1
|
Nojiri M, Takata T, Sasaki A, Tamari Y, Matsubayashi N, Hu N, Sakurai Y, Suzuki M, Tanaka H. Evaluation of dose calculation method with a combination of Monte Carlo method and removal-diffusion equation in heterogeneous geometry for boron neutron capture therapy. Biomed Phys Eng Express 2025; 11:025045. [PMID: 39787622 DOI: 10.1088/2057-1976/ada7fe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Clinical research in boron neutron capture therapy (BNCT) has been conducted worldwide. Currently, the Monte Carlo (MC) method is the only dose calculation algorithm implemented in the treatment planning system for the clinical treatment of BNCT. We previously developed the MC-RD calculation method, which combines the MC method and the removal-diffusion (RD) equation, for fast dose calculation in BNCT. This study aimed to verify the partial-MC-RD calculation method, which utilizes the MC-RD calculation method for a portion of the entire neutron energy range, in terms of calculation accuracy and time as the dose calculation method. We applied the partial-MC-RD calculation method to calculate the total dose for head phantom, comprising soft tissue, brain tissue, and bone. The calculation time and accuracy were evaluated based on the full-MC method. Our accuracy verifications indicated that the partial-MC-RD calculation was mostly comparable with full-MC calculation in the accuracy. However, the assumptions and approximation used in the RD calculation mainly occurred the discrepancy from the full-MC calculation result. Additionally, the partial-MC-RD calculation reduced the time required to approximately 45% for the irradiation to the top and cheek region of head phantom, compared to the full-MC calculation. In conclusion, the MC-RD calculation method can be the basis of a fast dose calculation method in BNCT.
Collapse
Affiliation(s)
- Mai Nojiri
- Department of Nuclear Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto, 615-8530, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Akinori Sasaki
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yuki Tamari
- School of Medical Sciences, Fujita Health University, 1-98 Dengakugakubo, Kutsukakecho, Toyoake-shi, Aichi, 470-1192, Japan
| | - Nishiki Matsubayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Naonori Hu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki-shi, Osaka, 569-8686, Japan
| | - Yoshinori Sakurai
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| |
Collapse
|
2
|
Younous K, El Kafhali M, Bouadel I, Biyi A, Sebihi R. Efficacy and safety of Boron Neutron Capture Therapy: a systematic review. Int J Radiat Biol 2024; 100:1611-1621. [PMID: 39401330 DOI: 10.1080/09553002.2024.2413583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 08/23/2024] [Accepted: 09/25/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE Boron Neutron Capture Therapy (BNCT) is an innovative radiation therapy with significant potential in cancer treatment. This systematic review aimed to comprehensively evaluate the efficacy, safety, and applicability of BNCT across various cancer types. METHODS AND MATERIALS Following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we conducted a systematic search in PubMed, Scopus, Cochrane CENTRAL, ClinicalTrials.gov, and ICTRP from inception until May 27, 2023. Eligible studies were selected based on predefined criteria, and statistical analyses were performed using IBM SPSS (Statistical Package for the Social Sciences) to assess correlations between histological factors, treatment outcomes, and adverse effects. RESULTS The initial search identified 925 studies (498 from Scopus, 333 from PubMed, 16 from ClinicalTrials.gov, 41 from ICTRP, and 30 from Cochrane CENTRAL). After removing duplicates and applying selection criteria, 121 full-text articles were assessed, with 39 studies meeting the inclusion criteria. An additional study published in 2024 was included during the peer review process, bringing the total to 40 studies. The analysis revealed that BNCT demonstrates promising efficacy across various cancers, with a manageable safety profile. However, outcome variability and adverse effects were noted among the studies. CONCLUSIONS BNCT shows substantial promise as a treatment modality for multiple cancer types, offering potential benefits with acceptable safety profiles. Nonetheless, further research is essential to refine its clinical application and ensure consistent safety and efficacy.
Collapse
Affiliation(s)
- Khaoula Younous
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Morad El Kafhali
- Physical Sciences and Engineering, Innovative Research and Applied Physics (IRAP), Moulay Ismail University, Meknes, Morocco
| | - Ikbal Bouadel
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| | - Abdelhamid Biyi
- Nuclear Medicine Department, Mohamed V University of Rabat, Rabat, Morocco
| | - Rajaa Sebihi
- Department of Physics, High Energy Physics Laboratory - Modeling and Simulation (HEPL-MS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Cai Y, Gu S, Wang N, Cui F, Liu W, Li T, Wu Z, Gou C. Neutron Activation Analysis Based on AB-BNCT Treatment Room. HEALTH PHYSICS 2024; 127:386-391. [PMID: 38683685 DOI: 10.1097/hp.0000000000001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
ABSTRACT Boron neutron capture therapy (BNCT) is an ideal binary targeted radiotherapy for treating refractory tumors. An accelerator-based BNCT (AB-BNCT) neutron source has attracted more and more attention due to its advantages such as higher neutron yield in the keV energy region, less gamma radiation, and higher safety. In addition to 10 B, neutrons also react with other elements in the treatment room during BNCT to produce many activation products. Due to the long half-life of some activation products, there will be residual radiation after the end of treatment and the shutdown of the accelerator, which has adverse effects on radiation workers. Therefore, the ambient dose equivalent rate in the treatment room needs to be evaluated. The AB-BNCT neutron source model proposed by Li is studied in this paper. Based on the Monte Carlo method, the Geant4 platform was used to simulate the dose induced by radionuclides near the Beam Shaping Assembly (BSA) of the source. It is concluded that the concrete wall contributed the most to the radiation dose. The dose rate of 2.45 μSv h -1 after 13 min of shutdown meets the dose rate limit of 2.5 μSv h -1 , at which point it is safe for workers to enter the treatment room area.
Collapse
Affiliation(s)
- Yunzhu Cai
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Shaoxian Gu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Ningyu Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fengjie Cui
- Department of Radiation Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China
| | - Wei Liu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Tianhang Li
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhangwen Wu
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Chengjun Gou
- Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Shen S, Wang S, Zhou D, Wu X, Gao M, Wu J, Yang Y, Pan X, Wang N. A clinician's perspective on boron neutron capture therapy: promising advances, ongoing trials, and future outlook. Int J Radiat Biol 2024; 100:1126-1142. [PMID: 38986056 DOI: 10.1080/09553002.2024.2373746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/15/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE This comprehensive review aims to provide a unique clinical perspective on the latest advances and ongoing boron neutron capture therapy (BNCT) trials for various cancers. METHODS We critically analyzed clinical data from BNCT trials for head and neck cancer, glioblastoma, melanoma, meningioma, breast cancer, and liver tumors. We investigated differences in tumor responses and normal tissue toxicities among trials and discussed potential contributing factors. We also identified the limitations of early BNCT trials and proposed strategies to optimize future trial design. RESULTS BNCT has shown promising results in treating head and neck cancer, with high response rates and improved survival in patients with recurrent disease. In glioblastoma, BNCT combined with surgery and chemotherapy has demonstrated survival benefits compared to standard treatments. BNCT has also been successfully used for recurrent high-grade meningiomas and shows potential for melanomas, extramammary Paget's disease, and liver tumors. However, differences in tumor responses and toxicities were observed among trials, potentially attributable to variations in treatment protocols, patient characteristics, and evaluation methods. CONCLUSIONS BNCT is a promising targeted radiotherapy for various cancers. Further optimization and well-designed randomized controlled trials are needed to establish its efficacy and safety. Future studies should focus on standardizing treatment protocols and addressing limitations to guide clinical decision-making and research priorities.
