1
|
Ettabib MA, Marti A, Liu Z, Bowden BM, Zervas MN, Bartlett PN, Wilkinson JS. Waveguide Enhanced Raman Spectroscopy for Biosensing: A Review. ACS Sens 2021; 6:2025-2045. [PMID: 34114813 DOI: 10.1021/acssensors.1c00366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Waveguide enhanced Raman spectroscopy (WERS) utilizes simple, robust, high-index contrast dielectric waveguides to generate a strong evanescent field, through which laser light interacts with analytes residing on the surface of the waveguide. It offers a powerful tool for the direct identification and reproducible quantification of biochemical species and an alternative to surface enhanced Raman spectroscopy (SERS) without reliance on fragile noble metal nanostructures. The advent of low-cost laser diodes, compact spectrometers, and recent progress in material engineering, nanofabrication techniques, and software modeling tools have made realizing portable and cheap WERS Raman systems with high sensitivity a realistic possibility. This review highlights the latest progress in WERS technology and summarizes recent demonstrations and applications. Following an introduction to the fundamentals of WERS, the theoretical framework that underpins the WERS principles is presented. The main WERS design considerations are then discussed, and a review of the available approaches for the modification of waveguide surfaces for the attachment of different biorecognition elements is provided. The review concludes by discussing and contrasting the performance of recent WERS implementations, thereby providing a future roadmap of WERS technology where the key opportunities and challenges are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Ettabib
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Almudena Marti
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Zhen Liu
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Bethany M. Bowden
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Michalis N. Zervas
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - James S. Wilkinson
- Zepler Institute for Photonics and Nanoelectronics, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Grzelak MM, Chmura Ł, Wróbel PM, Adamek D, Lankosz M, Jach R, Welter E. Investigation of the role and chemical form of iron in the ovarian carcinogenesis process. J Trace Elem Med Biol 2020; 60:126500. [PMID: 32203723 DOI: 10.1016/j.jtemb.2020.126500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 03/02/2020] [Accepted: 03/12/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ovarian cancer is one of the most frequent types of gynaecological malignancy among women. Despite the advances in diagnostic techniques, ovarian tumours are still detected at a late stage, thus the survival rate is very low. Iron is an essential metal in the human body, yet its potential role in ovarian carcinogenesis is yet to be determined. The aim of this study was to check if iron oxidation state in tissue and cystic fluid can be treated as an indicator of the malignancy of the ovarian tumours. Another aspect of this study was to investigate the role of iron in carcinogenesis mechanism in ovarian tumour transformation. METHODS Synchrotron radiation X-ray absorption near edge structure (SR-XANES) spectroscopy was used to analyze the human ovarian tumour tissues and cystic fluids of different types and grades of malignancy. Fresh, non-fixed, frozen samples were used to analyze the state of iron oxidation in all the biological materials. The samples were obtained from patients requiring surgical intervention. The High Energy X-ray Absorption Spectroscopy (XANES) measurements were performed at the beamline P65 at Petra III Extension, DESY - Deutsches Elektronen - Synchrotron. RESULTS Fe XANES spectra were collected at selected points of a few different regions of the samples. For each specimen, an average of these points was probed. Having been measured, the spectra were compared with organic and inorganic reference materials. Also, the position of the absorption edge was calculated using the integration method. In all specimens, iron occurred in the oxidation states, Fe2+ and Fe3+, although the fraction of iron in the third oxidation state was substantial, especially in malignant cases. The results also show differences in the chemical form of iron in the tissue and cystic fluids of the same patient. CONCLUSIONS The cryo-XANES measurement carried out for ovarian cancer tissues and cystic fluids showed changes in the chemical form of iron between non-malignant and malignant tumours. For both types of sample can be observed that they contain iron on second and iron on third oxidation state. Moreover, the tendency was observed that malignant tumours of the ovary contain a larger fraction of iron in the second oxidation state compared to non-malignant ones.
