1
|
Hu A, Chen G, Yang T, Ma C, Li L, Gao H, Gu J, Zhu C, Wu Y, Li X, Wei Y, Huang A, Qiu X, Xu J, Shen J, Zhong L. A fluorescent probe based on FRET effect between carbon nanodots and gold nanoparticles for sensitive detection of thiourea. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121582. [PMID: 35835057 DOI: 10.1016/j.saa.2022.121582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/17/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Illegal abuse results in the presence of thiourea (TU) in soil, wastewater, and even fruits, which is harmful for the environment and human health. It has urgent practical significance to design an efficient and reliable probe for TU detection. Herein, a sensitive fluorescent probe with off-on response for harmful TU was reported. The probe was designed with fluorescent carbon nanodots (CNDs) and gold nanoparticles (AuNPs) based on fluorescence resonance energy transfer (FRET) effect. Firstly, the CNDs were pre-combined with AuNPs and the fluorescence of CNDs was quenched due to the FRET effect. Upon addition of TU, the fluorescence of CNDs recovered due to the unbinding of CNDs and AuNPs, since the coordination interaction between TU and AuNPs is stronger than the electrostatic interaction among CNDs and AuNPs. Under the optimum parameters, a linear relationship was found between the relative fluorescence intensity of the probe and the concentration of TU in the range of 5.00 × 10-8-1.00 × 10-6 M (R2 = 0.9958), with the limit of detection (LOD) calculated to be 3.62 × 10-8 M. This proposed method is easy to operate and has excellent selectivity and sensitivity for TU, which can be effectively applied in environmental water and compound fruit-vegetable juice.
Collapse
Affiliation(s)
- Anqi Hu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Guoqing Chen
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China.
| | - Taiqun Yang
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Chaoqun Ma
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Lei Li
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Hui Gao
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jiao Gu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Chun Zhu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Yamin Wu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Xiaolin Li
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Yitao Wei
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Anlan Huang
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Xiaoqian Qiu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jinzeng Xu
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Jialu Shen
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| | - Lvyuan Zhong
- School of Science, Jiangnan University, Lihu Avenue 1800, Wuxi, 214122, China; Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Lihu Avenue 1800, China
| |
Collapse
|
2
|
Chandrakar V, Tapadia K, Gupta SK. Greener approach for gold nanoparticles synthesis from fruit peel extract of Manilkara zapota: a fluorometric assay for determination of thiourea. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2081203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
Affiliation(s)
- Varsha Chandrakar
- Department of Chemistry, National Institute of Technology, Raipur, India
| | - Kavita Tapadia
- Department of Chemistry, National Institute of Technology, Raipur, India
| | | |
Collapse
|
3
|
Tavallali H, Rahimi E, Deilamy‐Rad G, Karimi MA, Tavallali M. A novel colorimetric chemosensor for selective and highly sensitive determination of thiourea: An approach toward a molecular keypad lock. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
| | - Eisa Rahimi
- Department of Chemistry Payame Noor University Tehran Iran
| | | | | | | |
Collapse
|
4
|
Fabrication of a sensitive electrochemical sensor based on Ag nanoparticles and alizarin yellow polymer: Application to the detection of an environmental pollutant thiourea. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0561-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
5
|
Maleki A, Daraei H, Amini N. Electrocatalytic activity of manganese oxide nanosphere immobilized onto deoxyribonucleic acid modified electrode: Application to determine environmental pollutant thiourea at natural pH. J Colloid Interface Sci 2017; 504:579-585. [DOI: 10.1016/j.jcis.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 11/28/2022]
|
6
|
Rahman MM, Ahmed J, Asiri AM. Thiourea sensor development based on hydrothermally prepared CMO nanoparticles for environmental safety. Biosens Bioelectron 2017; 99:586-592. [PMID: 28826003 DOI: 10.1016/j.bios.2017.08.039] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/05/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022]
Abstract
