1
|
Liddle TA, Majumdar G, Stewart C, Bain MM, Stevenson TJ. Dissociating Mechanisms That Underlie Seasonal and Developmental Programs for the Neuroendocrine Control of Physiology in Birds. eNeuro 2024; 11:ENEURO.0154-23.2023. [PMID: 38548332 PMCID: PMC11007308 DOI: 10.1523/eneuro.0154-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 04/12/2024] Open
Abstract
Long-term programmed rheostatic changes in physiology are essential for animal fitness. Hypothalamic nuclei and the pituitary gland govern key developmental and seasonal transitions in reproduction. The aim of this study was to identify the molecular substrates that are common and unique to developmental and seasonal timing. Adult and juvenile quail were collected from reproductively mature and immature states, and key molecular targets were examined in the mediobasal hypothalamus (MBH) and pituitary gland. qRT-PCR assays established deiodinase type 2 (DIO2) and type 3 (DIO3) expression in adults changed with photoperiod manipulations. However, DIO2 and DIO3 remain constitutively expressed in juveniles. Pituitary gland transcriptome analyses established that 340 transcripts were differentially expressed across seasonal photoperiod programs and 1,189 transcripts displayed age-dependent variation in expression. Prolactin (PRL) and follicle-stimulating hormone subunit beta (FSHβ) are molecular markers of seasonal programs and are significantly upregulated in long photoperiod conditions. Growth hormone expression was significantly upregulated in juvenile quail, regardless of photoperiodic condition. These findings indicate that a level of cell autonomy in the pituitary gland governs seasonal and developmental programs in physiology. Overall, this paper yields novel insights into the molecular mechanisms that govern developmental programs and adult brain plasticity.
Collapse
Affiliation(s)
- Timothy Adam Liddle
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Gaurav Majumdar
- Department of Zoology, University of Allahabad, Allahabad, India
| | - Calum Stewart
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Maureen M Bain
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Tyler John Stevenson
- Laboratory of Seasonal Biology, School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Rousseau K, Dufour S, Sachs LM. Interdependence of Thyroid and Corticosteroid Signaling in Vertebrate Developmental Transitions. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.735487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Post-embryonic acute developmental processes mainly allow the transition from one life stage in a specific ecological niche to the next life stage in a different ecological niche. Metamorphosis, an emblematic type of these post-embryonic developmental processes, has occurred repeatedly and independently in various phylogenetic groups throughout metazoan evolution, such as in cnidarian, insects, molluscs, tunicates, or vertebrates. This review will focus on metamorphoses and developmental transitions in vertebrates, including typical larval metamorphosis in anuran amphibians, larval and secondary metamorphoses in teleost fishes, egg hatching in sauropsids and birth in mammals. Two neuroendocrine axes, the hypothalamic-pituitary-thyroid and the hypothalamic-pituitary-adrenal/interrenal axes, are central players in the regulation of these life transitions. The review will address the molecular and functional evolution of these axes and their interactions. Mechanisms of integration of internal and environmental cues, and activation of these neuroendocrine axes represent key questions in an “eco-evo-devo” perspective of metamorphosis. The roles played by developmental transitions in the innovation, adaptation, and plasticity of life cycles throughout vertebrates will be discussed. In the current context of global climate change and habitat destruction, the review will also address the impact of environmental factors, such as global warming and endocrine disruptors on hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal/interrenal axes, and regulation of developmental transitions.
Collapse
|
3
|
Maimaiti R, Zhu C, Zhang Y, Ding Q, Guo W. RBM20-Mediated Pre-mRNA Splicing Has Muscle-Specificity and Differential Hormonal Responses between Muscles and in Muscle Cell Cultures. Int J Mol Sci 2021; 22:2928. [PMID: 33805770 PMCID: PMC7999644 DOI: 10.3390/ijms22062928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
Pre-mRNA splicing plays an important role in muscle function and diseases. The RNA binding motif 20 (RBM20) is a splicing factor that is predominantly expressed in muscle tissues and primarily regulates pre-mRNA splicing of Ttn, encoding a giant muscle protein titin that is responsible for muscle function and diseases. RBM20-mediated Ttn splicing has been mostly studied in heart muscle, but not in skeletal muscle. In this study, we investigated splicing specificity in different muscle types in Rbm20 knockout rats and hormonal effects on RBM20-mediated splicing both in cellulo and in vivo studies. The results revealed that RBM20 is differentially expressed across muscles and RBM20-mediated splicing is muscle-type specific. In the presence of RBM20, Ttn splicing responds to hormones in a muscle-type dependent manner, while in the absence of RBM20, Ttn splicing is not affected by hormones. In differentiated and undifferentiated C2C12 cells, RBM20-mediated splicing in response to hormonal effects is mainly through genomic signaling pathway. The knowledge gained from this study may help further understand muscle-specific gene splicing in response to hormone stimuli in different muscle types.
Collapse
Affiliation(s)
- Rexiati Maimaiti
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Chaoqun Zhu
- Animal Science Department, University of Wyoming, Laramie, WY 82071, USA; (R.M.); (C.Z.)
| | - Yanghai Zhang
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Qiyue Ding
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| | - Wei Guo
- Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; (Y.Z.); (Q.D.)
| |
Collapse
|
4
|
Chen X, Ren C, Teng Y, Shen Y, Wu M, Xiao H, Wang H. Effects of temperature on growth, development and the leptin signaling pathway of Bufo gargarizans. J Therm Biol 2020; 96:102822. [PMID: 33627262 DOI: 10.1016/j.jtherbio.2020.102822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/27/2022]
Abstract
Climate change is one of the most important causes of the decline in amphibians. Changes in temperature have an important effect on the growth and development and energy metabolism of amphibians. The aim of this study is to unravel the effects of temperature on the leptin signaling pathway of Bufo gargarizans and its molecular mechanisms. Our results showed that high temperature accelerated the development rate of tadpoles, but reduced body size and mass, while low temperature deferred the development of tadpoles, but increased size and mass. Both high temperature and low temperature exposure caused pathological damage of the liver in B. gargarizans. The results of RT-qPCR revealed that the high temperature treatment significantly upregulated the transcript levels of genes related to thyroid hormone (DIO2 (D2), Thyroid Hormone Receptor-α (TRα)) and the leptin signaling pathway (Leptin Receptor (LepR), Janus kinase 1 (JAK1), Janus kinase 2 (JAK2), Tyrosine kinase 2 (TYK2), Signal Transducer And Activator Of Transcription 3 (STAT3), Signal Transducer And Activator Of Transcription 3.1 (STAT3.1), and Signal Transducer And Activator Of Transcription 6 (STAT6)), while there was a decrease of mRNA expression of these genes (TRα, Thyroid Hormone Receptor-Beta (TRβ), LepR, JAK1, and TYK2) in the liver of tadpoles exposed to high temperature compared with the intermediate temperature treatment. Therefore, our results suggested that temperature extremes might interfere with the thyroid and leptin signaling pathways and affect the growth and development of B. gargarizans. Furthermore, tissue injury of the liver could occur due to exposure to temperature extremes. This work promotes public awareness of environmental protection and species conservation needs, also provides valuable experimental data and a theoretical basis for the protection of amphibians.