Collapse
Affiliation(s)
- Maria Magdalena Grzelak
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059, Kraków, Poland.
| | - Łukasz Chmura
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, ul. Grzegorzecka 16, 31-531, Krakow, Poland
| | - Paweł Marek Wróbel
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Dariusz Adamek
- Department of Pathomorphology, Faculty of Medicine, Jagiellonian University Medical College, ul. Grzegorzecka 16, 31-531, Krakow, Poland
| | - Marek Lankosz
- AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, al. A. Mickiewicza 30, 30-059, Kraków, Poland
| | - Robert Jach
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Jagiellonian University Medical College, ul. Kopernika 23, 31-501, Kraków, Poland
| | - Edmund Welter
- Deutsches Elektronen-Synchrotron, Petra III Extension, P65, Hamburg, Germany
| |
Collapse
|
3
|
Witt B, Schaumlöffel D, Schwerdtle T. Subcellular Localization of Copper-Cellular Bioimaging with Focus on Neurological Disorders. Int J Mol Sci 2020; 21:ijms21072341. [PMID: 32231018 PMCID: PMC7178132 DOI: 10.3390/ijms21072341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022] Open
Abstract
As an essential trace element, copper plays a pivotal role in physiological body functions. In fact, dysregulated copper homeostasis has been clearly linked to neurological disorders including Wilson and Alzheimer’s disease. Such neurodegenerative diseases are associated with progressive loss of neurons and thus impaired brain functions. However, the underlying mechanisms are not fully understood. Characterization of the element species and their subcellular localization is of great importance to uncover cellular mechanisms. Recent research activities focus on the question of how copper contributes to the pathological findings. Cellular bioimaging of copper is an essential key to accomplish this objective. Besides information on the spatial distribution and chemical properties of copper, other essential trace elements can be localized in parallel. Highly sensitive and high spatial resolution techniques such as LA-ICP-MS, TEM-EDS, S-XRF and NanoSIMS are required for elemental mapping on subcellular level. This review summarizes state-of-the-art techniques in the field of bioimaging. Their strengths and limitations will be discussed with particular focus on potential applications for the elucidation of copper-related diseases. Based on such investigations, further information on cellular processes and mechanisms can be derived under physiological and pathological conditions. Bioimaging studies might enable the clarification of the role of copper in the context of neurodegenerative diseases and provide an important basis to develop therapeutic strategies for reduction or even prevention of copper-related disorders and their pathological consequences.
Collapse
Affiliation(s)
- Barbara Witt
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- Correspondence: ; Tel.: +49-3320-088-5241
| | - Dirk Schaumlöffel
- Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux (IPREM), UMR 5254, CNRS/Université de Pau et des Pays de l’Adour/E2S UPPA, 64000 Pau, France;
| | - Tanja Schwerdtle
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114–116, 14558 Nuthetal, Germany;
- TraceAge—DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly (FOR 2558), Potsdam-Berlin-Jena, Germany
| |
Collapse
|
4
|
Carmona A, Roudeau S, Perrin L, Carcenac C, Vantelon D, Savasta M, Ortega R. Mapping Chemical Elements and Iron Oxidation States in the Substantia Nigra of 6-Hydroxydopamine Lesioned Rats Using Correlative Immunohistochemistry With Proton and Synchrotron Micro-Analysis. Front Neurosci 2019; 13:1014. [PMID: 31680798 PMCID: PMC6798047 DOI: 10.3389/fnins.2019.01014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Brain metal homeostasis is altered in neurodegenerative diseases and the concentration, the localization and/or the chemical speciation of the elements can be modified compared to healthy individuals. These changes are often specific to the brain region affected by the neurodegenerative process. For example, iron concentration is increased in the substantia nigra (SN) of Parkinson's disease patients and iron redox reactions might be involved in the pathogenesis. The identification of the molecular basis behind metal dyshomeostasis in specific brain regions is the subject of intensive research and chemical element imaging methods are particularly useful to address this issue. Among the imaging modalities available, Synchrotron X-ray fluorescence (SXRF) and particle induced X-ray emission (PIXE) using focused