Collapse
Affiliation(s)
- Shumin Shen
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shanghu Wang
- Department of Radiotherapy, Anhui Chest Hospital, Hefei, China
| | - Dachen Zhou
- Department of General Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiuwei Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Mingzhu Gao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jinjin Wu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yucai Yang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiaoxi Pan
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei, China
| | - Nianfei Wang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
5
|
Li J, Zhang S, Tang Y, Wang J, Gu W, Wei Y, Tang F, Peng X, Liu J, Wei Y, Zhang S, Gu L, Li Y, Tang F. A novel method for simultaneously measuring boronophenylalanine uptake in brain tumor cells and number of cells using inductively coupled plasma atomic emission spectroscopy. Appl Radiat Isot 2024; 205:111184. [PMID: 38215645 DOI: 10.1016/j.apradiso.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/16/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Boron neutron capture therapy (BNCT) combines neutron irradiation with boron compounds that are selectively uptaken by tumor cells. Boronophenylalanine (BPA) is a boron compound used to treat malignant brain tumors. The determination of boron concentration in cells is of great relevance to the field of BNCT. This study was designed to develop a novel method for simultaneously measuring the uptake of BPA by U87 and U251 cells (two brain tumor cell lines) and number of cells using inductively coupled plasma atomic emission spectroscopy (ICP-AES). The results revealed a linear correlation between phosphorus intensity and the numbers of U87 and U251 cells, with correlation coefficients (R2) of 0.9995 and 0.9994, respectively. High accuracy and reliability of phosphorus concentration standard curve were also found. Using this new method, we found that BPA had no significant effect on phosphorus concentration in either U87 or U251 cells. However, BPA increased the boron concentration in U87 and U251 cells in a concentration-dependent manner, with the boron concentration in U87 cells being higher than that in U251 cells. In both U87 and U251 cells, boron was mainly distributed in the cytoplasm and nucleus, accounting for 85% and 13% of the total boron uptake by U87 cells and 86% and 11% of the total boron uptake by U251 cells, respectively. In the U87 and U251 cell-derived xenograft (CDX) animal model, tumor exhibited higher boron concentration values than blood, heart, liver, lung, and brain, with a tumor/blood ratio of 2.87 for U87 cells and 3.11 for U251 cells, respectively. These results suggest that the phosphorus concentration in U87 and U251 cells can represent the number of cells and BPA is easily uptaken by tumor cells as well as in tumor tissue.
Collapse
Affiliation(s)
- Jialu Li
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yu Tang
- Clinical Medicine Department, Xinxiang Medical University, Xinxiang, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- School of Nursing, Lanzhou University, Lanzhou, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| | - Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province, Lanzhou University Second Hospital, Lanzhou, China; South-east Institute of Lanzhou University, Putian, China.
| |
Collapse
|
6
|
Zhou T, Igawa K, Kasai T, Sadahira T, Wang W, Watanabe T, Bekku K, Katayama S, Iwata T, Hanafusa T, Xu A, Araki M, Michiue H, Huang P. The current status and novel advances of boron neutron capture therapy clinical trials. Am J Cancer Res 2024; 14:429-447. [PMID: 38455422 PMCID: PMC10915318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a treatment method that focuses on improving the cure rate of patients with cancer who are difficult to treat using traditional clinical methods. By utilizing the high neutron absorption cross-section of boron, material rich in boron inside tumor cells can absorb neutrons and release high-energy ions, thereby destroying tumor cells. Owing to the short range of alpha particles, this method can precisely target tumor cells while minimizing the inflicted damage to the surrounding normal tissues, making it a potentially advantageous method for treating tumors. Globally, institutions have progressed in registered clinical trials of BNCT for multiple body parts. This review summarized the current achievements in registered clinical trials, Investigator-initiated clinical trials, aimed to integrate the latest clinical research literature on BNCT and to shed light on future study directions.
Collapse
Affiliation(s)
- Tianyun Zhou
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Department of Urology, The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, China
| | - Kazuyo Igawa
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
| | - Tomonari Kasai
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
| | - Takuya Sadahira
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Wei Wang
- Department of Urology, The Second Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, China
| | - Tomofumi Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Kensuke Bekku
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Satoshi Katayama
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Takehiro Iwata
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Tadashi Hanafusa
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
| | - Hiroyuki Michiue
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
| | - Peng Huang
- Neutron Therapy Research Center, Okayama UniversityOkayama, Japan
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, Guangdong, China
| |
Collapse
|
7
|
Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review. Curr Med Chem 2024; 31:3488-3501. [PMID: 37202890 DOI: 10.2174/0929867330666230518143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients' 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Zhang Z, Chong Y, Liu Y, Pan J, Huang C, Sun Q, Liu Z, Zhu X, Shao Y, Jin C, Liu T. A Review of Planned, Ongoing Clinical Studies and Recent Development of BNCT in Mainland of China. Cancers (Basel) 2023; 15:4060. [PMID: 37627088 PMCID: PMC10452212 DOI: 10.3390/cancers15164060] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a promising cancer treatment modality that combines targeted boron agents and neutron irradiation to selectively destroy tumor cells. In mainland China, the clinical implementation of BNCT has made certain progress, primarily driven by the development of compact neutron source devices. The availability, ease of operation, and cost-effectiveness offered by these compact neutron sources make BNCT more accessible to cancer treatment centers. Two compact neutron sources, one being miniature reactor-based (IHNI-1) and the other one being accelerator-based (NeuPex), have entered the clinical research phase and are planned for medical device registration. Moreover, several accelerator-based neutron source devices employing different technical routes are currently under construction, further expanding the options for BNCT implementation. In addition, the development of compact neutron sources serves as an experimental platform for advancing the development of new boron agents. Several research teams are actively involved in the development of boron agents. Various types of third-generation boron agents have been tested and studied in vitro and in vivo. Compared to other radiotherapy therapies, BNCT in mainland China still faces specific challenges due to its limited clinical trial data and its technical support in a wide range of professional fields. To facilitate the widespread adoption of BNCT, it is crucial to establish relevant technical standards for neutron devices, boron agents, and treatment protocols.
Collapse
Affiliation(s)
- Zizhu Zhang
- Beijing Nuclear Industry Hospital, Beijing 102413, China
- Beijing Capture Tech Co., Ltd., Beijing 102413, China
| | - Yizheng Chong
- Innovation Business Center, China National Nuclear Corporation Overseas Ltd., Beijing 100044, China
| | - Yuanhao Liu
- Neuboron Therapy System Ltd., Nanjing 211100, China
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Jianji Pan
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Cheng Huang
- BNCT Center, Xiamen Humanity Hospital, Xiamen 361016, China
| | - Qi Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhibo Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiayang Zhu
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Yujun Shao
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Congjun Jin
- Beijing Nuclear Industry Hospital, Beijing 102413, China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd., Beijing 102413, China
| |
Collapse
|
9
|
Kanygin V, Zaboronok A, Kichigin A, Petrova E, Guselnikova T, Kozlov A, Lukichev D, Mathis BJ, Taskaev S. Gadolinium Neutron Capture Therapy for Cats and Dogs with Spontaneous Tumors Using Gd-DTPA. Vet Sci 2023; 10:vetsci10040274. [PMID: 37104429 PMCID: PMC10142813 DOI: 10.3390/vetsci10040274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We conducted a clinical veterinary study on neutron capture therapy (NCT) at a neutron-producing accelerator with seven incurable pets with spontaneous tumors and gadolinium as a neutron capture agent (gadolinium neutron capture therapy, or GdNCT). Gadolinium-containing dimeglumine gadopentetate, or Gd-DTPA (Magnevist®, 0.6 mL/kg b.w.), was used. We observed mild and reversible toxicity related to the treatment. However, no significant tumor regression in response to the treatment was observed. In most cases, there was continued tumor growth. Overall clinical improvement after treatment was only temporary. The use of Gd-DTPA for NCT had no significant effects on the life expectancy and quality of life of animals with spontaneous tumors. Further experiments using more advanced gadolinium compounds are needed to improve the effect of GdNCT so that it can become an alternative to boron neutron capture therapy. Such studies are also necessary for further NCT implementation in clinical practice as well as in veterinary medicine.