Low-dimensional cobalt oxide codoped manganese oxide nanoparticles (CMO NPs; dia. ~ 25.6nm) were synthesized using the hydrothermal method in alkaline phase. The optical, morphological, and structural properties of CMO NPs were characterized in details using FT-IR, UV/vis., FESEM, XEDS, XPS, TEM, and XRD techniques. Glassy carbon electrode (GCE) was fabricated with a thin-layer of CMO NPs by conducting coating binders for the development of selective and sensitive thiourea (TU) sensors. Electrochemical responses along with higher sensitivity, large-dynamic-range, and long-term stability towards TU were performed by electrochemical I-V approach. The calibration curve was found linear over a wide linear dynamic range (LDR) of TU concentration. From the gradient of the calibration plot, limit of detection (LOD), and sensitivity were calculated as 12.0±0.05pM and 3.3772nAnM-1cm-2 respectively. It is an organized route for the development of chemical sensor based on very low-dimensional CMO NPs/GCE using electrochemical reduction phenomena. As far as we know, this report is the maiden publication on highly sensitive TU sensor based on the CMO NPs/GCE. This method could be a pioneer developer in TU sensitive chemical sensor development using doped NPs in the simple I-V method for the important sensor applications with useful doped materials coupled nano-technological systems for environmental safety.
Collapse
Affiliation(s)
- Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Jahir Ahmed
- Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet 3100, Bangladesh
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Kadavilpparampu AM, Al Lawati HAJ, Suliman FEO. Microfluidic photoinduced chemical oxidation for Ru(bpy) 33+ chemiluminescence - A comprehensive experimental comparison with on-chip direct chemical oxidation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 183:247-259. [PMID: 28456083 DOI: 10.1016/j.saa.2017.04.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/16/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
For the first time, the analytical figures of merit in detection capabilities of the very less explored photoinduced chemical oxidation method for Ru(bpy)32+ CL has been investigated in detail using 32 structurally different analytes. It was carried out on-chip using peroxydisulphate and visible light and compared with well-known direct chemical oxidation approaches using Ce(IV). The analytes belong to various chemical classes such as tertiary amine, secondary amine, sulphonamide, betalactam, thiol and benzothiadiazine. Influence of detection environment on CL emission with respect to method of oxidation was evaluated by changing the buffers and pH. The photoinduced chemical oxidation exhibited more universal nature for Ru(bpy)32+ CL in detection towards selected analytes. No additional enhancers, reagents, or modification in instrumental configuration were required. Wide detectability and enhanced emission has been observed for analytes from all the chemical classes when photoinduced chemical oxidation was employed. Some of these analytes are reported for the first time under photoinduced chemical oxidation like compounds from sulphonamide, betalactam, thiol and benzothiadiazine class. On the other hand, many of the selected analytes including tertiary and secondary amines such as cetirizine, azithromycin fexofenadine and proline did not produced any analytically useful CL signal (S/N=3 or above for 1μgmL-1 analyte) under chemical oxidation. The most fascinating observations was in the detection limits; for example ofloxacin was 15 times more intense with a detection limit of 5.81×10-10M compared to most lowest ever reported 6×10-9M. Earlier, penicillamine was detected at 0.1μgmL-1 after derivatization using photoinduced chemical oxidation, but in this study, we improved it to 5.82ngmL-1 without any prior derivatization. The detection limits of many other analytes were also found to be improved by several orders of magnitude under photoinduced chemical oxidation.
Collapse
Affiliation(s)
| | - Haider A J Al Lawati
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman.
| | - Fakhr Eldin O Suliman
- Department of Chemistry, College of Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman
| |
Collapse
|
8
|
Liu Y, Han S. Chemiluminescence of Nitrogen-Doped Carbon Quantum Dots for the Determination of Thiourea and Tannic Acid. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0911-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Chen C, Zhao D, Sun J, Yang X. A dual-mode signaling response of a AuNP-fluorescein based probe for specific detection of thiourea. Analyst 2016; 141:2581-7. [DOI: 10.1039/c6an00165c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By employing fluorescein and AuNPs as energy donors and acceptors, respectively, a novel fluorescence resonance energy transfer (FRET)-based dual-mode sensor for selective recognition and quantitative detection of thiourea was designed and constructed in this study for the first time.