micro-beams can inform about the quantitative distribution of metals in specific brain regions. Micro-X-ray absorption near edge spectroscopy (XANES) can in addition identify the chemical species of the elements, in particular their oxidation state. However, in order to bring accurate information about metal changes in specific brain areas, these chemical imaging methods must be correlated to brain tissue histology. We present a methodology to perform chemical element quantitative mapping and speciation on well-identified brain regions using correlative immunohistochemistry. We applied this methodology to the study of an animal model of Parkinson's disease, the 6-hydroxydopamine (6-OHDA) lesioned rat. Tyrosine hydroxylase immunohistochemical staining enabled to identify the SN pars compacta (SNpc) and pars reticulata (SNpr) as well as the ventral tegmental area (VTA). Using PIXE we found that iron content was higher respectively in the SNpr > SNpc > VTA, but was not statistically significantly modified by 6-OHDA treatment. In addition, micro-SXRF revealed the higher manganese content in the SNpc compared to the SNpr. Using micro-XANES we identified Fe oxidation states in the SNpr and SNpc showing a spectral similarity comparable to ferritin for all brain regions and exposure conditions. This study illustrates the capability to correlate immunohistochemistry and chemical element imaging at the brain region level and this protocol can now be widely applied to other studies of metal dyshomeostasis in neurology.
Collapse
Affiliation(s)
- Asuncion Carmona
- UMR 5797, Chemical Imaging and Speciation, CENBG, University of Bordeaux, Gradignan, France.,UMR 5797, CNRS, IN2P3, CENBG, Gradignan, France
| | - Stéphane Roudeau
- UMR 5797, Chemical Imaging and Speciation, CENBG, University of Bordeaux, Gradignan, France.,UMR 5797, CNRS, IN2P3, CENBG, Gradignan, France
| | - Laura Perrin
- UMR 5797, Chemical Imaging and Speciation, CENBG, University of Bordeaux, Gradignan, France.,UMR 5797, CNRS, IN2P3, CENBG, Gradignan, France
| | - Carole Carcenac
- INSERM U1216, Physiopathologie de la Motivation, Grenoble, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France
| | | | - Marc Savasta
- INSERM U1216, Physiopathologie de la Motivation, Grenoble, France.,Grenoble Institute of Neuroscience, Université Grenoble Alpes, Grenoble, France.,Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Richard Ortega
- UMR 5797, Chemical Imaging and Speciation, CENBG, University of Bordeaux, Gradignan, France.,UMR 5797, CNRS, IN2P3, CENBG, Gradignan, France
| |
Collapse
|
5
|
Jafri AJA, Arfuzir NNN, Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Razali N, Krasilnikova A, Kharitonova M, Demidov V, Serebryansky E, Skalny A, Spasov A, Yusof APM, Ismail NM. Protective effect of magnesium acetyltaurate against NMDA-induced retinal damage involves restoration of minerals and trace elements homeostasis. J Trace Elem Med Biol 2017; 39:147-154. [PMID: 27908408 DOI: 10.1016/j.jtemb.2016.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/05/2016] [Accepted: 09/14/2016] [Indexed: 02/08/2023]
Abstract
Glutamate-mediated excitotoxicity involving N-methyl-d-aspartate (NMDA) receptors has been recognized as a final common outcome in pathological conditions involving death of retinal ganglion cells (RGCs). Overstimulation of NMDA receptors results in influx of calcium (Ca) and sodium (Na) ions and efflux of potassium (K). NMDA receptors are blocked by magnesium (Mg). Such changes due to NMDA overstimulation are also associated with not only the altered levels of minerals but also that of trace elements and redox status. Both the decreased and elevated levels of trace elements such as iron (Fe), zinc (Zn), copper (Cu) affect NMDA receptor excitability and redox status. Manganese (Mn), and selenium (Se) are also part of antioxidant defense mechanisms in retina. Additionally endogenous substances such as taurine also affect NMDA receptor activity and retinal redox status. Therefore, the aim of this study was to evaluate the effect of Mg acetyltaurate (MgAT) on the retinal mineral and trace element concentration, oxidative stress, retinal morphology and retinal cell apoptosis in rats after-NMDA exposure. One group of Sprague Dawley rats received intravitreal injection of vehicle while 4 other groups similarly received NMDA (160nmolL-1). Among the NMDA injected groups, 3 groups also received MgAT (320nmolL-1) as pre-treatment, co-treatment or post-treatment. Seven days after intravitreal injection, rats were sacrificed, eyes were enucleated and retinae were isolated for estimation