Collapse
Affiliation(s)
- Vladimir Kanygin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Alexander Zaboronok
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8575, Ibaraki, Japan
| | - Aleksandr Kichigin
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Elena Petrova
- Veterinary Clinic “Best”, Frunze str., 57, 630005 Novosibirsk, Russia
| | - Tatyana Guselnikova
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 3, 630090 Novosibirsk, Russia
| | - Andrey Kozlov
- Clinical Hospital “Avicenna”, Uritskogo str., 2, 630007 Novosibirsk, Russia
| | - Dmitriy Lukichev
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| | - Bryan J. Mathis
- International Medical Center, University of Tsukuba Hospital, Amakubo 2-1-1, Tsukuba 305-8576, Ibaraki, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Siberian Branch of Russian Academy of Sciences, ave. Lavrentiev, 11, 630090 Novosibirsk, Russia
- Laboratory of Nuclear and Innovative Medicine, Department of Physics, Novosibirsk State University, Pirogov str., 1, 630090 Novosibirsk, Russia
| |
Collapse
|
10
|
Tang F, Wei Y, Zhang S, Wang J, Gu W, Tang F, Peng X, Wei Y, Liu J, Chen W, Zhang S, Gu L, Li Y. Evaluation of Pharmacokinetics of Boronophenylalanine and Its Uptakes in Gastric Cancer. Front Oncol 2022; 12:925671. [PMID: 35903711 PMCID: PMC9314552 DOI: 10.3389/fonc.2022.925671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/06/2022] [Indexed: 11/22/2022] Open
Abstract
Boron neutron capture therapy (BNCT), a cellular-level particle radiation therapy, combines boron compounds selectively delivered to tumor tissue with neutron irradiation. Boronophenylalanine (BPA) is a boron compound widely used in malignant melanoma, malignant brain tumors, and recurrent head and neck cancer. However, neither basic nor clinical research was reported for the treatment of gastric cancer using BPA. Selective distribution of boron in tumors rather than that in blood or normal tissue prior to neutron irradiation is required for the successful treatment of BNCT. This study evaluated the pharmacokinetics and safety of 10B-labeled BPA (10B-BPA, abbreviated as BPA) and its uptakes in gastric cancer. Pharmacokinetics and safety were evaluated in Sprague–Dawley (SD) rats intravenously injected with BPA. The uptakes of boron in gastric cancer cell line MKN45 and in cell-derived xenografts (CDX) and patient-derived xenografts (PDX) animal models were measured. The results showed that the boron concentration in the blood of rats decreased fast in the first 30 min followed by a steady decrease following the observation time, having a half-life of 44.11 ± 8.90 min and an AUC-last of 815.05 ± 62.09 min×μg/ml. The distribution of boron in different tissues (heart, liver, lung, stomach, and small intestine) of rats revealed a similar pattern in blood except for that in the brain, kidney, and bladder. In MKN45 cells, boron concentration increased in a time- and concentration-dependent manner. In both CDX and PDX animal models, the boron is preferentially distributed in tumor tissue rather than in blood or normal tissues. In addition, BPA had no significant adverse effects in rats. Taken together, the results suggested that BPA revealed a fast decrease in boron concentration in rats and is more likely to distribute in tumor cells and tissue.
Collapse
Affiliation(s)
- Futian Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
| | - Yujie Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Shining Zhang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jianrong Wang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenjiao Gu
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Fenxia Tang
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Xiaohuan Peng
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Yucai Wei
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
| | - Jiangyan Liu
- Nuclear Medicine Department, Lanzhou University Second Hospital, Lanzhou, China
| | - Weiqiang Chen
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
- Department of Radiotherapy Technology, Lanhai Nuclear Medicine Research Center, Putian, China
| | - Shixu Zhang
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
| | - Long Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- *Correspondence: Yumin Li, ; Long Gu,
| | - Yumin Li
- Key Laboratory of Digestive System Tumor of Gansu Province and Department of Cardiovascular Disease, Lanzhou University Second Hospital, Lanzhou, China
- South-East Institute of Lanzhou University, Putian, China
- *Correspondence: Yumin Li, ; Long Gu,
| |
Collapse
|
11
|
Clinical Viability of Boron Neutron Capture Therapy for Personalized Radiation Treatment. Cancers (Basel) 2022; 14:cancers14122865. [PMID: 35740531 PMCID: PMC9221296 DOI: 10.3390/cancers14122865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Usually, for dose planning in radiotherapy, the tumor is delimited as a volume on the image of the patient together with other clinical considerations based on populational evidence. However, the same prescription dose can provide different results, depending on the patient. Unfortunately, the biological aspects of the tumor are hardly considered in dose planning. Boron Neutron Capture Radiotherapy enables targeted treatment by incorporating boron-10 at the cellular level and irradiating with neutrons of a certain energy so that they produce nuclear reactions locally and almost exclusively damage the tumor cell. This technique is not new, but modern neutron generators and more efficient boron carriers have reactivated the clinical interest of this technique in the pursuit of more precise treatments. In this work, we review the latest technological facilities and future possibilities for the clinical implementation of BNCT and for turning it into a personalized therapy. Abstract Boron Neutron Capture Therapy (BNCT) is a promising binary disease-targeted therapy, as neutrons preferentially kill cells labeled with boron (10B), which makes it a precision medicine treatment modality that provides a therapeutic effect exclusively on patient-specific tumor spread. Contrary to what is usual in radiotherapy, BNCT proposes cell-tailored treatment planning rather than to the tumor mass. The success of BNCT depends mainly on the sufficient spatial biodistribution of 10B located around or within neoplastic cells to produce a high-dose gradient between the tumor and healthy tissue. However, it is not yet possible to precisely determine the concentration of 10B in a specific tissue in real-time using non-invasive methods. Critical issues remain to be resolved if BNCT is to become a valuable, minimally invasive, and efficient treatment. In addition, functional imaging technologies, such as PET, can be applied to determine biological information that can be used for the combined-modality radiotherapy protocol for each specific patient. Regardless, not only imaging methods but also proteomics and gene expression methods will facilitate BNCT becoming a modality of personalized medicine. This work provides an overview of the fundamental principles, recent advances, and future directions of BNCT as cell-targeted cancer therapy for personalized radiation treatment.
Collapse
|
12
|
Boron encapsulated in a liposome can be used for combinational neutron capture therapy. Nat Commun 2022; 13:2143. [PMID: 35440126 PMCID: PMC9018847 DOI: 10.1038/s41467-022-29780-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/31/2022] [Indexed: 11/08/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is an attractive approach to treat invasive malignant tumours due to binary heavy-particle irradiation, but its clinical applications have been hindered by boron delivery agents with low in vivo stability, poor biocompatibility, and limited application of combinational modalities. Here, we report boronsome, a carboranyl-phosphatidylcholine based liposome for combinational BNCT and chemotherapy. Theoretical simulations and experimental approaches illustrate high stability of boronsome. Then positron emission tomography (PET) imaging with Cu-64 labelled boronsome reveals high-specific tumour accumulation and long retention with a clear irradiation background. In particular, we show the suppression of tumour growth treated with boronsome with neutron irradiation and therapeutic outcomes are further improved by encapsulation of chemotherapy drugs, especially with PARP1 inhibitors. In sum, boronsome may be an efficient agent for concurrent chemoradiotherapy with theranostic properties against malignancies. Boron neutron capture therapy is a type of cancer therapy but is associated with insufficient boron delivery and with poor biocompatibility. Here, the authors constructed boronated lipids to generate - boronsome - and show the system can reduce tumour growth.
Collapse
|
13
|
Wang S, Zhang Z, Miao L, Li Y. Boron Neutron Capture Therapy: Current Status and Challenges. Front Oncol 2022; 12:788770. [PMID: 35433432 PMCID: PMC9009440 DOI: 10.3389/fonc.2022.788770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a re-emerging therapy with the ability to selectively kill tumor cells. After the boron delivery agents enter the tumor tissue and enrich the tumor cells, the thermal neutrons trigger the fission of the boron atoms, leading to the release of boron atoms and then leading to the release of the α particles (4He) and recoil lithium particles (7Li), along with the production of large amounts of energy in the narrow region. With the advantages of targeted therapy and low toxicity, BNCT has become a unique method in the field of radiotherapy. Since the beginning of the last century, BNCT has been emerging worldwide and gradually developed into a technology for the treatment of glioblastoma multiforme, head and neck cancer, malignant melanoma, and other cancers. At present, how to develop and innovate more efficient boron delivery agents and establish a more accurate boron-dose measurement system have become the problem faced by the development of BNCT. We discuss the use of boron delivery agents over the past several decades and the corresponding clinical trials and preclinical outcomes. Furthermore, the discussion brings recommendations on the future of boron delivery agents and this therapy.