Collapse
Affiliation(s)
- Xiaoyan Chen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Chaolu Ren
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yiran Teng
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui Xiao
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
5
|
Zhang W, Deng Y, Chen L, Zhang L, Wang Z, Liu R, Diao J, Zhou Z. Effect of triadimefon and its metabolite on adult amphibians Xenopus laevis. CHEMOSPHERE 2020; 243:125288. [PMID: 31743868 DOI: 10.1016/j.chemosphere.2019.125288] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/22/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
The decrease in the population of amphibians all over the world has raised concerns. Adult X. laevis frogs were exposed to 0, 1 and 10 mg/L triadimefon and triadimenol. After 14 or 28 days exposure, we collected male and female specimens to study swimming activity, lactic dehydrogenase (LDH) and antioxidant enzyme activity in blood samples, histopathology of liver and thyroid tissue, thyroid hormone levels and thyroid hormone-related gene expression levels in brains. Our results showed that triadimefon and triadimenol could affect the swimming activity of frogs and that this was distinct at different levels of triadimenol. Moreover, triadimefon and triadimenol exposure produced a greater effect on superoxide dismutase (SOD) in females than in males, which was reverse to the finding for glutathione S-transferase (GST) and catalase (CAT). After 28 days exposure, triadimefon produced more toxic effects on the liver than observed for triadimenol. Besides this, triadimefon and triadimenol exposure exerted a greater effect on liver histology and thyroid hormone levels in male frogs than in the females. Our results also found that the expression of genes related to thyroid hormone in brains depended on the exposure level and time, as well as the sex of the treated individual. This study shed light on the relationships between the toxicity of metabolite products and their parent compounds and provided further understanding of the risk of pesticide use on amphibians.
Collapse
Affiliation(s)
- Wenjun Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Yue Deng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Li Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Luyao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zikang Wang
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Rui Liu
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Jinling Diao
- Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China
| | - Zhiqiang Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Yuanmingyuan West Road 2, Beijing, 100193, China; Department of Applied Chemistry, China Agricultural University, Yuanmingyuan West Road 2, Beijing, 100193, China.
| |
Collapse
|
6
|
Li Y, Zhao Y, Deng H, Chen A, Chai L. Endocrine disruption, oxidative stress and lipometabolic disturbance of Bufo gargarizans embryos exposed to hexavalent chromium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:242-250. [PMID: 30273847 DOI: 10.1016/j.ecoenv.2018.09.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the current study was to determine the potential developmental and metabolic abnormalities caused by Cr (VI) exposure on Bufo gargarizans (B. gargarizans) embryos. B. gargarizans embryos were treated with different concentrations of Cr (VI) (13, 52, 104, 208, and 416 μg Cr6+ L-1) for 6 days. Morphological abnormalities, total length, weight and developmental stage were monitored. Malformations of embryos were also examined using scanning electron microscopy (SEM). In addition, the transcript levels of several genes associated with lipid metabolism, oxidative stress, and thyroid hormones signaling pathways were also determined. Our results showed a time-dependent inhibitory effect of Cr (VI) on the growth and development of B. gargarizans embryos. On day 4, total length, weight, and developmental stage were significantly lower at 416 μg Cr6+ L-1 relative to control embryos. On day 6, significant reductions in total length, weight, and developmental stage were observed at 104, 208, and 416 μg Cr6+ L-1. Malformed embryos were found in all Cr (VI) treatments, which were characterized by axial flexures, yolk sac edema and rupture, surface tissue hyperplasia, stunted growth, wavy fin and fin flexure. RT-qPCR results showed that exposure to Cr (VI) down-regulated TRβ and Dio2 mRNA expression and up-regulated Dio3 mRNA level at 416 μg Cr6+ L-1. The transcript levels of SOD and GPx were upregulated at 52, 208, and 416 μg Cr6+ L-1, while the transcript level of HSP90 was downregulated at 52, 208, and 416 μg Cr6+ L-1. Also, mRNA expression of lipid synthesis-related genes (FAE and ACC) were significantly downregulated in embryos treated with 208 and 416 μg Cr6+ L-1, but mRNA expression of fatty acid β-oxidation-related genes (ACOX, CPT, and SCP) was significantly upregulated at 416 μg Cr6+ L-1. Therefore, our results suggested that Cr (VI) could disrupt thyroid endocrine pathways and lipid synthesis, leading to the inhibition of growth and development in B. gargarizans embryos. Furthermore, the decreased ability of scavenging ROS induced by Cr (VI) might be responsible for the teratogenic effects of Cr (VI).