Collapse
Affiliation(s)
- Chuanxia Chen
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Dan Zhao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun
- China
| |
Collapse
|
10
|
Wang X, Yang C, Yan M, Ge S, Yu J. A novel fluorescence probe based on p-acid-Br and its application in thiourea detection. RSC Adv 2016. [DOI: 10.1039/c6ra06953c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel organic fluorescence system was developed to detect thiourea based on p-acid-Br, which in the range of 0.5–1000 nM and with a detection limit of 0.26 nM. And this method provides a new promising platform for clinical analysis.
Collapse
Affiliation(s)
- Xiu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Chunlei Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Yan
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| | - Shenguang Ge
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
11
|
Arab Chamjangali M, Goudarzi N, Ghochani Moghadam A, Amin AH. An on-line spectrophotometric determination of trace amounts of thiourea in tap water, orange juice, and orange peel samples using multi-channel flow injection analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 149:580-587. [PMID: 25985122 DOI: 10.1016/j.saa.2015.04.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/04/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
In this work, a flow injection analysis (FIA) method was introduced for the determination of trace amounts of thiourea in tap water. This method is based upon the inhibition effect of thiourea on the reaction between meta-cresol purple (MCP) and potassium bromate catalyzed by bromide ions in a sulfuric acid medium. In the presence of thiourea, an induction period appears in the reaction system, and as a result, the absorbance of MCP increases at 525 nm in the FIA manifold. The chemical and FIA variables are studied and optimized using the univariate and Simplex optimization methods. Under the optimum conditions, thiourea can be determined in the range of 0.100-13.0 μg mL(-1). The limit of detection (3σ) for thiourea was found to be 0.0310 μg mL(-1). The relative standard deviations (RSDs) for six replicate determinations of 0.500, 5.00, and 12.0 μg mL(-1) of thiourea were 4.0%, 1.8%, and 1.2%, respectively. The proposed method was also applied for the determination of thiourea in orange juice and orange peel samples with recoveries in the range of 98.0-101%. The analytical speed of the method was calculated to be about 120 sample per hour.
Collapse
Affiliation(s)
- M Arab Chamjangali
- Department of Chemistry, Shahrood University, Shahrood, P.O. Box 36155-316, Iran.
| | - N Goudarzi
- Department of Chemistry, Shahrood University, Shahrood, P.O. Box 36155-316, Iran
| | - A Ghochani Moghadam
- Department of Chemistry, Shahrood University, Shahrood, P.O. Box 36155-316, Iran
| | - A H Amin
- Department of Chemistry, Shahrood University, Shahrood, P.O. Box 36155-316, Iran
| |
Collapse
|
12
|
Arab Chamjangali M, Bagherian G, Goudarzi N, Mehrjoo-Irani S. A new and sensitive reaction rate method for spectrophotometric determination of trace amounts of thiourea in different water samples based on an induction period. J Anal Sci Technol 2015. [DOI: 10.1186/s40543-015-0054-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
13
|
Tian L, Gao Y, Li L, Wu W, Sun D, Lu J, Li T. Determination of thiourea using a carbon paste electrode decorated with copper oxide nanoparticles. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-0970-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Flow-injection chemiluminescent determination of estrogen benzoate using the tris(1,10-phenanthroline) ruthenium(II)-permanganate system. LUMINESCENCE 2011; 26:579-84. [DOI: 10.1002/bio.1273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 10/24/2010] [Accepted: 11/08/2010] [Indexed: 11/07/2022]
|
15
|