Collapse
Affiliation(s)
- Song Wang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
14
|
Key biological mechanisms involved in high-LET radiation therapies with a focus on DNA damage and repair. Expert Rev Mol Med 2022; 24:e15. [PMID: 35357290 DOI: 10.1017/erm.2022.6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA damage and repair studies are at the core of the radiation biology field and represent also the fundamental principles informing radiation therapy (RT). DNA damage levels are a function of radiation dose, whereas the type of damage and biological effects such as DNA damage complexity, depend on radiation quality that is linear energy transfer (LET). Both levels and types of DNA damage determine cell fate, which can include necrosis, apoptosis, senescence or autophagy. Herein, we present an overview of current RT modalities in the light of DNA damage and repair with emphasis on medium to high-LET radiation. Proton radiation is discussed along with its new adaptation of FLASH RT. RT based on α-particles includes brachytherapy and nuclear-RT, that is proton-boron capture therapy (PBCT) and boron-neutron capture therapy (BNCT). We also discuss carbon ion therapy along with combinatorial immune-based therapies and high-LET RT. For each RT modality, we summarise relevant DNA damage studies. Finally, we provide an update of the role of DNA repair in high-LET RT and we explore the biological responses triggered by differential LET and dose.
Collapse
|
15
|
Dai Q, Yang Q, Bao X, Chen J, Han M, Wei Q. The Development of Boron Analysis and Imaging in Boron Neutron Capture Therapy (BNCT). Mol Pharm 2022; 19:363-377. [PMID: 35040321 DOI: 10.1021/acs.molpharmaceut.1c00810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Boron neutron capture therapy (BNCT) is a selective biological targeted nuclide technique for cancer therapy. It has the following attractive features: good targeting, high effectiveness, and causes slight damage to surrounding healthy tissue compared with other traditional methods. It has been considered as one of the promising methods for the treatment of various cancers. Measuring 10B concentrations is vital for BNCT. However, the existing technology and equipment cannot satisfy the real-time and accurate measurement requirements, and more efficient methods are in demand. The development of methods and imaging applied in BNCT to help measure boron concentration is described in this review.
Collapse
Affiliation(s)
- Qi Dai
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China.,Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - QiYao Yang
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Xiaoyan Bao
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Jiejian Chen
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, P.R. China
| |
Collapse
|
16
|
Zhu S, Sun X, Zeng Y, Song Z, Zhong Y. Problems and prospects of clinical trials of boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Li F, Luo Z. Boron delivery agents for boron neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-1013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Borzillo V, Muto P. Radiotherapy in the Treatment of Subcutaneous Melanoma. Cancers (Basel) 2021; 13:cancers13225859. [PMID: 34831017 PMCID: PMC8616425 DOI: 10.3390/cancers13225859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022] Open
Abstract
Simple Summary The non-surgical treatment of cutaneous and/or subcutaneous melanoma lesions involves a multitude of local treatments, including radiotherapy. This is often used when other local methods fail, and there are currently no clear guidelines or evidence-based recommendations to support its use in this setting. This review, collecting the retrospective and prospective experiences on radiotherapy alone or in combination with other methods, aims to provide a scenario of the possible advantages and disadvantages related to its use in the treatment of skin/subcutaneous melanoma lesions. Abstract Malignant melanoma frequently develops cutaneous and/or subcutaneous metastases during the course of the disease. These may present as non-nodal locoregional metastases (microsatellite, satellite, or in-transit) included in stage III or as distant metastases in stage IV. Their presentation is heterogeneous and associated with significant morbidity resulting from both disease-related functional damage and treatment side effects. The standard treatment is surgical excision, whereas local therapies or systemic therapies have a role when surgery is not indicated. Radiotherapy can be used in the local management of ITM, subcutaneous relapses, or distant metastases to provide symptom relief and prolong regional disease control. To increase the local response without increasing toxicity, the addition of hyperthermia and intralesional therapies to radiotherapy appear to be very promising. Boron neutron capture therapy, based on nuclear neutron capture and boron isotope fission reaction, could be an alternative to standard treatments, but its use in clinical practice is still limited. The potential benefit of combining radiotherapy with targeted therapies and immunotherapy has yet to be explored in this lesion setting. This review explores the role of radiotherapy in the treatment of cutaneous and subcutaneous lesions, its impact on outcomes, and its association with other treatment modalities.
Collapse
|
19
|
Xu J, Wang J, Wei Q. Boron neutron capture therapy in clinical application:Progress and prospect. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
20
|
Popova T, Dymova MA, Koroleva LS, Zakharova OD, Lisitskiy VA, Raskolupova VI, Sycheva T, Taskaev S, Silnikov VN, Godovikova TS. Homocystamide Conjugates of Human Serum Albumin as a Platform to Prepare Bimodal Multidrug Delivery Systems for Boron Neutron Capture Therapy. Molecules 2021; 26:molecules26216537. [PMID: 34770947 PMCID: PMC8586956 DOI: 10.3390/molecules26216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Boron neutron capture therapy is a unique form of adjuvant cancer therapy for various malignancies including malignant gliomas. The conjugation of boron compounds and human serum albumin (HSA)-a carrier protein with a long plasma half-life-is expected to extend systemic circulation of the boron compounds and increase their accumulation in human glioma cells. We report on the synthesis of fluorophore-labeled homocystamide conjugates of human serum albumin and their use in thiol-'click' chemistry to prepare novel multimodal boronated albumin-based theranostic agents, which could be accumulated in tumor cells. The novelty of this work involves the development of the synthesis methodology of albumin conjugates for the imaging-guided boron neutron capture therapy combination. Herein, we suggest using thenoyltrifluoroacetone as a part of an anticancer theranostic construct: approximately 5.4 molecules of thenoyltrifluoroacetone were bound to each albumin. Along with its beneficial properties as a chemotherapeutic agent, thenoyltrifluoroacetone is a promising magnetic resonance imaging agent. The conjugation of bimodal HSA with undecahydro-closo-dodecaborate only slightly reduced human glioma cell line viability in the absence of irradiation (~30 μM of boronated albumin) but allowed for neutron capture and decreased tumor cell survival under epithermal neutron flux. The simultaneous presence of undecahydro-closo-dodecaborate and labeled amino acid residues (fluorophore dye and fluorine atoms) in the obtained HSA conjugate makes it a promising candidate for the combination imaging-guided boron neutron capture therapy.
Collapse
Affiliation(s)
- Tatyana Popova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Maya A Dymova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Ludmila S Koroleva
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Olga D Zakharova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir A Lisitskiy
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Valeria I Raskolupova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana Sycheva
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Sergei Taskaev
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N Silnikov
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
| | - Tatyana S Godovikova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Fukuda H. Boron Neutron Capture Therapy (BNCT) for Cutaneous Malignant Melanoma Using 10B-p-Boronophenylalanine (BPA) with Special Reference to the Radiobiological Basis and Clinical Results. Cells 2021; 10:2881. [PMID: 34831103 PMCID: PMC8616259 DOI: 10.3390/cells10112881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/22/2023] Open
Abstract
BNCT is a radiotherapeutic method for cancer treatment that uses tumor-targeting 10B-compounds. BNCT for cutaneous melanoma using BPA, a phenylalanine derivative, was first initiated by Mishima et al. in 1987. This article reviews the radiobiological basis of melanoma control and damage to normal tissues as well as the results of clinical studies. Experimental studies showed that the compound biological effectiveness (CBE) values of the 10B (n, α)7Li reaction for melanoma control ranged from 2.5 to 3.3. The CBE values of the 10B (n, α)7Li reaction for skin damage ranged from 2.4 to 3.7 with moist desquamation as the endpoint. The required single radiation dose for controlling human melanoma was estimated to be 25 Gy-Eq or more by analyzing the 50% tumor control dose data of conventional fractionated radiotherapy. From the literature, the maximum permissible dose to human skin by single irradiation was estimated to be 18 Gy-Eq. With respect to the pharmacokinetics of BPA in patients with melanoma treated with 85-350 mg/kg BPA, the melanoma-to-blood ratio ranged from 2.1-3.8 and the skin-to-blood ratio was 1.31 ± 0.22. Good local tumor control and long-term survival of the patients were achieved in two clinical trials of BNCT conducted in Japan.