Collapse
Affiliation(s)
- Yanbin Li
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Yonghua Zhao
- Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China
| | - Hongzhang Deng
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Aixia Chen
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University Xi'an 710062, China; Shaanxi Key Laboratory of Land Consolidation, Xi'an 710062, China.
| |
Collapse
|
7
|
Chen Q, Yokoi H, Suzuki T. Expression profiles of RA synthases and catabolic enzymes in newly hatched and metamorphosing larvae of Japanese flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2018; 269:60-67. [PMID: 30099032 DOI: 10.1016/j.ygcen.2018.08.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/27/2023]
Abstract
Retinoic acid (RA) plays various embryogenesis and post-embryogenesis roles in vertebrates. As exposure of metamorphosing flounder larvae to RA has teratogenic effects on skin color and vertebral column development, harmonized RA synthesis and catabolism are likely essential in metamorphic development. To approach understanding of the roles of RA in flounder metamorphic development, we here examined the tissue mRNA expression of RA synthases (aldh1a1, aldh1a2, aldh1a3) and catabolic enzymes (cyp26a1, cyp26b1, cyp26c1) in newly hatched and metamorphosing larvae, and three-month-old juveniles by in situ hybridization (ISH). No ISH signal was detected for any genes from the skin and vertebral column susceptible to the teratogenic effects by RA. Since the intestine expressed aldh1a2 at high level in larvae but not in juvenile, it is a possibility that the larval intestine serves as a source of RA, and RA catabolic enzymes function at the level below sensitivity of ISH at vertebral column and skin development. We found that aldh1a2 and aldh1a3 were expressed along the margin of the tectum and the neurohypophysis of pituitary, respectively, both in contact with the cerebrospinal fluid (CSF), and cyp26b1 at the posterior tectum and cerebellum. We hypothesize that RA is supplied from the tectum and pituitary via the CSF for brain growth and maintenance, and cyp26b1 locally regulates RA contents in the brain.
Collapse
Affiliation(s)
- Qiran Chen
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Hayato Yokoi
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | - Tohru Suzuki
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| |
Collapse
|
8
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
9
|
Sarasquete C, Úbeda-Manzanaro M, Ortiz-Delgado JB. Effects of the soya isoflavone genistein in early life stages of the Senegalese sole, Solea senegalensis: Thyroid, estrogenic and metabolic biomarkers. Gen Comp Endocrinol 2017; 250:136-151. [PMID: 28634083 DOI: 10.1016/j.ygcen.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/16/2017] [Accepted: 06/16/2017] [Indexed: 11/17/2022]
Abstract
This study examines the effects induced by environmentally relevant concentrations of the isoflavone genistein (3mg/L and 10mg/L) during early life stages of the Senegalese sole. Throughout the hypothalamus-pituitary-thyroid (HPT) axis, several neurohormonal regulatory thyroid signalling patterns (thyroglobulin/Tg, thyroid peroxidase/TPO, transthyretin/TTR, thyroid receptors/TRβ, and iodothrynonine deiodinases, Dio2 and Dio3) were analysed. Furthermore, the expression patterns of estrogen receptor ERβ and haemoprotein Cyp1a were also evaluated. In the control larvae, progressive increases of constitutive hormonal signalling pathways have been evidenced from the pre-metamorphosis phase onwards, reaching the highest expression basal levels at the metamorphosis (Tg, TPO, Dio2) and/or during post-metamorphosis (TTR, TRβ, ERβ). When the early larvae were exposed to both genistein concentrations (3mg/L and 10mg/L), a statistically significant down-regulation of TPO, TTR and Tg mRNA levels was clearly detected at the metamorphic stages. In addition, the Dio2 and Dio3 transcript expression levels were also down and up-regulated when exposed to both genistein concentrations. In the larvae exposed to genistein, no statistically significant responses were recorded for the TRβ expression patterns. Nevertheless, the ERβ and Cyp1a transcript levels were up-regulated at the middle metamorphic stage (S2, at 16 dph) in the larvae exposed to high genistein concentrations and, only the ERβ was down-regulated (S1, at 12dph) at the lower doses. Finally, all these pointed out imbalances were only temporarily disrupted by exposure to genistein, since most of the modulated transcriptional signals (i.e. up or down-regulation) were quickly restored to the baseline levels. Additionally, the control and genistein-exposed Senegalese sole specimens showed characteristic ontogenetic patterns and completely suitable for an optimal development, metamorphosis, and growth.
Collapse
Affiliation(s)
- Carmen Sarasquete
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain.
| | - Maria Úbeda-Manzanaro
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| | - Juan Bosco Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía, ICMAN-CSIC, Campus Universitario Río San Pedro, 11510 Puerto Real, Cádiz, Spain
| |
Collapse
|
10
|
Alves RN, Cardoso JCR, Harboe T, Martins RST, Manchado M, Norberg B, Power DM. Duplication of Dio3 genes in teleost fish and their divergent expression in skin during flatfish metamorphosis. Gen Comp Endocrinol 2017; 246:279-293. [PMID: 28062304 DOI: 10.1016/j.ygcen.2017.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/28/2016] [Accepted: 01/02/2017] [Indexed: 02/07/2023]
Abstract
Deiodinase 3 (Dio3) plays an essential role during early development in vertebrates by controlling tissue thyroid hormone (TH) availability. The Atlantic halibut (Hippoglossus hippoglossus) possesses duplicate dio3 genes (dio3a and dio3b). Expression analysis indicates that dio3b levels change in abocular skin during metamorphosis and this suggests that this enzyme is associated with the divergent development of larval skin to the juvenile phenotype. In larvae exposed to MMI, a chemical that inhibits TH production, expression of dio3b in ocular skin is significantly up-regulated suggesting that THs normally modulate this genes expression during this developmental event. The molecular basis for divergent dio3a and dio3b expression and responsiveness to MMI treatment is explained by the multiple conserved TREs in the proximal promoter region of teleost dio3b and their absence from the promoter of dio3a. We propose that the divergent expression of dio3 in ocular and abocular skin during halibut metamorphosis contributes to the asymmetric pigment development in response to THs.
Collapse
Affiliation(s)
- R N Alves
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - J C R Cardoso
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - T Harboe
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - R S T Martins
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| | - M Manchado
- IFAPA Centro El Toruño, Junta de Andalucía, Camino Tiro Pichón s/n, 11500 El Puerto de Santa María, Cádiz, Spain.
| | - B Norberg
- Institute of Marine Research, Austevoll Research Station, Austevoll, Norway.
