids), which suggested the complex tissue changes that occur during the later stages. Finally, PRF was assessed using 3-T CEST data from four brain tumor patients. By defining the tumor region on amide proton transfer-weighted images, PRF analysis identified different CEST frequency importance for two types of tumors (glioblastoma and metastatic tumor) (p < 0.05, with each image slice as a subject). In conclusion, the PRF method was able to rank and interpret the contribution of all acquired saturation offsets to lesion identification; this may facilitate CEST analysis in clinical applications, and open up new doors for comprehensive CEST analysis tools other than model-based approaches.
Collapse
Affiliation(s)
- Yibing Chen
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Xujian Dang
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Benqi Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Zhensen Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Yingcheng Zhao
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Fengjun Zhao
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Xiaowei He
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Jinye Peng
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
8
|
Zhang L, Xu C, Li Z, Sun J, Wang X, Hou B, Zhao Y. Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) quantification of transient ischemia using a combination method of 5-pool Lorentzian fitting and inverse Z-spectrum analysis. Quant Imaging Med Surg 2023; 13:1860-1873. [PMID: 36915363 PMCID: PMC10006163 DOI: 10.21037/qims-22-420] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022]
Abstract
Background Chemical exchange saturation transfer (CEST) is a promising method for the detection of biochemical alterations in cancers and neurological diseases. However, the sensitivity of the currently existing quantitative method for detecting ischemia needs further improvement. Methods To further improve the quantification of the CEST signal and enhance the CEST detection for ischemia, we used a quantitative analysis method that combines an inverse Z-spectrum analysis and a 5-pool Lorentzian fitting. Specifically, a 5-pool Lorentzian simulation was conducted with the following brain tissue parameters: water, amide (3.5 ppm), amine (2.2 ppm), magnetization transfer (MT), and nuclear Overhauser enhancement (NOE; -3.5 ppm). The parameters were first calculated offline and stored as the initial value of the Z-spectrum fitting. Then, the measured Z-spectrum with the peak value set to 0 was fitted via the stored initial value, which yielded the reference Z-spectrum. Finally, the difference between the inverse of the Z-spectrum and the inverse of the reference Z-spectrum was used as the CEST definite spectrum. Results The simulation results demonstrated that the Z-spectra of the rat brain were well simulated by a 5-pool Lorentzian fitting. Further, the proposed method detected a larger difference than did either the saturation transfer difference or the 5-pool Lorentzian fitting, as demonstrated by simulations. According to the results of the cerebral ischemia rat model, the proposed method provided the highest contrast-to-noise ratio (CNR) between the contralateral and the ipsilateral striatum under various acquisition conditions. The results indicated that the difference of fitted amplitudes generated with a 5-pool Lorentzian fitting in amide at 3.5 ppm (6.04%±0.39%; 6.86%±0.39%) was decreased in a stroke lesion compared to the contralateral normal tissue. Moreover, the difference of the residual of inversed Z-spectra in which 5-pool Lorentzian fitting was used to calculate the reference Z-spectra ( M T R R e x 5 L ) amplitudes in amide at 3.5 ppm (13.83%±2.20%, 15.69%±1.99%) was reduced in a stroke lesion compared to the contralateral normal tissue. Conclusions M T R R e x 5 L is predominantly pH-sensitive and is suitable for detecting tissue acidosis following an acute stroke.