of mineral (Ca, Na, K, Mg) and trace element (Mn, Cu, Fe, Se, Zn) concentration using Inductively Coupled Plasma (DRC ICP-MS) techniques (NexION 300D), retinal oxidative stress using Elisa, retinal morphology using H&E staining and retinal cell apoptosis using terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Intravitreal NMDA injection resulted in increased concentration of Ca (4.6 times, p<0.0001), Mg (1.5 times, p<0.01), Na (3 times, p<0.0001) and K (2.3 times, p<0.0001) compared to vehicle injected group. This was accompanied with significant increase of Ca/Mg and Na/K ratios, 3 and 1.27 times respectively, compared to control group. The trace elements such as Cu, Fe and Zn also showed a significant increase amounting to 3.3 (p<0.001), 2.3 (p<0.0001) and 3 (p<0.0001) times respectively compared to control group. Se was increased by 60% (p<0.005). Pre-treatment with MgAT abolished effect of NMDA on minerals and trace elements more effectively than co- and post-treatment. Similar observations were made for retinal oxidative stress, retinal morphology and retinal cell apoptosis. In conclusion, current study demonstrated the protective effect of MgAT against NMDA-induced oxidative stress and retinal cell apoptosis. This effect of MgAT was associated with restoration of retinal concentrations of minerals and trace elements. Further studies are warranted to explore the precise molecular targets of MgAT. Nevertheless, MgAT seems a potential candidate in the management of diseases involving NMDA-induced excitotoxicity.
Collapse
Affiliation(s)
- Azliana Jusnida Ahmad Jafri
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Natasha Najwa Nor Arfuzir
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Lidawani Lambuk
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Igor Iezhitsa
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia; Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia.
| | - Renu Agarwal
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Puneet Agarwal
- International Medical University, IMU Clinical School, Seremban, Malaysia
| | - Norhafiza Razali
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Anna Krasilnikova
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Maria Kharitonova
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia; Institute of Pharmacy, Department of Pharmacology and Toxicology, University of Innsbruck, Center for Chemistry and Biomedicine, Innrain 80 - 82/III, A-6020, Innsbruck, Austria
| | - Vasily Demidov
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Evgeny Serebryansky
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia
| | - Anatoly Skalny
- Russian Society of Trace Elements in Medicine, 46 Zemlyanoy Val str., Moscow, 105064, Russia; Peoples' Friendship University of Russia, Moscow, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Alexander Spasov
- Volgograd State Medical University, Research Institute of Pharmacology, Volgograd, Russia
| | - Ahmad Pauzi Md Yusof
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Nafeeza Mohd Ismail
- Center for Neuroscience Research, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| |
Collapse
|
6
|
Sugiyama T, Uo M, Wada T, Omagari D, Komiyama K, Noguchi T, Jinbu Y, Kusama M. Estimation of trace metal elements in oral mucosa specimens by using SR-XRF, PIXE, and XAFS. Biometals 2014; 28:11-20. [PMID: 25522792 DOI: 10.1007/s10534-014-9796-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/26/2014] [Indexed: 02/04/2023]
Abstract
The effects of dissolved elements from metal dental restorations are a major concern in lesions of the oral mucosa, and the evaluation of accumulated metal elements, especially their distribution and chemical state, is essential for determining the precise effects of trace metals. In this study, X-ray fluorescence with synchrotron radiation (SR-XRF) and particle-induced X-ray emission (PIXE) were applied for distribution analysis of the trace metal elements contained in the oral mucosa, and the chemical states of the elements were estimated using X-ray absorption fine structure (XAFS) analysis. Appropriate combination of these analysis techniques, particularly SR-XRF and PIXE, to visualize the distributions of the elements in the oral mucosa allowed for the observation and evaluation of accumulated metal ions and debris. Importantly, the analyses in this study could be carried out using conventional histopathological specimens without damaging the specimens. Therefore, this method would be applicable for the detection of accumulated trace metal elements in biopsy specimens from the oral mucosa.