Abbasi S, Khodarahmiyan K, Farmany A. Ultra Sensitive Quantification of Thiourea at Nanomolar Level by Catalytic-Kinetic Differential Pulse Voltammetry. ELECTROANAL 2011. [DOI: 10.1002/elan.201100111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Wang GL, Dong YM, Zhu XY, Zhang WJ, Wang C, Jiao HJ. Ultrasensitive and selective colorimetric detection of thiourea using silver nanoprobes. Analyst 2011; 136:5256-60. [DOI: 10.1039/c1an15613f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Abbasi S, Khani H, Hosseinzadeh L, Safari Z. Determination of thiourea in fruit juice by a kinetic spectrophotometric method. JOURNAL OF HAZARDOUS MATERIALS 2010; 174:257-262. [PMID: 19811871 DOI: 10.1016/j.jhazmat.2009.09.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 09/06/2009] [Accepted: 09/10/2009] [Indexed: 05/28/2023]
Abstract
A catalytic kinetic method is described for determination of trace levels of thiourea based on its catalytic effect on the oxidation of Janus green (JG) by potassium iodate in hydrochloric acid media. The reaction was monitored by measuring the decrease in absorbance of the dye at 610 nm after 25 min. The effect of some factors on the reaction speed was investigated. The developed method allowed the determination of thiourea in range of 0.01-12.00 mg L(-1) with good precision, accuracy and the detection limit was 0.008 mg L(-1). Most of foreign species do not interfere with the determination. The method was found to be sensitive, selective and was applied to the determination of thiourea in fruit juices and orange peel.
Collapse
|
18
|
Abbasi S, Khani H, Gholivand MB, Naghipour A, Farmany A, Abbasi F. A kinetic method for the determination of thiourea by its catalytic effect in micellar media. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 72:327-331. [PMID: 19062331 DOI: 10.1016/j.saa.2008.09.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 09/06/2008] [Accepted: 09/26/2008] [Indexed: 05/27/2023]
Abstract
A highly sensitive, selective and simple kinetic method was developed for the determination of trace levels of thiourea based on its catalytic effect on the oxidation of janus green in phosphoric acid media and presence of Triton X-100 surfactant without any separation and pre-concentration steps. The reaction was monitored spectrophotometrically by tracing the formation of the green-colored oxidized product of janus green at 617 nm within 15 min of mixing the reagents. The effect of some factors on the reaction speed was investigated. Following the recommended procedure, thiourea could be determined with linear calibration graph in 0.03-10.00 microg/ml range. The detection limit of the proposed method is 0.02 microg/ml. Most of foreign species do not interfere with the determination. The high sensitivity and selectivity of the proposed method allowed its successful application to fruit juice and industrial waste water.
Collapse
|
19
|
Yu F, Chen F, Zheng S, Chen L, Cui M. Flow-Injection Chemiluminescent Determination of Piroxicam Using Tris (2,2′-bipyridyl) Ruthenium(II)—Potassium Permanganate System. ANAL LETT 2008. [DOI: 10.1080/00032710802352464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
|
21
|
Adcock JL, Francis PS, Barnett NW. Acidic potassium permanganate as a chemiluminescence reagent—A review. Anal Chim Acta 2007; 601:36-67. [PMID: 17904470 DOI: 10.1016/j.aca.2007.08.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/20/2007] [Accepted: 08/20/2007] [Indexed: 11/21/2022]
Abstract
A critical and comprehensive review of acidic potassium permanganate chemiluminescence is presented. This includes discussion on reaction conditions, the influence of enhancers such as polyphosphates, formaldehyde and sulfite, the relationship between analyte structure and chemiluminescence intensity, and the application of this chemistry to determine a wide variety of compounds, such as pharmaceuticals, biomolecules, antioxidants, illicit drugs, pesticides and pollutants. Previous proposals for the nature of the emitting species are re-evaluated in light of recent evidence.