Collapse
Affiliation(s)
- Lihong Zhang
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Chongxin Xu
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Zhen Li
- Department of Medical Imaging, Weifang Medical University, Weifang, China
| | - Junding Sun
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, China
| | - Beibei Hou
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, China
| | - Yingcheng Zhao
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Ciris P. Information theoretic evaluation of Lorentzian, Gaussian, Voigt, and symmetric alpha-stable models of reversible transverse relaxation in cervical cancer in vivo at 3 T. MAGMA (NEW YORK, N.Y.) 2023; 36:119-133. [PMID: 35925432 DOI: 10.1007/s10334-022-01035-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
OBJECTS To better characterize cervical cancer at 3 T. MRI transverse relaxation patterns hold valuable biophysical information about cellular scale microstructure. Lorentzian modeling is typically used to represent intravoxel frequency distributions, resulting in mono-exponential decay of reversible transverse relaxation. However, deviations from mono-exponential decay are expected theoretically and observed experimentally. MATERIALS AND METHODS We compared the information content of four models of signal attenuation with reversible transverse relaxation. Biological phantoms and six women with cervical squamous cell carcinoma were imaged using a gradient-echo sampling of the spin-echo (GESSE) sequence. Lorentzian, Gaussian, Voigt, and Symmetric α-Stable (SAS) models were ranked using Akaike's Information Criterion (AIC), and the model retaining the highest information content was identified at each voxel as the best model. RESULTS The Lorentzian model resulted in information loss in large fractions of the phantoms and cervix. Gaussian and SAS models frequently had higher information content than the Lorentzian in much of the areas of interest. The Voigt model rarely surpassed the three other models in terms of information content. DISCUSSION Gaussian and SAS models provide better fitting of data in much of the human cervix at 3 T. Minimizing information loss through improved tissue modeling may have important implications for identifying reliable biomarkers of tumor hypoxia and iron deposition.
Collapse
Affiliation(s)
- Pelin Ciris
- Department of Biomedical Engineering, Faculty of Engineering, Akdeniz University, A305, 07070, Antalya, Türkiye.
| |
Collapse
|
10
|
Chen Y, Dang X, Hu W, Sun Y, Bai Y, Wang X, He X, Wang M, Song X. Reassembled saturation transfer (REST) MR images at 2 B 1 values for in vivo exchange-dependent imaging of amide and nuclear Overhauser enhancement. Magn Reson Med 2023; 89:620-635. [PMID: 36253943 DOI: 10.1002/mrm.29471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Design an efficient CEST scheme for exchange-dependent images with high contrast-to-noise ratio. THEORY Reassembled saturation transfer (REST) signals were defined as Δ $$ \Delta $$ r.Z = r.Zref - r.ZCEST and the reassembled exchange-dependen magnetization transfer ratio r.MTRRex = r.1/Zref - r.1/ZCEST , utilizing the averages over loosely sampled reference frequency offsets as Zref and over densely sampled target offsets as ZCEST . Using r.MTRRex measured under 2 B1,sat values, exchange rate could be estimated. METHODS The REST approach was optimized and assessed quantitatively by simulations for various exchange rates, pool concentration, and water T1 . In vivo evaluation was performed on ischemic rat brains at 7 Tesla and human brains at 3 Tesla, in comparison with conventional asymmetrical analysis, Lorentzian difference (LD), an MTRRex_ LD. RESULTS For a broad choice of Δ ω ref $$ \Delta {\omega}_{ref} $$ ranges and numbers, Δr.Z and r.MTRRex exhibited comparable quantification features with conventional LD and MTRRex _LD, respectively, when B1,sat ≤ 1 μT. The subtraction of 2 REST values under distinct B1,sat values showed linear relationships with exchange rate and obtained immunity to field inhomogeneity and variation in MT and water T1 . For both rat and human studies, REST images exhibited similar contrast distribution to MTRRex _LD, with superiority in contrast-to-noise ratio and acquisition efficiency. Compared with MTRRex _LD, 2-B1,sat subtraction REST images displayed better resistance to B1 inhomogeneity, with more specific enhanced regions. They also showed higher signals for amide than for nuclear Overhauser enhancement effect in human brain, presumably reflecting the higher increment from faster-exchanging species as B1,sat increased. CONCLUSION Featuring high contrast-to-noise ratio efficiency, REST could be a practical exchange-dependent approach readily applicable to either retrospective Z-spectra analysis or perspective 6-offset acquisition.