Collapse
Affiliation(s)
- Tomoko Sugiyama
- Department of Dentistry, Oral and Maxillofacial Surgery, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Mohamed Moosa Z, Daniels WMU, Mabandla MV. The effects of prenatal methylmercury exposure on trace element and antioxidant levels in rats following 6-hydroxydopamine-induced neuronal insult. Metab Brain Dis 2014; 29:459-69. [PMID: 24338101 DOI: 10.1007/s11011-013-9465-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/29/2013] [Indexed: 12/26/2022]
Abstract
Methylmercury (MeHg) is a metal toxin found commonly in the environment. Studies have shown severe neurotoxic effects of MeHg poisoning especially during pregnancy where it crosses the foetoplacental and the blood brain barrier of the foetus leading to neurodevelopmental deficits in the offspring. These deficits may predispose offspring to neurodegenerative diseases later in life. In this study we investigated the effects of prenatal methylmercury exposure (2.5 mg/L in drinking water from GND 1-GND 21) on the trace element status in the brain of adolescent offspring (PND 28). Total antioxidant capacity (TAC) was measured in their blood plasma. In a separate group of animals that was also exposed prenatally to MeHg, 6-hydroydopamine (6-OHDA) was administered at PND 60 as a model of neuronal insult. Trace element and TAC levels were compared before and after 6-OHDA exposure. Prenatal MeHg treatment alone resulted in significantly higher concentrations of zinc, copper, manganese and selenium in the brain of offspring at PND 28 (p < 0.05), when compared to controls. In contrast, brain iron levels in MeHg-exposed adolescent offspring were significantly lower than their controls (p < 0.05). Following 6-OHDA exposure, the levels of iron, zinc, copper and manganese were increased compared to sham-lesioned offspring (p < 0.05). Prenatal MeHg exposure further increased these trace element levels thereby promoting toxicity (p < 0.05). Total antioxidant capacity was not significantly different in MeHg and control groups prior to lesion. However, following 6-OHDA administration, MeHg-exposed animals had a significantly lower TAC than that of controls (p < 0.05). Brain TAC levels were higher in adult male rats than in female rats during adolescence however male rats that had been exposed to MeHg in utero failed to show this increase at PND 74. Prenatal MeHg exposure results in trace element dyshomeostasis in the brain of offspring and reduces total antioxidant capacity. This may reflect a mechanism by which methylmercury exerts its neurotoxicity and/or predispose offspring to further neurological insults during adulthood.