Collapse
Affiliation(s)
- Hiroshi Fukuda
- Department of Radiology, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| |
Collapse
|
22
|
Trivillin VA, Langle YV, Palmieri MA, Pozzi ECC, Thorp SI, Benitez Frydryk DN, Garabalino MA, Monti Hughes A, Curotto PM, Colombo LL, Santa Cruz IS, Ramos PS, Itoiz ME, Argüelles C, Eiján AM, Schwint AE. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model. Br J Radiol 2021; 94:20210593. [PMID: 34520668 DOI: 10.1259/bjr.20210593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVE The aim of the present study was to evaluate the local and regional therapeutic efficacy and abscopal effect of BNCT mediated by boronophenyl-alanine, combined with Bacillus Calmette-Guerin (BCG) as an immunotherapy agent in this model. METHODS The local effect of treatment was evaluated in terms of tumor response in the irradiated tumor-bearing right hind flank. Metastatic spread to tumor-draining lymph nodes was analyzed as an indicator of regional effect. The abscopal effect of treatment was assessed as tumor growth inhibition in the contralateral (non-irradiated) left hind flank inoculated with tumor cells 2 weeks post-irradiation. The experimental groups BNCT, BNCT + BCG, BCG, Beam only (BO), BO +BCG, SHAM (tumor-bearing, no treatment, same manipulation) were studied. RESULTS BNCT and BNCT + BCG induced a highly significant local anti-tumor response, whereas BCG alone induced a weak local effect. BCG and BNCT + BCG induced a significant abscopal effect in the contralateral non-irradiated leg. The BNCT + BCG group showed significantly less metastatic spread to tumor-draining lymph nodes vs SHAM and vs BO. CONCLUSION This study suggests that BNCT + BCG-immunotherapy would induce local, regional and abscopal effects in tumor-bearing animals. BNCT would be the main effector of the local anti-tumor effect whereas BCG would be the main effector of the abscopal effect. ADVANCES IN KNOWLEDGE Although the local effect of BNCT has been widely evidenced, this is the first study to show the local, regional and abscopal effects of BNCT combined with immunotherapy, contributing to comprehensive cancer treatment with combined therapies.
Collapse
Affiliation(s)
- Verónica A Trivillin
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yanina V Langle
- Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Mónica A Palmieri
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | | | - Silvia I Thorp
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | | | | | - Andrea Monti Hughes
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Paula M Curotto
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Lucas L Colombo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Iara S Santa Cruz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - Paula S Ramos
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina
| | - María E Itoiz
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Facultad de Odontología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Claudia Argüelles
- Instituto Nacional de Producción de Biológicos, ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Ana M Eiján
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Universidad de Buenos Aires, Instituto de Oncología Ángel H. Roffo, Área Investigación, Buenos Aires, Argentina
| | - Amanda E Schwint
- Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Heide F, McDougall M, Harder-Viddal C, Roshko R, Davidson D, Wu J, Aprosoff C, Moya-Torres A, Lin F, Stetefeld J. Boron rich nanotube drug carrier system is suited for boron neutron capture therapy. Sci Rep 2021; 11:15520. [PMID: 34330984 PMCID: PMC8324832 DOI: 10.1038/s41598-021-95044-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a two-step therapeutic process that utilizes Boron-10 in combination with low energy neutrons to effectively eliminate targeted cells. This therapy is primarily used for difficult to treat head and neck carcinomas; recent advances have expanded this method to cover a broader range of carcinomas. However, it still remains an unconventional therapy where one of the barriers for widespread adoption is the adequate delivery of Boron-10 to target cells. In an effort to address this issue, we examined a unique nanoparticle drug delivery system based on a highly stable and modular proteinaceous nanotube. Initially, we confirmed and structurally analyzed ortho-carborane binding into the cavities of the nanotube. The high ratio of Boron to proteinaceous mass and excellent thermal stability suggest the nanotube system as a suitable candidate for drug delivery into cancer cells. The full physicochemical characterization of the nanotube then allowed for further mechanistic molecular dynamic studies of the ortho-carborane uptake and calculations of corresponding energy profiles. Visualization of the binding event highlighted the protein dynamics and the importance of the interhelical channel formation to allow movement of the boron cluster into the nanotube. Additionally, cell assays showed that the nanotube can penetrate outer membranes of cancer cells followed by localization around the cells' nuclei. This work uses an integrative approach combining experimental data from structural, molecular dynamics simulations and biological experiments to thoroughly present an alternative drug delivery device for BNCT which offers additional benefits over current delivery methods.
Collapse
Affiliation(s)
- Fabian Heide
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Matthew McDougall
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Candice Harder-Viddal
- Department of Chemistry and Physics, Canadian Mennonite University, Winnipeg, MB, R3P 2N2, Canada
| | - Roy Roshko
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - David Davidson
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Camila Aprosoff
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Aniel Moya-Torres
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jörg Stetefeld
- Department of Chemistry, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
24
|
Quan H, Fan L, Huang Y, Xia X, He Y, Liu S, Yu J. Hyaluronic acid-decorated carborane-TAT conjugation nanomicelles: A potential boron agent with enhanced selectivity of tumor cellular uptake. Colloids Surf B Biointerfaces 2021; 204:111826. [PMID: 33984611 DOI: 10.1016/j.colsurfb.2021.111826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/28/2022]
Abstract
Boron neutron capture therapy (BNCT) has received widespread attention as a new type of radiation therapy. The main problem encountered in BNCT is insufficient tumor cellular uptake of boron agents. In this study, cell-penetrating peptide TAT-conjugated o-carborane was synthesized. The conjugation can self-assemble to form positively charged carborane-TAT micelles, and then adsorb negatively charged hyaluronic acid (HA) to give core-shell structured carborane-TAT@HA micelles. Carborane-TAT@HA micelles exhibits a large amount of boron uptake at the tumor tissue through the enhanced permeability and retention (EPR) effect and the ability of HA to bind to CD44 receptors. Carborane-TAT@HA was wrapped by the HA shell during systemic circulation to avoid non-specific uptake of TAT with normal cells, while tumor microenvironment-responsive shedding of HA shell could expose Carborane-TAT to penetrate the cell membrane into tumor cells. Experiments have proved the enhanced selectivity of tumor cellular uptake of the boron drug, displayed excellent drug delivery potential, and can meet the basic requirements of BNCT.
Collapse
Affiliation(s)
- Hao Quan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Li Fan
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Yushu Huang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Xiaoyan Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Yang He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China
| | - Shiyuan Liu
- Department of Radiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Jiahui Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, PR China.