Collapse
Affiliation(s)
- Jacqui L Adcock
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | |
Collapse
|
22
|
Yang XF, Wang H. Selective thiourea optical probe based on thiourea-induced removal of chloroacetyl group from chloroacetylamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2006; 65:1063-8. [PMID: 16824787 DOI: 10.1016/j.saa.2006.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 02/02/2006] [Accepted: 02/05/2006] [Indexed: 05/10/2023]
Abstract
A novel chromogenic probe for thiourea, N-chloroacetyl parafuchsin (CAP), was designed and synthesized. The method was based on the reaction of CAP with thiourea, resulting in the initial formation of the S-substituted thioformamidine hydrochloride, which would then undergo the intramolecular amidinolysis to liberate the corresponding amine, and thus leading to an absorbance increase at visible spectral range. Based on this mechanism, a highly selective optical probe for thiourea was developed. Under optimal conditions, absorbance increase (DeltaA) at 562 nm is proportional to thiourea concentration up to 0.2 mmolL(-1) with a detection limit of 2.1 micromolL(-1) (3sigma). Because of the selective removal of chloroacetyl group from CAP by thiourea, there is little interference by other molecules.
Collapse
Affiliation(s)
- Xiao-Feng Yang
- Department of Chemistry, Northwest University, Xi'an 710069, China.
| | | |
Collapse
|
23
|
Niina N, Kodamatani H, Uozumi K, Kokufu Y, Saito K, Yamazaki S. Simultaneous detection of monoethanolamine, diethanolamine, and triethanolamine by HPLC with a chemiluminescence reaction and online derivatization to tertiary amine. ANAL SCI 2006; 21:497-500. [PMID: 15913135 DOI: 10.2116/analsci.21.497] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this paper we propose a new postcolumn detection method for compounds having primary, secondary, and tertiary amine moieties. The primary and secondary amine are delivatized by a reaction with epichlorohydrin having an epoxy moiety in a reaction coil to yield a tertiary amine with subsequent chemiluminescence detection using [Ru(bpy)3]3+. The liner values of the calibration curves of monoethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) were 0.02 - 1.0 nmol (r2 = 0.9986), 0.02 - 0.5 nmol (r2 = 0.9993) and 0.1 - 1.0 nmol (r2 = 0.9482), respectively. Also, the detection limits (S/N = 3) of MEA, DEA and TEA were 30, 25 and 40 pmol, respectively. The amount of DEA and TEA in shaving cream (60 microg/20 microL) were found to be 0.3 nmol and 14 nmol, respectively, by the proposed method.
Collapse
Affiliation(s)
- Nobumitsu Niina
- Department of Applied Science, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
This paper critically reviews analytical applications of the chemiluminescence from tris(2,2'-bipyridyl)ruthenium(II) and related compounds published in the open literature between mid-1998 and October 2005. Following the introduction, which summarises the reaction chemistry and reagent generation, the review divides into three major sections that focus on: (i) the techniques that utilise this type of detection chemistry, (ii) the range of analytes that can be determined, and (iii) analogues and derivatives of tris(2,2'-bipyridyl)ruthenium(II).
Collapse
Affiliation(s)
- Bree A Gorman
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3217, Australia
| | | | | |
Collapse
|
25
|
|
26
|
Lenehan CE, Barnett NW, Lewis SW, Essery KM. Preliminary Evaluation of Dual Acidic Potassium Permanganate and Tris(2,2′-bipyridyl)ruthenium(II) Chemiluminescence Detection for the HPLC Determination of Papaver somniferum Alkaloids. Aust J Chem 2004. [DOI: 10.1071/ch04084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper describes a dual chemiluminescence reagent for the determination of the opiate alkaloids morphine, codeine, oripavine, and thebaine in Papaver somniferum extracts. Detection was achieved using a mixture of acidic potassium permanganate and tris(2,2′-bipyridyl)ruthenium(ii), where the former acted as both the oxidant for the latter and as a chemiluminescence reagent in its own right. The analytes were separated on a C8 column using ion-pairing HPLC. The application of the mixed reagent detection compared favourably with results obtained using standard HPLC methodology. Detection limits for the alkaloids were 10−6, 5 × 10−7, 3 × 10−6, and 2 × 10−6 mol L−1 for morphine, codeine, oripavine, and thebaine, respectively.
Collapse
|