Collapse
Affiliation(s)
- Zulfiah Mohamed Moosa
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa,
| | | | | |
Collapse
|
8
|
Zhu Y, Cai X, Li J, Zhong Z, Huang Q, Fan C. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:515-24. [DOI: 10.1016/j.nano.2013.11.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/28/2013] [Accepted: 11/07/2013] [Indexed: 11/28/2022]
|
9
|
Waghorn PA, Jones MW, Theobald MBM, Arrowsmith RL, Pascu SI, Botchway SW, Faulkner S, Dilworth JR. Shining light on the stability of metal thiosemicarbazonate complexes in living cells by FLIM. Chem Sci 2013. [DOI: 10.1039/c2sc21489j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
10
|
GROOMBRIDGE AS, MIYASHITA SI, FUJII SI, NAGASAWA K, OKAHASHI T, OHATA M, UMEMURA T, TAKATSU A, INAGAKI K, CHIBA K. High Sensitive Elemental Analysis of Single Yeast Cells ( Saccharomyces cerevisiae) by Time-Resolved Inductively-Coupled Plasma Mass Spectrometry Using a High Efficiency Cell Introduction System. ANAL SCI 2013; 29:597-603. [DOI: 10.2116/analsci.29.597] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Alexander S. GROOMBRIDGE
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Shin-ichi MIYASHITA
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Shin-ichiro FUJII
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Keisuke NAGASAWA
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Tetsuya OKAHASHI
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Masaki OHATA
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Tomonari UMEMURA
- Division of Nano-materials Science, EcoTopia Science Institute, Nagoya University
| | - Akiko TAKATSU
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Kazumi INAGAKI
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| | - Koichi CHIBA
- Environmental Standards Section, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology
| |
Collapse
|
11
|
Dučić T, Barski E, Salome M, Koch JC, Bähr M, Lingor P. X-ray fluorescence analysis of iron and manganese distribution in primary dopaminergic neurons. J Neurochem 2012; 124:250-61. [PMID: 23106162 PMCID: PMC3563009 DOI: 10.1111/jnc.12073] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 11/26/2022]
Abstract
Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X-ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X-ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non-DAergic neurons after treatment with transition metals. Application of Fe(2+) resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X-ray absorption near edge structure analysis. After treatment with Mn(2+) , a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn(3+) treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage-gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis.
Collapse
|
12
|
Abstract
Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques.
Collapse
Affiliation(s)
- Megan W. Bourassa
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA. Fax: 631-632-7960; Tel: 631-632-7880
| | - Lisa M. Miller
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA. Fax: 631-632-7960; Tel: 631-632-7880
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, USA. Fax: 631-344-3238; Tel: 631-344-2091
| |
Collapse
|
13
|
Szczerbowska-Boruchowska M, Krygowska-Wajs A, Ziomber A, Thor P, Wrobel P, Bukowczan M, Zizak I. The influence of electrical stimulation of vagus nerve on elemental composition of dopamine related brain structures in rats. Neurochem Int 2012; 61:156-65. [DOI: 10.1016/j.neuint.2012.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 04/14/2012] [Accepted: 04/18/2012] [Indexed: 11/24/2022]
|
14
|
Szczerbowska-Boruchowska M, Krygowska-Wajs A, Adamek D. Elemental micro-imaging and quantification of human substantia nigra using synchrotron radiation based x-ray fluorescence--in relation to Parkinson's disease. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:244104. [PMID: 22595486 DOI: 10.1088/0953-8984/24/24/244104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Synchrotron radiation based x-ray fluorescence (SRXRF) was applied to the quantitative evaluation of elemental changes in substantia nigra pars compacta (SNc) in Parkinson's disease (PD) in the framework of a study on the role of chemical elements in the pathophysiology of PD. The analysis was carried out for dopaminergic nerve cells and extraneuronal spaces. The mass fractions of P, S, Cl, K, Ca, Fe, Cu, Zn, Br and Rb were determined. The application of standard samples developed especially for the determination of elemental mass fractions in thin tissue sections using the SRXRF technique is presented. Two-dimensional maps of elemental distribution show that the location of nerve cells in SNc sections is precisely visualized by the high levels of most elements. It was found that statistically significant differences between control and PD neurons are observed for S (p = 0.04), Cl (p = 0.02), Ca (p = 0.08), Fe (p = 0.04) and Zn (p = 0.04). The mass fractions of P (p = 0.08), S (p = 0.07), Cl (p = 0.04), Zn (p = 0.08) and Rb (p = 0.08) in areas outside the nerve cell bodies differed significantly between PD and control groups. A clear cluster separation between the PD nerve cells and neurons representing the control group was noticed. It was found that Cl, Fe, Ca and Zn are the most significant elements in the general discrimination between PD nerve cells and the control. The comparison between the extraneuronal spaces showed that Cl, Fe and Cu differentiate the PD and control group the most. The evident contribution of chemical elements to the pathophysiology of PD was shown.