| | - D M Power
- Comparative Endocrinology and Integrative Biology, Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
11
|
Yu J, Fu Y, Shi Z. Coordinated expression and regulation of deiodinases and thyroid hormone receptors during metamorphosis in the Japanese flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:321-336. [PMID: 27620185 DOI: 10.1007/s10695-016-0289-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
In vertebrates, thyroid hormone receptors (TRs) and deiodinases are essential for developmental events driven by the thyroid hormones (THs). However, the significance of deiodinases during the metamorphosis of the Japanese flounder (Paralichthys olivaceus) remains unclear. Moreover, regulation and response of the TRs and deiodinases to THs in this fish are poorly understood. Therefore, we detected the expression patterns of THs, deiodinases, and TRs in drug-treated larvae and untreated larvae of P. olivaceus by using enzyme-linked immunosorbent assay and quantitative real-time PCR during P. olivaceus metamorphosis. To further understand the roles of these elements, a rescue assay was performed. Our results show the importance of THs, TRs, and deiodinases in flatfish metamorphosis. Our results also confirm that D1 and D2 activate THs and D3 plays the opposite and complementary role. Moreover, we demonstrated that both TRα and TRβ have important but different roles during P. olivaceus metamorphosis.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Yuanshuai Fu
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China
| | - Zhiyi Shi
- Key Laboratory of Genetic Resources for Freshwater Aquaculture and Fisheries, Shanghai Ocean University, 999, Hu-Cheng-Huan Road, Lingang New City, Shanghai, 201306, China.
| |
Collapse
|
12
|
Wei F, Chen J, Chen X, Bao B. Comparative analysis of the neurula transcriptomes of two species of flatfishes: Platichthys stellatus and Paralichthys olivaceus. Gene 2017; 596:147-153. [DOI: 10.1016/j.gene.2016.10.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 10/04/2016] [Accepted: 10/14/2016] [Indexed: 01/19/2023]
|
13
|
Macaulay LJ, Chernick M, Chen A, Hinton DE, Bailey JM, Kullman SW, Levin ED, Stapleton HM. Exposure to a PBDE/OH-BDE mixture alters juvenile zebrafish (Danio rerio) development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:36-48. [PMID: 27329031 PMCID: PMC5535307 DOI: 10.1002/etc.3535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/08/2016] [Accepted: 06/18/2016] [Indexed: 05/03/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and their metabolites (e.g., hydroxylated BDEs [OH-BDEs]) are contaminants frequently detected together in human tissues and are structurally similar to thyroid hormones. Thyroid hormones partially mediate metamorphic transitions between life stages in zebrafish, making this a critical developmental window that may be vulnerable to chemicals disrupting thyroid signaling. In the present study, zebrafish were exposed to 6-OH-BDE-47 (30 nM; 15 μg/L) alone, or to a low-dose (30 μg/L) or high-dose (600 μg/L) mixture of PentaBDEs, 6-OH-BDE-47 (0.5-6 μg/L), and 2,4,6-tribromophenol (5-100 μg/L) during juvenile development (9-23 d postfertilization) and evaluated for developmental endpoints mediated by thyroid hormone signaling. Fish were sampled at 3 time points and examined for developmental and skeletal morphology, apical thyroid and skeletal gene markers, and modifications in swimming behavior (as adults). Exposure to the high-dose mixture resulted in >85% mortality within 1 wk of exposure, despite being below reported acute toxicity thresholds for individual congeners. The low-dose mixture and 6-OH-BDE-47 groups exhibited reductions in body length and delayed maturation, specifically relating to swim bladder, fin, and pigmentation development. Reduced skeletal ossification was also observed in 6-OH-BDE-47-treated fish. Assessment of thyroid and osteochondral gene regulatory networks demonstrated significantly increased expression of genes that regulate skeletal development and thyroid hormones. Overall, these results indicate that exposures to PBDE/OH-BDE mixtures adversely impact zebrafish maturation during metamorphosis. Environ Toxicol Chem 2017;36:36-48. © 2016 SETAC.
Collapse
Affiliation(s)
- Laura J. Macaulay
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Albert Chen
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - David E. Hinton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
| | - Jordan M. Bailey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Seth W. Kullman
- Department of Biological Sciences, NC State University, Raleigh, NC 27695 USA
| | - Edward D. Levin
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710 USA
| | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, NC 27708 USA
- Corresponding author: Heather Stapleton, Nicholas School of the Environment, Duke University, Box 90328 LSRC A220, Durham, NC 27708, Phone: 919-613-8717, Fax: (919) 684-8741.,
| |
Collapse
|
14
|
Wu C, Zhang Y, Chai L, Wang H. Oxidative stress, endocrine disruption, and malformation of Bufo gargarizans embryo exposed to sub-lethal cadmium concentrations. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:97-104. [PMID: 27984779 DOI: 10.1016/j.etap.2016.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Thyroid hormone (TH) is critical for vertebrate postembryonic development as well as embryonic development. Chinese toad (Bufo gargarizans) embryos were exposed to different concentrations of cadmium (5, 50, 100, 200 and 500μg Cd L-1) for 7days. Malformations were monitored daily, and growth and development of embryos were measured at day 4 and 7, and type 2 and 3 iodothyronine deiodinase (Dio2 and Dio3), thyroid hormone receptors (TRα and TRβ) mRNA levels were also measured to assess disruption of TH synthesis. In addition, superoxide dismutase (SOD), glutathione peroxidase (GPx) and heat shock proteins (HSPs) mRNA expression were examined to evaluate the ability of scavenging ROS. Our results demonstrated a bimodal inhibitory effect of Cd on the embryo growth and development of Bufo gargarizans. Reduced mean stage, total length and weight were observed at 5, 50, 200 and 500, but not at 100μg Cd L-1. Embryos malformation occurred in all cadmium treatments. Morphological abnormalities of embryos are characterized by axial flexures, abdominal edema, stunted growth and fin flexure. Real-time PCR results show that exposure to cadmium down-regulated TRα and Dio3 mRNA expression and up-regulated Dio2 mRNA level. SOD and GPx mRNA expression was significantly up-regulated after cadmium exposure. We concluded that cadmium could change mRNA expression of TRα, Dio2 and Dio3 leading the inhibition of growth and development of B. gargarizans embryo, which suggests that cadmium might have the endocrine-disrupting effect in embryos. Moreover, the reduced ability of scavenging ROS induced by cadmium might be responsible for the teratogenic effects of cadmium.