| |
Collapse
|
25
|
Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021; 11:601820. [PMID: 33718149 PMCID: PMC7952987 DOI: 10.3389/fonc.2021.601820] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/27/2021] [Indexed: 01/22/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an emerging treatment modality aimed at improving the therapeutic ratio for traditionally difficult to treat tumors. BNCT utilizes boronated agents to preferentially deliver boron-10 to tumors, which, after undergoing irradiation with neutrons, yields litihium-7 and an alpha particle. The alpha particle has a short range, therefore preferentially affecting tumor tissues while sparing more distal normal tissues. To date, BNCT has been studied clinically in a variety of disease sites, including glioblastoma multiforme, meningioma, head and neck cancers, lung cancers, breast cancers, hepatocellular carcinoma, sarcomas, cutaneous malignancies, extramammary Paget's disease, recurrent cancers, pediatric cancers, and metastatic disease. We aim to provide an up-to-date and comprehensive review of the studies of each of these disease sites, as well as a review on the challenges facing adoption of BNCT.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel K Ebner
- Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William C Stross
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
26
|
Hiratsuka J, Kamitani N, Tanaka R, Tokiya R, Yoden E, Sakurai Y, Suzuki M. Long-term outcome of cutaneous melanoma patients treated with boron neutron capture therapy (BNCT). JOURNAL OF RADIATION RESEARCH 2020; 61:945-951. [PMID: 32990318 PMCID: PMC7674695 DOI: 10.1093/jrr/rraa068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/15/2020] [Indexed: 05/11/2023]
Abstract
Our aim was to assess the long-term clinical outcome of boron neutron capture therapy (BNCT) using 10B-para-boronophenylalanine (BPA) as the boron delivery agent for cutaneous melanoma. Eight patients (eight lesions) were treated between October 2003 and April 2014. Their ages ranged from 48 to 86 years at the time of treatment. All of the targets were primary lesions and they were located on the sole or face. No patient had evidence of regional lymph node involvement, distant metastases or an active secondary cancer. The clinical stage was cT1-2N0M0 and performance scores were <2. BNCT was carried out at the Kyoto University Research Reactor (KUR). The patients were irradiated with an epithermal neutron beam between the curative tumor dose and the tolerable skin dose. Eight patients were evaluated and six showed a complete response (CR), while two patients had a partial response (PR). Of the two patients with a PR, one has remained a PR with brown spots persisting for 7.5 years following BNCT. The tumor in the other patient recurred after 6 years at the site of persisting brown macula. The overall control rate (CR + PR without recurrence) for the cohort was 88% (7/8). There have never been any adverse events >Grade 2 for the long follow-up period. Our results suggest that BNCT may be a promising treatment modality in the management of early stage cutaneous melanoma when wide local excision is not feasible.
Collapse
Affiliation(s)
- Junichi Hiratsuka
- Department of Radiation Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Nobuhiko Kamitani
- Department of Radiation Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Ryoji Tokiya
- Department of Radiation Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Eisaku Yoden
- Department of Radiation Oncology, Kawasaki Medical School, 577 Matsushima, Kurashiki City, Okayama 701-0192, Japan
| | - Yosinori Sakurai
- Department of Particle Radiation Oncology, Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| | - Minoru Suzuki
- Department of Particle Radiation Oncology, Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Osaka 590-0494, Japan
| |
Collapse
|
27
|
Yang HJ, Yoon DK, Suh TS. Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study. NUCLEAR ENGINEERING AND TECHNOLOGY 2020. [DOI: 10.1016/j.net.2020.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Zhang Z, Yong Z, Jin C, Song Z, Zhu S, Liu T, Chen Y, Chong Y, Chen X, Zhou Y. Biodistribution studies of boronophenylalanine in different types of skin melanoma. Appl Radiat Isot 2020; 163:109215. [PMID: 32561053 DOI: 10.1016/j.apradiso.2020.109215] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 03/11/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
A study of the 10B-enriched Boronophenylalanine-fructose complex(10BPA-F) infusion procedure in potential BNCT patients, including three skin melanomas of extremities, was performed. 10B concentration in tumor(T), blood(B), skin(S) were measured to determine tumor/blood(T/B) and skin/blood(S/B) ratios. T/B ratio for three melanoma patients was in the range 1.48-3.82(average 2.56 ± 0.69). S/B ratio was in the range 0.81-1.99(average 1.29 ± 0.35). Results showed that T/B ratio of nodular metastasis melanoma was higher than superficial spreading melanoma. 10B concentration in skin was higher than blood, which was helpful to avoid over-dose in normal skin.
Collapse
Affiliation(s)
- Zizhu Zhang
- Beijing Nuclear Industry Hospital(BNIH), China; Beijing Capture Technology Co. Ltd (BCTC), China.
| | - Zhong Yong
- The Third Xiangya Hospital of Central South University (The Third Xiangya Hospital), China
| | - Congjun Jin
- Beijing Nuclear Industry Hospital(BNIH), China
| | - Zewen Song
- The Third Xiangya Hospital of Central South University (The Third Xiangya Hospital), China
| | - Shaihong Zhu
- The Third Xiangya Hospital of Central South University (The Third Xiangya Hospital), China
| | - Tong Liu
- Beijing Capture Technology Co. Ltd (BCTC), China
| | - Yang Chen
- Beijing Nuclear Industry Hospital(BNIH), China
| | - Yizheng Chong
- China Zhongyuan Engineering Corporation(CZEC), China
| | - Xinru Chen
- China Zhongyuan Engineering Corporation(CZEC), China
| | - Yongmao Zhou
- China Zhongyuan Engineering Corporation(CZEC), China
| |
Collapse
|
29
|
Ali F, S Hosmane N, Zhu Y. Boron Chemistry for Medical Applications. Molecules 2020; 25:E828. [PMID: 32070043 PMCID: PMC7071021 DOI: 10.3390/molecules25040828] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/07/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Boron compounds now have many applications in a number of fields, including Medicinal Chemistry. Although the uses of boron compounds in pharmacological science have been recognized several decades ago, surprisingly few are found in pharmaceutical drugs. The boron-containing compounds epitomize a new class for medicinal chemists to use in their drug designs. Carboranes are a class of organometallic compounds containing carbon (C), boron (B), and hydrogen (H) and are the most widely studied boron compounds in medicinal chemistry. Additionally, other boron-based compounds are of great interest, such as dodecaborate anions, metallacarboranes and metallaboranes. The boron neutron capture therapy (BNCT) has been utilized for cancer treatment from last decade, where chemotherapy and radiation have their own shortcomings. However, the improvement in the already existing (BPA and/or BSH) localized delivery agents or new tumor-targeted compounds are required before realizing the full clinical potential of BNCT. The work outlined in this short review addresses the advancements in boron containing compounds. Here, we have focused on the possible clinical implications of the new and improved boron-based biologically active compounds for BNCT that are reported to have in vivo and/or in vitro efficacy.
Collapse
Affiliation(s)
- Fayaz Ali
- School of Pharmacy, Macau university of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China;
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Yinghuai Zhu
- School of Pharmacy, Macau university of Science and Technology, Avenida Wai Long Taipa, Macau 999078, China;
| |
Collapse
|
30
|
Li L, Li J, Shi Y, Du P, Zhang Z, Liu T, Zhang R, Liu Z. On-Demand Biodegradable Boron Nitride Nanoparticles for Treating Triple Negative Breast Cancer with Boron Neutron Capture Therapy. ACS NANO 2019; 13:13843-13852. [PMID: 31697475 DOI: 10.1021/acsnano.9b04303] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Compared with photon-induced binary cancer therapy, such as photothermal therapy (PTT) and photodynamic therapy (PDT), boron neutron capture therapy (BNCT) emerges as an alternative noninvasive treatment strategy that could overcome the shallow penetration of light. One key factor in performing successful BNCT is to accumulate a sufficient amount of B-10 (>20 ppm) within tumor cells, which has been a long-standing challenge for small-molecule-based boron drugs. Boron nitride nanoparticles (BNNPs) are promising boron carriers due to their high boron content and good biocompatibility, as certain types of BNNPs can undergo rapid degradation under physiological conditions. To design an on-demand degradable boron carrier, BNNPs were coated by a phase-transitioned lysozyme (PTL) that protects BNNPs from hydrolysis during blood circulation and can be readily removed by vitamin C after neutron capture therapy. According to PET imaging, the coated BNNPs exhibited high tumor boron accumulation while maintaining a good tumor to nontumor ratio. Tail-vein injections of vitamin C were followed by neutron irradiation, and BNNPs were found to be rapidly cleared from major organs according to ex vivo ICP-OES analysis. Compared with the control group, animals treated with BNCT showed suppression of tumor growth, while almost negligible side effect was observed. This strategy not only utilized the high boron content of BNNPs but also successfully performed an on-demand degradation of BNNPs to avoid the potential toxicity caused by the long-term accumulation of nanoparticles.