Collapse
Affiliation(s)
- Yanrong Chen
- School of Information Sciences and Technology, Northwest University, Xi'an, People's Republic of China.,Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China
| | - Xujian Dang
- School of Information Sciences and Technology, Northwest University, Xi'an, People's Republic of China
| | - Wanting Hu
- School of Information Sciences and Technology, Northwest University, Xi'an, People's Republic of China
| | - Yaozong Sun
- School of Information Sciences and Technology, Northwest University, Xi'an, People's Republic of China
| | - Yan Bai
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, People's Republic of China
| | - Xiaowei He
- School of Information Sciences and Technology, Northwest University, Xi'an, People's Republic of China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaolei Song
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China
| |
Collapse
|
11
|
Rivlin M, Anaby D, Nissan N, Zaiss M, Deshmane A, Navon G, Sklair-Levy M. Breast cancer imaging with glucosamine CEST (chemical exchange saturation transfer) MRI: first human experience. Eur Radiol 2022; 32:7365-7373. [PMID: 35420304 DOI: 10.1007/s00330-022-08772-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES This study aims to evaluate the feasibility of imaging breast cancer with glucosamine (GlcN) chemical exchange saturation transfer (CEST) MRI technique to distinguish between tumor and surrounding tissue, compared to the conventional MRI method. METHODS Twelve patients with newly diagnosed breast tumors (median age, 53 years) were recruited in this prospective IRB-approved study, between August 2019 and March 2020. Informed consent was obtained from all patients. All MRI measurements were performed on a 3-T clinical MRI scanner. For CEST imaging, a fat-suppressed 3D RF-spoiled gradient echo sequence with saturation pulse train was applied. CEST signals were quantified in the tumor and in the surrounding tissue based on magnetization transfer ratio asymmetry (MTRasym) and a multi-Gaussian fitting. RESULTS GlcN CEST MRI revealed higher signal intensities in the tumor tissue compared to the surrounding breast tissue (MTRasym effect of 8.12 ± 4.09%, N = 12, p = 2.2 E-03) with the incremental increase due to GlcN uptake of 3.41 ± 0.79% (N = 12, p = 2.2 E-03), which is in line with tumor location as demonstrated by T1W and T2W MRI. GlcN CEST spectra comprise distinct peaks corresponding to proton exchange between free water and hydroxyl and amide/amine groups, and relayed nuclear Overhauser enhancement (NOE) from aliphatic groups, all yielded larger CEST integrals in the tumor tissue after GlcN uptake by an averaged factor of 2.2 ± 1.2 (p = 3.38 E-03), 1.4 ± 0.4 (p =9.88 E-03), and 1.6 ± 0.6 (p = 2.09 E-02), respectively. CONCLUSION The results of this initial feasibility study indicate the potential of GlcN CEST MRI to diagnose breast cancer in a clinical setup. KEY POINTS • GlcN CEST MRI method is demonstrated for its the ability to differentiate between breast tumor lesions and the surrounding tissue, based on the differential accumulation of the GlcN in the tumors. • GlcN CEST imaging may be used to identify metabolic active malignant breast tumors without using a Gd contrast agent. • The GlcN CEST MRI method may be considered for use in a clinical setup for breast cancer detection and should be tested as a complementary method to conventional clinical MRI methods.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Debbie Anaby
- Department of Radiology, Sheba Medical Center, Sheba Tel Ha'shomer, Emek Ha Ella 1 St, 5265601, Ramat-Gan, Israel.,The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Noam Nissan
- Department of Radiology, Sheba Medical Center, Sheba Tel Ha'shomer, Emek Ha Ella 1 St, 5265601, Ramat-Gan, Israel.,The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Moritz Zaiss
- Departmnet of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anagha Deshmane
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel.