Collapse
Affiliation(s)
- Chao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yuhui Zhang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
15
|
Ha K, Shin H, Ju H, Chung CM, Choi I. Behavioral hypothermia of a domesticated lizard under treatment of the hypometabolic agent 3-iodothyronamine. Exp Anim 2016; 66:99-105. [PMID: 27795490 PMCID: PMC5411296 DOI: 10.1538/expanim.16-0070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Ectothermic animals rely on behavioral thermoregulation due to low capacity of heat
production and storage. Previously, lizards were shown to achieve ‘fever’ during microbial
infection by increasing their preferred body temperature (PBT) behaviorally, thereby
attaining a relatively high survival rate. The purpose of this study was to investigate
whether domesticated lizards pursued ‘behavioral hypothermia’ induced by a hypometabolic
agent 3-iodothyronamine (T1AM). We found that treatment with 8.0 mg/kg T1AM caused a
lizard species, the leopard gecko (Eublepharis macularius), to decrease
its ventilation and oxygen consumption rates 0.64- and 0.76-fold, respectively, compared
to those of the control (P<0.05). The lizards, habituated at an
ambient temperature of 30 ± 0.5°C, also showed a significant decrease in the PBT range
over a freely accessible thermal gradient between 5°C and 45°C. The upper limit of the PBT
in the treated lizards lowered from 31.9°C to 30.6°C, and the lower limit from 29.5°C to
26.3°C (P<0.001). These findings demonstrate that the treated lizards
pursued behavioral hypothermia in conjunction with hypoventilation and hypometabolism.
Because prior studies reported a similar hypometabolic response in T1AM-injected
laboratory mice, the domesticated lizards, as a part of the vertebrate phylogeny, may be a
useful laboratory model for biological and pharmacological researches such as drug potency
test.
Collapse
Affiliation(s)
- Kyoungbong Ha
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Haksup Shin
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Hyunwoo Ju
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Chan-Moon Chung
- Department of Chemistry and Medical Chemistry, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, 26493 Republic of Korea
| | - Inho Choi
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Wonju, Gangwon-do, 26493, Republic of Korea
| |
Collapse
|
16
|
Alves RN, Gomes AS, Stueber K, Tine M, Thorne MAS, Smáradóttir H, Reinhard R, Clark MS, Rønnestad I, Power DM. The transcriptome of metamorphosing flatfish. BMC Genomics 2016; 17:413. [PMID: 27233904 PMCID: PMC4884423 DOI: 10.1186/s12864-016-2699-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Flatfish metamorphosis denotes the extraordinary transformation of a symmetric pelagic larva into an asymmetric benthic juvenile. Metamorphosis in vertebrates is driven by thyroid hormones (THs), but how they orchestrate the cellular, morphological and functional modifications associated with maturation to juvenile/adult states in flatfish is an enigma. Since THs act via thyroid receptors that are ligand activated transcription factors, we hypothesized that the maturation of tissues during metamorphosis should be preceded by significant modifications in the transcriptome. Targeting the unique metamorphosis of flatfish and taking advantage of the large size of Atlantic halibut (Hippoglossus hippoglossus) larvae, we determined the molecular basis of TH action using RNA sequencing. RESULTS De novo assembly of sequences for larval head, skin and gastrointestinal tract (GI-tract) yielded 90,676, 65,530 and 38,426 contigs, respectively. More than 57 % of the assembled sequences were successfully annotated using a multi-step Blast approach. A unique set of biological processes and candidate genes were identified specifically associated with changes in morphology and function of the head, skin and GI-tract. Transcriptome dynamics during metamorphosis were mapped with SOLiD sequencing of whole larvae and revealed greater than 8,000 differentially expressed (DE) genes significantly (p < 0.05) up- or down-regulated in comparison with the juvenile stage. Candidate transcripts quantified by SOLiD and qPCR analysis were significantly (r = 0.843; p < 0.05) correlated. The majority (98 %) of DE genes during metamorphosis were not TH-responsive. TH-responsive transcripts clustered into 6 groups based on their expression pattern during metamorphosis and the majority of the 145 DE TH-responsive genes were down-regulated. CONCLUSIONS A transcriptome resource has been generated for metamorphosing Atlantic halibut and over 8,000 DE transcripts per stage were identified. Unique sets of biological processes and candidate genes were associated with changes in the head, skin and GI-tract during metamorphosis. A small proportion of DE transcripts were TH-responsive, suggesting that they trigger gene networks, signalling cascades and transcription factors, leading to the overt changes in tissue occurring during metamorphosis.
Collapse
Affiliation(s)
- Ricardo N Alves
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Ana S Gomes
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Kurt Stueber
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - Mbaye Tine
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany.,Current address: Molecular Zoology Laboratory, Department of Zoology, University of Johannesburg, Auckland Park, 2006, South Africa
| | - M A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | | | - Richard Reinhard
- Max Planck-Genome Centre, Max Planck-Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829, Köln, Germany
| | - M S Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - Ivar Rønnestad
- Department of Biology, University of Bergen, 5020, Bergen, Norway
| | - Deborah M Power
- Comparative Endocrinology and Integrative Biology Group, Centro de Ciências do Mar - CCMAR, University of Algarve, Campus de Gambelas, 8005-139, Faro, Portugal.
| |
Collapse
|
17
|
Wang M, Chai L, Zhao H, Wu M, Wang H. Effects of nitrate on metamorphosis, thyroid and iodothyronine deiodinases expression in Bufo gargarizans larvae. CHEMOSPHERE 2015; 139:402-9. [PMID: 26210189 DOI: 10.1016/j.chemosphere.2015.07.037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 12/16/2023]
Abstract
Chinese toad (Bufo gargarizans) tadpoles were exposed to nitrate (10, 50 and 100mg/L NO3-N) from the beginning of the larval period through metamorphic climax. We examined the effects of chronic nitrate exposure on metamorphosis, mortality, body size and thyroid gland. In addition, thyroid hormone (TH) levels, type II iodothyronine deiodinase (Dio2) and type III iodothyronine deiodinase (Dio3) mRNA levels were also measured to assess disruption of TH synthesis. Results showed that significant metamorphic delay and mortality increased were caused in larvae exposed to 100mg/L NO3-N. The larvae exposed to 100mg/L NO3-N clearly exhibited a greater reduction in thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels. Moreover, treatment with NO3-N induced down-regulation of Dio2 mRNA levels and up-regulation of Dio3 mRNA levels, reflecting the disruption of thyroid endocrine. It seems that increased mass and body size may be correlated with prolonged metamorphosis. Interestingly, we observed an exception that exposure to 100mg/L NO3-N did not exhibit remarkable alterations of thyroid gland size. Compared with control groups, 100mg/L NO3-N caused partial colloid depletion in the thyroid gland follicles. These results suggest that nitrate can act as a chemical stressor inducing retardation in development and metamorphosis. Therefore, we concluded that the presence of high concentrations nitrate can influence the growth, decline the survival, impair TH synthesis and induce metamorphosis retardation of B. gargarizans larvae.