Collapse
|
15
|
Que EL, New EJ, Chang CJ. A cell-permeable gadolinium contrast agent for magnetic resonance imaging of copper in a Menkes disease model. Chem Sci 2012; 3:1829-1834. [PMID: 25431649 DOI: 10.1039/c2sc20273e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We present the synthesis and characterization of octaarginine-conjugated Copper-Gad-2 (Arg8CG2), a new copper-responsive magnetic resonance imaging (MRI) contrast agent that combines a Gd3+-DO3A scaffold with a thioether-rich receptor for copper recognition. The inclusion of a polyarginine appendage leads to a marked increase in cellular uptake compared to previously reported MRI-based copper sensors of the CG family. Arg8CG2 exhibits a 220% increase in relaxivity (r1 = 3.9 to 12.5 mM-1 s-1) upon 1 : 1 binding with Cu+, with a highly selective response to Cu+ over other biologically relevant metal ions. Moreover, Arg8CG2 accumulates in cells at nine-fold greater concentrations than the parent CG2 lacking the polyarginine functionality and is retained well in the cell after washing. In cellulo relaxivity measurements and T1-weighted phantom images using a Menkes disease model cell line demonstrate the utility of Arg8CG2 to report on biological perturbations of exchangeable copper pools.
Collapse
Affiliation(s)
- Emily L Que
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Elizabeth J New
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, California 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
First step toward the “fingerprinting” of brain tumors based on synchrotron radiation X-ray fluorescence and multiple discriminant analysis. J Biol Inorg Chem 2011; 16:1217-26. [DOI: 10.1007/s00775-011-0810-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
17
|
Szczerbowska-Boruchowska M, Lankosz M, Czyzycki M, Adamek D. An integrated experimental and analytical approach to the chemical state imaging of iron in brain gliomas using X-ray absorption near edge structure spectroscopy. Anal Chim Acta 2011; 699:153-60. [PMID: 21704769 DOI: 10.1016/j.aca.2011.05.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 05/24/2011] [Accepted: 05/26/2011] [Indexed: 11/17/2022]
Abstract
X-ray absorption near-edge structure spectroscopy is used for human neoplastic tissues in order to investigate distributions and chemical states of iron. The specimens used in this study were obtained intraoperatively from brain gliomas of different types and various grades of malignancy and from a control subject. An integrated experimental and analytical approach toward topographic and quantitative analysis in thin freeze-dried cryo-sections is presented. The full XANES spectra at the Fe absorption K edge show the presence of both chemical forms of Fe in the analyzed points of the tissues. The main goal of the work is the chemical state imaging of Fe in tissue areas. Topographic analysis of Fe speciation in the tissues investigated with the use of the XANES technique indicates the presence of microstructures where Fe(2+) is dominant as well as those with a high abundance of the oxidized form of Fe. The quantitative analysis shows that for all cases the content of the oxidized form of Fe is significantly higher in comparison with Fe(2+). The highest level of Fe(3+) is found in the control sample, and the lowest one for the glioma of the highest grade of malignancy. The content of either Fe(2+) or Fe(3+) is increased in low grade gliomas in comparison to high-grade malignant tumors.
Collapse
|
18
|
Hackett MJ, McQuillan JA, El-Assaad F, Aitken JB, Levina A, Cohen DD, Siegele R, Carter EA, Grau GE, Hunt NH, Lay PA. Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 2011; 136:2941-52. [DOI: 10.1039/c0an00269k] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Chwiej J. The use of cluster and discriminant analysis in the investigations of the role of trace metals in the pathogenesis of Parkinson's disease. J Trace Elem Med Biol 2010; 24:78-88. [PMID: 20413064 DOI: 10.1016/j.jtemb.2009.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 11/02/2009] [Accepted: 11/02/2009] [Indexed: 11/24/2022]
Abstract
X-ray fluorescence microscopy was applied for two-dimensional elemental analysis of substantia nigra (SN) tissue. The samples representing Parkinson's disease (PD) and control cases were examined at HASYLAB beamline L and at ESRF beamline ID22. Two-dimensional mapping of P, S, Cl, K, Ca, Fe, Cu, Zn, Se and Br was done with the spatial resolution of 15 and 5 microm. The masses per unit area of elements in neuromelanin reach nerve cells of SN were determined. The elemental data were processed using two multivariate techniques, namely cluster and discriminant analysis. The statistical methods were used for data reduction, both unsupervised and supervised classification as well as for the creation of a model that would simplify case identification based on the elemental analysis of SN tissue. The results of cluster analysis confirmed the statistical significance of the differences in elemental composition of PD and control SN nerve cells. Based on the results of discriminant analysis, the elements (P, Cl, Fe, Cu and Zn) that played the greatest role in the process of differentiation between neurons from examined groups were determined.