| | - Miri Sklair-Levy
- The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel.,Meirav High Risk Clinic, Department of Diagnostic Imaging, Sheba Medical Center, Emek Ha Ella 1 St, 5265601, Ramat Gan, Israel
| |
Collapse
|
12
|
Zhao Y, Chen Y, Chen Y, Zhang L, Wang X, He X. A Fully Convolutional Network (FCN) based Automated Ischemic Stroke Segment Method using Chemical Exchange Saturation Transfer Imaging. Med Phys 2022; 49:1635-1647. [PMID: 35083756 DOI: 10.1002/mp.15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/26/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Chemical exchange saturation transfer (CEST) MRI is a promising imaging modality in ischemic stroke detection for its sensitivity in sensing post-ischemic pH alteration. However, the accurate segmentation of pH-altered regions remains difficult due to the complicated sources in water signal changes of CEST MRI. Meanwhile, manual localization and quantification of stroke lesions are laborious and time-consuming, which cannot meet the urgent need for timely therapeutic interventions. PURPOSE The goal of this study was to develop an automatic lesion segmentation approach of ischemic region based on CEST MR images. A novel segmentation framework based on fully convolutional neural network was investigated for our task. METHODS Z-spectra from 10 rats were manually labeled as ground truth and split into two datasets, where the training dataset including 3 rats was used to generate a segmentation model, and the remaining rats were used as test datasets to evaluate the model's performance. Then a 1-D fully convolutional neural network equipped with bottleneck structures was set up, and a Grad-CAM approach was used to produce a coarse localization map, which can reflect the relevancy to the 'ischemia' class of each pixel. RESULTS As compared with the ground truth, the proposed network model achieved satisfying segmentation results with high values of evaluation metrics including specificity (SPE), sensitivity (SEN), accuracy (ACC), and Dice similarity coefficient (DSC), especially in some intractable situations where conventional MRI modalities and CEST quantitative method failed to distinguish between ischemic and normal tissues, and the model with augmentation was robust to input perturbations. The Grad-CAM maps performed clear tissue change distributions and interpreted the segmentations, and showed a strong correlation with the quantitative method, gave extended thinking to the function of networks. CONCLUSIONS The proposed method can segment ischemia region from CEST images, with the Grad-CAM maps give access to interpretative information about the segmentations, which demonstrates great potential in clinical routines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingcheng Zhao
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yibing Chen
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanrong Chen
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Lihong Zhang
- College of Computer Science and Technology (Software College), Henan Polytechnic University, Jiaozuo, Henan, 454003, China
| | - Xiaoli Wang
- Department of Medical Imaging, Weifang Medical University, Weifang, 261053, China
| | - Xiaowei He
- Xi'an Key Lab of Radiomics and Intelligent Perception, School of Information Sciences and Technology, Northwest University, Xi'an, Shaanxi, 710069, China
| |
Collapse
|
13
|
Gao T, Zou C, Li Y, Jiang Z, Tang X, Song X. A Brief History and Future Prospects of CEST MRI in Clinical Non-Brain Tumor Imaging. Int J Mol Sci 2021; 22:11559. [PMID: 34768990 PMCID: PMC8584005 DOI: 10.3390/ijms222111559] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/12/2021] [Accepted: 10/23/2021] [Indexed: 02/08/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) MRI is a promising molecular imaging tool which allows the specific detection of metabolites that contain exchangeable amide, amine, and hydroxyl protons. Decades of development have progressed CEST imaging from an initial concept to a clinical imaging tool that is used to assess tumor metabolism. The first translation efforts involved brain imaging, but this has now progressed to imaging other body tissues. In this review, we summarize studies using CEST MRI to image a range of tumor types, including breast cancer, pelvic tumors, digestive tumors, and lung cancer. Approximately two thirds of the published studies involved breast or pelvic tumors which are sites that are less affected by body motion. Most studies conclude that CEST shows good potential for the differentiation of malignant from benign lesions with a number of reports now extending to compare different histological classifications along with the effects of anti-cancer treatments. Despite CEST being a unique 'label-free' approach with a higher sensitivity than MR spectroscopy, there are still some obstacles for implementing its clinical use. Future research is now focused on overcoming these challenges. Vigorous ongoing development and further clinical trials are expected to see CEST technology become more widely implemented as a mainstream imaging technology.
Collapse
Affiliation(s)
- Tianxin Gao
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Chuyue Zou
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Yifan Li
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Zhenqi Jiang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaoying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China; (T.G.); (C.Z.); (Z.J.)
| | - Xiaolei Song
- Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing 100084, China;
| |
Collapse
|