Collapse
Affiliation(s)
- Ming Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Lihong Chai
- School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Xi'an 710062, China
| | - Hongfeng Zhao
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Minyao Wu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongyuan Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
18
|
Gomes AS, Alves RN, Rønnestad I, Power DM. Orchestrating change: The thyroid hormones and GI-tract development in flatfish metamorphosis. Gen Comp Endocrinol 2015; 220:2-12. [PMID: 24975541 DOI: 10.1016/j.ygcen.2014.06.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Metamorphosis in flatfish (Pleuronectiformes) is a late post-embryonic developmental event that prepares the organism for the larval-to-juvenile transition. Thyroid hormones (THs) play a central role in flatfish metamorphosis and the basic elements that constitute the thyroid axis in vertebrates are all present at this stage. The advantage of using flatfish to study the larval-to-juvenile transition is the profound change in external morphology that accompanies metamorphosis making it easy to track progression to climax. This important lifecycle transition is underpinned by molecular, cellular, structural and functional modifications of organs and tissues that prepare larvae for a successful transition to the adult habitat and lifestyle. Understanding the role of THs in the maturation of organs and tissues with diverse functions during metamorphosis is a major challenge. The change in diet that accompanies the transition from a pelagic larvae to a benthic juvenile in flatfish is associated with structural and functional modifications in the gastrointestinal tract (GI-tract). The present review will focus on the maturation of the GI-tract during metamorphosis giving particular attention to organogenesis of the stomach a TH triggered event. Gene transcripts and biological processes that are associated with GI-tract maturation during Atlantic halibut metamorphosis are identified. Gene ontology analysis reveals core biological functions and putative TH-responsive genes that underpin TH-driven metamorphosis of the GI-tract in Atlantic halibut. Deciphering the specific role remains a challenge. Recent advances in characterizing the molecular, structural and functional modifications that accompany the appearance of a functional stomach in Atlantic halibut are considered and future research challenges identified.
Collapse
Affiliation(s)
- A S Gomes
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - R N Alves
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - I Rønnestad
- Department of Biology, University of Bergen, 5020 Bergen, Norway
| | - D M Power
- Centre for Marine Sciences (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
19
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
20
|
Jarque S, Piña B. Deiodinases and thyroid metabolism disruption in teleost fish. ENVIRONMENTAL RESEARCH 2014; 135:361-375. [PMID: 25462686 DOI: 10.1016/j.envres.2014.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Many xenobiotic compounds with endocrine disrupting activity have been described since the late eighties. These compounds are able to interact with natural hormone systems and potentially induce deleterious effects in wildlife, notably piscine species. However, while the characterization of endocrine disruptors with "dioxin-like", estrogenic or androgenic activities is relatively well established, little is known about environmentally relevant pollutants that may act at thyroid system level. Iodothyronine deiodinases, the key enzymes in the activation and inactivation of thyroid hormones, have been suggested as suitable biomarkers for thyroid metabolism disruption. The present article reviews the biotic and abiotic factors that are able to modulate deiodinases in teleosts, a representative model organism for vertebrates. Data show that deiodinases are highly sensitive to several physiological and physical variables, so they should be taken into account to establish natural basal deiodination patterns to further understand responses under chemical exposure. Among xenobiotic compounds, brominated flame retardants are postulated as chemicals of major concern because of their similar structure shared with thyroid hormones. More ambiguous results are shown for the rest of compounds, i.e. polychlorinated biphenyls, perfluorinated chemicals, pesticides, metals and synthetic drugs, in part due to the limited information available. The different mechanisms of action still remain unknown for most of those compounds, although several hypothesis based on observed effects are discussed. Future tasks are also suggested with the aim of moving forward in the full characterization of chemical compounds with thyroid disrupting activity.
Collapse
Affiliation(s)
- Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, CZ62500 Brno, Czech Republic.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Guo C, Chen X, Song H, Maynard MA, Zhou Y, Lobanov AV, Gladyshev VN, Ganis JJ, Wiley D, Jugo RH, Lee NY, Castroneves LA, Zon LI, Scanlan TS, Feldman HA, Huang SA. Intrinsic expression of a multiexon type 3 deiodinase gene controls zebrafish embryo size. Endocrinology 2014; 155:4069-80. [PMID: 25004091 PMCID: PMC4164935 DOI: 10.1210/en.2013-2029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is a master regulator of differentiation and growth, and its action is terminated by the enzymatic removal of an inner-ring iodine catalyzed by the selenoenzyme type 3 deiodinase (dio3). Our studies of the zebrafish reveal that the dio3 gene is duplicated in this species and that embryonic deiodination is an important determinant of embryo size. Although both dio3 paralogs encode enzymatically active proteins with high affinity for thyroid hormones, their anatomic patterns of expression are markedly divergent and only embryos with knockdown of dio3b, a biallelically expressed selenoenzyme expressed in the developing central nervous system, manifest severe thyroid hormone-dependent growth restriction at 72 hours post fertilization. This indicates that the embryonic deficiency of dio3, once considered only a placental enzyme, causes microsomia independently of placental physiology and raises the intriguing possibility that fetal abnormalities in human deiodination may present as intrauterine growth retardation. By mapping the gene structures and enzymatic properties of all four zebrafish deiodinases, we also identify dio3b as the first multiexon dio3 gene, containing a large intron separating its open reading frame from its selenocysteine insertion sequence (SECIS) element.