Collapse
Affiliation(s)
- Liping Li
- Department of Biochemistry and Molecular Biology; Imaging College of Shanxi Medical University; Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University , Shanxi Medical University , Taiyuan 030001 , China
| | - Jiyuan Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yaxin Shi
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Ping Du
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Ruiping Zhang
- Department of Biochemistry and Molecular Biology; Imaging College of Shanxi Medical University; Imaging Department of the Affiliated Da Yi Hospital of Shanxi Medical University , Shanxi Medical University , Taiyuan 030001 , China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
31
|
Imperio D, Muz B, Azab AK, Fallarini S, Lombardi G, Panza L. A Short and Convenient Synthesis of closo
-Dodecaborate Sugar Conjugates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901412] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Daniela Imperio
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; L.go Donegani, 2 28100 Novara Italy
| | - Barbara Muz
- Department of Radiation Oncology; Washington University in St. Louis School of Medicine; 4511 Forest Park Ave, Room 3103 63108 St. Louis MO USA
| | - Abdel Kareem Azab
- Department of Radiation Oncology; Washington University in St. Louis School of Medicine; 4511 Forest Park Ave, Room 3103 63108 St. Louis MO USA
| | - Silvia Fallarini
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; L.go Donegani, 2 28100 Novara Italy
| | - Grazia Lombardi
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; L.go Donegani, 2 28100 Novara Italy
| | - Luigi Panza
- Dipartimento di Scienze del Farmaco; Università del Piemonte Orientale; L.go Donegani, 2 28100 Novara Italy
| |
Collapse
|
32
|
Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, Chen X, Liu Z. A Metabolically Stable Boron-Derived Tyrosine Serves as a Theranostic Agent for Positron Emission Tomography Guided Boron Neutron Capture Therapy. Bioconjug Chem 2019; 30:2870-2878. [PMID: 31593447 DOI: 10.1021/acs.bioconjchem.9b00578] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Boronophenylalanine (BPA) is the dominant boron delivery agent for boron neutron capture therapy (BNCT), and [18F]FBPA has been developed to assist the treatment planning for BPA-BNCT. However, the clinical application of BNCT has been limited by its inadequate tumor specificity due to the metabolic instability. In addition, the distinctive molecular structures between [18F]FBPA and BPA can be of concern as [18F]FBPA cannot quantitate boron concentration of BPA in a real-time manner. In this study, a metabolically stable boron-derived tyrosine (denoted as fluoroboronotyrosine, FBY) was developed as a theranostic agent for both boron delivery and cancer diagnosis, leading to PET imaging-guided BNCT of cancer. [18F]FBY was synthesized in high radiochemical yield (50%) and high radiochemical purity (98%). FBY showed high similarity with natural tyrosine. As shown in in vitro assays, the uptake of FBY in murine melanoma B16-F10 cells was L-type amino acid transporter (LAT-1) dependent and reached up to 128 μg/106 cells. FBY displayed high stability in PBS solution. [18F]FBY PET showed up to 6 %ID/g in B16-F10 tumor and notably low normal tissue uptake (tumor/muscle = 3.16 ± 0.48; tumor/blood = 3.13 ± 0.50; tumor/brain = 14.25 ± 1.54). Moreover, administration of [18F]FBY tracer along with a therapeutic dose of FBY showed high accumulation in B16-F10 tumor and low normal tissue uptake. Correlation between PET-image and boron biodistribution was established, indicating the possibility of estimating boron concentration via a noninvasive approach. At last, with thermal neutron irradiation, B16-F10 tumor-bearing mice injected with FBY showed significantly prolonged median survival without exhibiting obvious systemic toxicity. In conclusion, FBY holds great potential as an efficient theranostic agent for imaging-guided BNCT by offering a possible solution of measuring local boron concentration through PET imaging.
Collapse
Affiliation(s)
- Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
33
|
Cellular uptake evaluation of pentagamaboronon-0 (PGB-0) for boron neutron capture therapy (BNCT) against breast cancer cells. Invest New Drugs 2019; 37:1292-1299. [PMID: 30929158 DOI: 10.1007/s10637-019-00765-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
Pentagamaboronon-0 (PGB-0), a curcumin analog compound, has been synthesized as a candidate of boron-carrier pharmaceutical (BCP) for boron neutron capture therapy (BNCT); however, this compound is poorly soluble in water. To improve its solubility, aqueous formulations of PGB-0 with a monosaccharide, fructose or sorbitol, were successfully synthesized, namely PGB-0-F and PGB-0-So, respectively. The cytotoxicity study showed that PGB-0-F and PGB-0-So exerted low cytotoxicity against MCF-7 and MDA-MB 231 breast cancer cells. The cellular uptake study using inductively coupled plasma optical emission spectrometry (ICP-OES) and DAHMI live-cell imaging indicated that these compounds were accumulated and distributed within the cytoplasm and cell nuclei. The cellular uptake mechanism was also evaluated to clarify the contribution of the glucose transporter, and the results demonstrated that these compounds entered through active transport into MCF-7 cells but through passive diffusion into MDA-MB 231 cells. In conclusion, the sugar formulations of PGB-0 only improved PGB-0 solubility but had no role in its cellular uptake.
Collapse
|
34
|
Shi Y, Li J, Zhang Z, Duan D, Zhang Z, Liu H, Liu T, Liu Z. Tracing Boron with Fluorescence and Positron Emission Tomography Imaging of Boronated Porphyrin Nanocomplex for Imaging-Guided Boron Neutron Capture Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43387-43395. [PMID: 30451482 DOI: 10.1021/acsami.8b14682] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Boron neutron capture therapy (BNCT) induces high-energy radiation within cancer cells while avoiding damage to normal cells without uptake of BNCT drugs, which is holding great promise to provide excellent control over locally invasive malignant tumors. However, lack of quantitative imaging technique to determine local boron concentration has been a great challenge for nuclear physicians to apply accurate neutron irradiation during the treatment, which is a key factor that has limited BNCT's application in clinics. To meet this challenge, this study describes coating boronated porphyrins with a biocompatible poly(lactide- co-glycolide)-monomethoxy-poly(polyethylene-glycol) (PLGA-mPEG) micelle for selective tumor accumulation and reduced toxicity comparing with the previously reported boronated porphyrin drugs. Fluorescence imaging and positron emission tomography (PET) imaging were performed, unveiling the potential imaging properties of this boronated porphyrin nanocomplex (BPN) to locate tumor region and to determine tissue-localized boron concentration which facilitates treatment planning. By studying the pharmacokinetics of BPN with Cu-64 PET imaging, the treatment plan was adjusted from single bolus injection to multiple times of injections of smaller doses. As expected, high tumor uptake of boron (125.17 ± 13.54 ppm) was achieved with an extraordinarily high tumor to normal tissue ratio: tumors to liver, muscle, fat, and blood were 3.24 ± 0.22, 61.46 ± 20.26, 31.55 ± 10.30, and 33.85 ± 5.73, respectively. At last, neutron irradiation with BPN showed almost complete tumor suppression, demonstrating that BPN holds a great potential for being an efficient boron delivery agent for imaging-guided BNCT.
Collapse
Affiliation(s)
- Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Dongban Duan
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zhengchu Zhang
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
- Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
35
|
Coulibaly FS, Alnafisah AS, Oyler NA, Youan BBC. Direct and Real-Time Quantification Of Bortezomib Release From Alginate Microparticles Using Boron (11B) Nuclear Magnetic Resonance Spectroscopy. Mol Pharm 2018; 16:967-977. [DOI: 10.1021/acs.molpharmaceut.8b00873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fohona S. Coulibaly
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, 2464 Charlotte, Kansas City, Missouri 64108, United States
| | - Abrar S. Alnafisah
- Department of Chemistry, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Nathan A. Oyler
- Department of Chemistry, University of Missouri—Kansas City, 5100 Rockhill Road, Kansas City, Missouri 64110, United States
| | - Bi-Botti C. Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri—Kansas City, 2464 Charlotte, Kansas City, Missouri 64108, United States
| |
Collapse
|
36
|
Barth RF, Zhang Z, Liu T. A realistic appraisal of boron neutron capture therapy as a cancer treatment modality. Cancer Commun (Lond) 2018; 38:36. [PMID: 29914575 PMCID: PMC6006699 DOI: 10.1186/s40880-018-0280-5] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary therapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope boron-10 is irradiated with neutrons to produce high-energy alpha particles and recoiling lithium-7 nuclei. In this Commentary we will focus on a number of papers that were presented at a Symposium entitled "Current Clinical Status of Boron Neutron Capture Therapy and Paths to the Future", which was held in September 2017 at the China National Convention Center in Beijing. Results were presented by clinicians from Japan, Finland, the United States, the China mainland and Taiwan, China who have been working in the multiple disciplines that are required for carrying out clinical BNCT. The main focus was on the treatment of patients with malignant brain tumors, recurrent tumors of the head and neck region, and cutaneous melanomas. The results obtained in treating these patients were reported in detail and, although most of the patients with brain tumors and head and neck cancer were not cured, there was evidence of some clinical efficacy. Although there are a number of problems that must be addressed, further clinical studies to evaluate the efficacy of BNCT are warranted. First, despite considerable effort by numerous investigators over the past 40 years, there still are only two boron-containing drugs in clinical use, L-boronophenylalanine (BPA) and sodium borocaptate (BSH). Therefore, until new and more effective boron delivery agents are developed, efforts should be directed to improving the dosing and delivery of BPA and BSH. Second, due to a variety of reasons, nuclear reactor-based BNCT has ended except for its use in the China mainland and Taiwan. Therefore, the future of BNCT depends upon the results of the ongoing Phase II clinical trials that are being carried out in Japan and the soon to be initiated trials that will be carried out in Finland. If the results obtained from these clinical trials are sufficiently promising, then BNCT will have a clear path to the future, especially for patients with the therapeutically challenging malignancies that in the past have been treated with reactor-based BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Zizhu Zhang
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| | - Tong Liu
- Beijing Capture Technology Company, Ltd., Beijing, 102445 P. R. China
| |
Collapse
|
37
|
Hiratsuka J, Kamitani N, Tanaka R, Yoden E, Tokiya R, Suzuki M, Barth RF, Ono K. Boron neutron capture therapy for vulvar melanoma and genital extramammary Paget's disease with curative responses. Cancer Commun (Lond) 2018; 38:38. [PMID: 29914570 PMCID: PMC6006671 DOI: 10.1186/s40880-018-0297-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/04/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although the most commonly recommended treatment for melanoma and extramammary Paget's disease (EMPD) of the genital region is wide surgical excision of the lesion, the procedure is highly invasive and can lead to functional and sexual problems. Alternative treatments have been used for local control when wide local excision was not feasible. Here, we describe four patients with genital malignancies who were treated with boron neutron capture therapy (BNCT). METHODS The four patients included one patient with vulvar melanoma (VM) and three with genital EMPD. They underwent BNCT at the Kyoto University Research Reactor between 2005 and 2014 using para-boronophenylalanine as the boron delivery agent. They were irradiated with an epithermal neutron beam between the curative tumor dose and the tolerable skin/mucosal doses. RESULTS All patients showed similar tumor and normal tissue responses following BNCT and achieved complete responses within 6 months. The most severe normal tissue response was moderate skin erosion during the first 2 months, which diminished gradually thereafter. Dysuria or contact pain persisted for 2 months and resolved completely by 4 months. CONCLUSIONS Treating VM and EMPD with BNCT resulted in complete local tumor control. Based on our clinical experience, we conclude that BNCT is a promising treatment for primary VM and EMPD of the genital region. Trial registration numbers UMIN000005124.
Collapse
Affiliation(s)
- Junichi Hiratsuka
- Department of Radiation Oncology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Nobuhiko Kamitani
- Department of Radiation Oncology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Ryo Tanaka
- Department of Dermatology, Kawasaki Medical School, Kurashiki, Okayama 701-0192 Japan
| | - Eisaku Yoden
- Department of Radiation Oncology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Ryuji Tokiya
- Department of Radiation Oncology, Kawasaki Medical School, 577, Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Minoru Suzuki
- Particle Radiation Oncology, Kyoto University Research Reactor Institute, Osaka, 590-0494 Japan
| | - Rolf F. Barth
- Department of Pathology, The Ohio State University, Columbus, OH 43210 USA
| | - Koji Ono
- Particle Radiation Oncology, Kyoto University Research Reactor Institute, Osaka, 590-0494 Japan
| |
Collapse
|
38
|
Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond) 2018; 38:35. [PMID: 29914561 PMCID: PMC6006782 DOI: 10.1186/s40880-018-0299-7] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is a binary radiotherapeutic modality based on the nuclear capture and fission reactions that occur when the stable isotope, boron-10, is irradiated with neutrons to produce high energy alpha particles. This review will focus on tumor-targeting boron delivery agents that are an essential component of this binary system. Two low molecular weight boron-containing drugs currently are being used clinically, boronophenylalanine (BPA) and sodium borocaptate (BSH). Although they are far from being ideal, their therapeutic efficacy has been demonstrated in patients with high grade gliomas, recurrent tumors of the head and neck region, and a much smaller number with cutaneous and extra-cutaneous melanomas. Because of their limitations, great effort has been expended over the past 40 years to develop new boron delivery agents that have more favorable biodistribution and uptake for clinical use. These include boron-containing porphyrins, amino acids, polyamines, nucleosides, peptides, monoclonal antibodies, liposomes, nanoparticles of various types, boron cluster compounds and co-polymers. Currently, however, none of these have reached the stage where there is enough convincing data to warrant clinical biodistribution studies. Therefore, at present the best way to further improve the clinical efficacy of BNCT would be to optimize the dosing paradigms and delivery of BPA and BSH, either alone or in combination, with the hope that future research will identify new and better boron delivery agents for clinical use.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, Sichuan 610041 P. R. China
| | - Weilian Yang
- Department of Pathology, The Ohio State University, 4132 Graves Hall, 333 W. 10th Ave, Columbus, OH 43210 USA
- Present Address: Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Suzhou University, Suzhou, Jiangsu 215004 P. R. China
| |
Collapse
|
39
|
Sato E, Zaboronok A, Yamamoto T, Nakai K, Taskaev S, Volkova O, Mechetina L, Taranin A, Kanygin V, Isobe T, Mathis BJ, Matsumura A. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy. JOURNAL OF RADIATION RESEARCH 2018; 59:101-107. [PMID: 29281044 PMCID: PMC5950924 DOI: 10.1093/jrr/rrx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/05/2017] [Indexed: 06/07/2023]
Abstract
In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2-3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5-3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm-2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear-quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P < 0.01) and confirmed that the neutron source and irradiation regimen were sufficient for control over cell colony formation. We believe our study will serve as a model for ongoing in vitro experiments on neutron capture therapy to advance in this area for further development of accelerator-based BNCT into the clinical phase.
Collapse
Affiliation(s)
- Eisuke Sato
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Faculty of Health Sciences, Kyorin University, 5-4-1 Shimorenjaku, Mitaka, Tokyo, 181-8612, Japan
| | - Alexander Zaboronok
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tetsuya Yamamoto
- Department of Neurosurgery, Graduate School of Medicine, Yokohama City University, 3-9 Fukuura, Kanazawa, Yokohama, 236-0004, Japan
| | - Kei Nakai
- Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Inashiki, Ibaraki, 300-0331, Japan
| | - Sergey Taskaev
- Budker Institute of Nuclear Physics, Lavrentieva prosp.11, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
| | - Olga Volkova
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cell Biology, Lavrentieva prosp.8/2, Novosibirsk, 630090, Russian Federation
| | - Ludmila Mechetina
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cell Biology, Lavrentieva prosp.8/2, Novosibirsk, 630090, Russian Federation
| | - Alexander Taranin
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- Institute of Molecular and Cell Biology, Lavrentieva prosp.8/2, Novosibirsk, 630090, Russian Federation
| | - Vladimir Kanygin
- Budker Institute of Nuclear Physics, Lavrentieva prosp.11, Novosibirsk, 630090, Russian Federation
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russian Federation
- Novosibirsk State Medical University, Krasny prosp. 52, Novosibirsk, 630091, Russian Federation
| | - Tomonori Isobe
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Bryan J Mathis
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Akira Matsumura
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|