Collapse
Affiliation(s)
- Cuicui Guo
- State Key Laboratory of Medical Genomics (C.G., X.C., H.S.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Thyroid Program of the Division of Endocrinology (C.G., X.C., H.S., M.A.M., R.H.J., N.Y.L., L.A.C., S.A.H.) and Clinical Research Center (H.A.F.), Boston Children's Hospital; Stem Cell Program and Division of Hematology/Oncology (Y.Z., J.J.G., D.W., L.I.Z.), Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, and Howard Hughes Medical Institute; Department of Medicine (A.V.L., V.N.G., S.A.H.), Brigham and Women's Hospital; Dana Farber Cancer Institute (V.N.G., L.I.Z., S.A.H.), Boston, Massachusetts 02115; and Departments of Physiology and Pharmacology (T.S.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Shen Y, Liu X, Dong M, Lin J, Zhao Q, Lee H, Jin W. Recent advances in brown adipose tissue biology. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0386-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
23
|
Heijlen M, Houbrechts AM, Darras VM. Zebrafish as a model to study peripheral thyroid hormone metabolism in vertebrate development. Gen Comp Endocrinol 2013; 188:289-96. [PMID: 23603432 DOI: 10.1016/j.ygcen.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/08/2013] [Accepted: 04/10/2013] [Indexed: 11/21/2022]
Abstract
To unravel the role of thyroid hormones (THs) in vertebrate development it is important to have suitable animal models to study the mechanisms regulating TH availability and activity. Zebrafish (Danio rerio), with its rapidly and externally developing transparent embryo has been a widely used model in developmental biology for some time. To date many of the components of the zebrafish thyroid axis have been identified, including the TH transporters MCT8, MCT10 and OATP1C1, the deiodinases D1, D2 and D3, and the receptors TRα and TRβ. Their structure and function closely resemble those of higher vertebrates. Interestingly, due to a whole genome duplication in the early evolution of ray-finned fishes, zebrafish possess two genes for D3 (dio3 and dio3a) and for TRα (thraa and thrab). Transcripts of all identified genes are present during embryonic development and several of them show dynamic spatio-temporal distribution patterns. Transient morpholino-knockdown of D2, D3 or MCT8 expression clearly disturbs embryonic development, confirming the importance of each of these regulators during early life stages. The recently available tools for targeted stable gene knockout will further increase the value of zebrafish to study the role of peripheral TH metabolism in pre- and post-hatch/post-natal vertebrate development.
Collapse
Affiliation(s)
- Marjolein Heijlen
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
24
|
Stilborn SSM, Manzon LA, Schauenberg JD, Manzon RG. Thyroid hormone deiodinase type 2 mRNA levels in sea lamprey (Petromyzon marinus) are regulated during metamorphosis and in response to a thyroid challenge. Gen Comp Endocrinol 2013; 183:63-8. [PMID: 23295540 DOI: 10.1016/j.ygcen.2012.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/14/2012] [Accepted: 12/18/2012] [Indexed: 10/27/2022]
Abstract
Thyroid hormones (THs) are crucial for normal vertebrate development and are the one obligate morphogen that drives amphibian metamorphosis. However, contrary to other metamorphosing vertebrates, lampreys exhibit a sharp drop in serum TH early in metamorphosis, and anti-thyroid agents such as potassium perchlorate (KClO(4)) induce metamorphosis. The type 2 deiodinase (D2) enzyme is a key regulator of TH availability during amphibian metamorphosis. We set out to determine how D2 may be involved in the regulation of lamprey metamorphosis and thyroid homeostasis. We cloned a 1.8Kb Petromyzon marinus D2 cDNA that includes the entire protein coding region and a selenocysteine (Sec) codon. Northern blotting indicated that the lamprey D2 mRNA is the longest reported to date (>9Kb). Using real-time PCR, we showed that intestinal and hepatic D2 mRNA levels were elevated prior to and during the early stages of metamorphosis and then declined dramatically to low levels that were sustained for the remainder of metamorphosis. These data are consistent with previously reported changes in serum TH levels and deiodinase activity. Treatment of larvae with either TH or KClO(4) significantly affected D2 mRNA levels in the intestine and liver. These D2 mRNA levels during metamorphosis and in response to thyroid challenges suggest that D2 may function in the regulation of TH levels during lamprey metamorphosis and the maintenance of TH homeostasis.
Collapse
Affiliation(s)
- S Salina M Stilborn
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada
| | | | | | | |
Collapse
|
25
|
Prendergast BJ, Pyter LM, Kampf-Lassin A, Patel PN, Stevenson TJ. Rapid induction of hypothalamic iodothyronine deiodinase expression by photoperiod and melatonin in juvenile Siberian hamsters (Phodopus sungorus). Endocrinology 2013; 154:831-41. [PMID: 23295738 PMCID: PMC3548179 DOI: 10.1210/en.2012-1990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Production of T(3) in the mediobasal hypothalamus is critical for regulation of seasonal reproductive physiology. Type 2 iodothyronine deiodinase (DIO2) and DIO3 enzymes catalyze the prohormone T(4) into biologically-active T(3) and biologically-inactive rT(3), respectively. In several seasonally-breeding vertebrates, DIO2 and DIO3 expression is implicated in photoperiod signal transduction in adulthood. These experiments tested the hypothesis that juvenile Siberian hamsters, which are highly responsive to photoperiod at weaning (postnatal day [PND]18), exhibit rapid and sustained changes in hypothalamic dio3 mRNA expression during photoperiod-induced and photoperiod-inhibited puberty. Hypothalamic dio2 and dio3 expression was measured via quantitative PCR in hamsters born and reared in a long-day photoperiod (15L:9D) and weaned on PND18 into short-day photoperiods (9L:15D). In SD males, hypothalamic dio3 mRNA was elevated 2.5-fold within 3 days (PND21) and continued to increase (>20-fold) through PND32; changes in dio3 mRNA preceded inhibition of gonadotropin (FSH) secretion and gonadal regression in SD. Females exhibited comparable dio3 responses to SD. In LD males, dio3 remained low and invariant from PND18-PND32. In contrast, dio2 mRNA rose conspicuously on PND21, independent of photoperiod, returning to basal levels thereafter. In LD, a single afternoon melatonin (MEL) injection on PND18 or PND20 was sufficient to increase hypothalamic dio3 mRNA, and dio3 increased in proportion to the number of successive days of MEL treatment. SD photoperiods and MEL exert rapid, sustained, and additive effects on hypothalamic dio3 mRNA, which may play a central role in inhibiting maturation of the peripubertal hypothalamo-pituitary-gonadal axis.
Collapse
|
26
|
Abstract
Teleosts are the largest and most diverse group of vertebrates, and many species undergo morphological, physiological, and behavioral transitions, "metamorphoses," as they progress between morphologically divergent life stages. The larval metamorphosis that generally occurs as teleosts mature from larva to juvenile involves the loss of embryo-specific features, the development of new adult features, major remodeling of different organ systems, and changes in physical proportions and overall phenotype. Yet, in contrast to anuran amphibians, for example, teleost metamorphosis can entail morphological change that is either sudden and profound, or relatively gradual and subtle. Here, we review the definition of metamorphosis in teleosts, the diversity of teleost metamorphic strategies and the transitions they involve, and what is known of their underlying endocrine and genetic bases. We suggest that teleost metamorphosis offers an outstanding opportunity for integrating our understanding of endocrine mechanisms, cellular processes of morphogenesis and differentiation, and the evolution of diverse morphologies and life histories.
Collapse
Affiliation(s)
- Sarah K. McMenamin
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - David M. Parichy
- Department of Biology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
27
|
|
28
|
Orozco A, Valverde-R C, Olvera A, García-G C. Iodothyronine deiodinases: a functional and evolutionary perspective. J Endocrinol 2012; 215:207-19. [PMID: 22872760 DOI: 10.1530/joe-12-0258] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
From an evolutionary perspective, deiodinases may be considered pivotal players in the emergence and functional diversification of both thyroidal systems (TS) and their iodinated messengers. To better understand the evolutionary pathway and the concomitant functional diversification of vertebrate deiodinases, in the present review we summarized the highlights of the available information regarding this ubiquitous enzymatic component that represents the final, common physiological link of TS. The information reviewed here suggests that deiodination of tyrosine metabolites is an ancient feature of all chordates studied to date and consequently, that it precedes the integration of the TS that characterize vertebrates. Phylogenetic analysis presented here points to D1 as the oldest vertebrate deiodinase and to D2 as the most recent deiodinase gene, a hypothesis that agrees with the notion that D2 is the most specialized and finely regulated member of the family and plays a key role in vertebrate neurogenesis. Thus, deiodinases seem to be major participants in the evolution and functional expansion of the complex regulatory network of TS found in vertebrates.
Collapse
Affiliation(s)
- Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla, Juriquilla, Querétaro, México.
| | | | | | | |
Collapse
|
29
|
Abstract
Iodothyronine deiodinases are important mediators of thyroid hormone (TH) action. They are present in tissues throughout the body where they catalyse 3,5,3'-triiodothyronine (T(3)) production and degradation via, respectively, outer and inner ring deiodination. Three different types of iodothyronine deiodinases (D1, D2 and D3) have been identified in vertebrates from fish to mammals. They share several common characteristics, including a selenocysteine residue in their catalytic centre, but show also some type-specific differences. These specific characteristics seem very well conserved for D2 and D3, while D1 shows more evolutionary diversity related to its Km, 6-n-propyl-2-thiouracil sensitivity and dependence on dithiothreitol as a cofactor in vitro. The three deiodinase types have an impact on systemic T(3) levels and they all contribute directly or indirectly to intracellular T(3) availability in different tissues. The relative contribution of each of them, however, varies amongst species, developmental stages and tissues. This is especially true for amphibians, where the impact of D1 may be minimal. D2 and D3 expression and activity respond to thyroid status in an opposite and conserved way, while the response of D1 is variable, especially in fish. Recently, a number of deiodinases have been cloned from lower chordates. Both urochordates and cephalochordates possess selenodeiodinases, although they cannot be classified in one of the three vertebrate types. In addition, the cephalochordate amphioxus also expresses a non-selenodeiodinase. Finally, deiodinase-like sequences have been identified in the genome of non-deuterostome organisms, suggesting that deiodination of externally derived THs may even be functionally relevant in a wide variety of invertebrates.
Collapse
Affiliation(s)
- Veerle M Darras
- Animal Physiology and Neurobiology Section, Department of Biology, Laboratory of Comparative Endocrinology, KU Leuven, Leuven, Belgium.
| | | |
Collapse
|
30
|
Molecular and cellular changes in skin and muscle during metamorphosis of Atlantic halibut (Hippoglossus hippoglossus) are accompanied by changes in deiodinases expression. Cell Tissue Res 2012; 350:333-46. [DOI: 10.1007/s00441-012-1473-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
31
|
Itoh K, Washio Y, Fujinami Y, Shimizu D, Uji S, Yokoi H, Suzuki T. Continuous illumination through larval development suppresses dopamine synthesis in the suprachiasmatic nucleus, causing activation of α-MSH synthesis in the pituitary and abnormal metamorphic skin pigmentation in flounder. Gen Comp Endocrinol 2012; 176:215-21. [PMID: 22326352 DOI: 10.1016/j.ygcen.2012.01.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/23/2012] [Accepted: 01/24/2012] [Indexed: 11/25/2022]
Abstract
In order to better understand the endocrine aberrations related to abnormal metamorphic pigmentation that appear in flounder larvae reared in tanks, this study examined the effects of continuous 24-h illumination (LL) through larval development on the expression of tyrosine hydroxylase-1 (th1), proopiomelanocortin (pomc), α-melanophore-stimulating hormone (α-MSH) and melanin concentrating hormone (MCH), which are known to participate in the control of background adaptation of body color. We observed two conspicuous deviations in the endocrine system under LL when compared with natural light conditions (LD). First, LL severely suppressed th1 expression in the dopaminergic neurons in the anterior diencephalon, including the suprachiasmatic nucleus (SCN). Second, pomc and α-MSH expression in the pars intermedia melanotrophs was enhanced by LL. Skin color was paler under LL than LD before metamorphic pigmentation, and abnormal metamorphic pigmentation occurred at a higher ratio in LL. We therefore hypothesize that continuous LL inhibited dopamine synthesis in the SCN, which resulted in up-regulation of pomc mRNA expression in the melanotrophs. In spite of the up-regulation of pomc in the melanotrophs, larval skin was adjusted to be pale by MCH which was not affected by LL. Accumulation of α-MSH in the melanotrophs is caused by uncoupling of α-MSH synthesis and secretion due to inhibitory role of MCH on α-MSH secretion, which results in abnormal metamorphic pigmentation by affecting differentiation of adult-type melanophores. Our data demonstrate that continuous illumination at the post-embryonic stage has negative effects on the neuroendocrine system and pituitary in flounder.
Collapse
Affiliation(s)
- Kae Itoh
- Laboratory of Marine Life Science and Genetics, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan
| | | | | | | | | | | | | |
Collapse
|