Collapse
Affiliation(s)
- Joanna Chwiej
- Department of Applied Nuclear Physics, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
20
|
Abstract
Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80∶20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing β-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis, and prion diseases, and have been proposed to be the primary toxic species. Susceptibility to aggregation of ubiquitin, as it emerges from the present study, may represent a potential risk factor for disease onset or progression while cells attempt to tag and process toxic substrates.
Collapse
|
21
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 372] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
22
|
Strange RW, Feiters MC. Biological X-ray absorption spectroscopy (BioXAS): a valuable tool for the study of trace elements in the life sciences. Curr Opin Struct Biol 2008; 18:609-16. [DOI: 10.1016/j.sbi.2008.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 06/18/2008] [Indexed: 01/07/2023]
|
23
|
Farquharson MJ, Al-Ebraheem A, Falkenberg G, Leek R, Harris AL, Bradley DA. The distribution of trace elements Ca, Fe, Cu and Zn and the determination of copper oxidation state in breast tumour tissue using muSRXRF and muXANES. Phys Med Biol 2008; 53:3023-37. [PMID: 18490810 DOI: 10.1088/0031-9155/53/11/018] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A micro beam synchrotron x-ray fluorescence (muSRXRF) technique has been used to determine the localization of metals in primary invasive ductal carcinoma of breast. Nine samples were examined, all of which were formalin fixed tissues arranged as micro arrays of 1.0 mm diameter and 10 microm thickness. Cu was the particular interest in this study although 2D maps of the elements Ca, Fe and Zn, which are also of physiological importance, are presented. The distribution of these metals was obtained at approximately 18 microm spatial resolution and compared with light transmission images of adjacent sections that were H and E stained to reveal the location of the cancer cell clusters. Correlations were found between these reference images and the elemental distributions indicating an increase in all element concentrations in the tumour regions of all samples, with the exception of Fe, which in some cases showed a reverse of this trend. On average over all samples the percentage difference from the normal tissue elemental concentrations are Ca approximately 67%, Cu approximately 64% and Zn approximately 145%. Micro x-ray absorption near edge spectroscopy (muXANES) was used to estimate the oxidation state of Cu in 19 normal and 17 tumour regions spread over five samples. The shape and the position of both normal and tumour regions suggest that they contain mixtures of copper ions with a significant fraction of Cu2+. However, the shape of the spectra does not exclude the presence of Cu+. Tumour regions were found to have a higher fraction of Cu+ compared to the normal samples.
Collapse
Affiliation(s)
- M J Farquharson
- Department of Radiography, City Community and Health Sciences, City University, London, EC1V 0HB, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Chwiej J, Adamek D, Szczerbowska-Boruchowska M, Krygowska-Wajs A, Bohic S, Lankosz M. Study of Cu chemical state inside single neurons from Parkinson's disease and control substantia nigra using the micro-XANES technique. J Trace Elem Med Biol 2008; 22:183-8. [PMID: 18755393 DOI: 10.1016/j.jtemb.2008.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 02/05/2008] [Accepted: 03/27/2008] [Indexed: 11/26/2022]
Abstract
Parkinson's disease (PD) is referred to as idiopathic disorder, which means that its causes have not been found yet. However, a few processes such as oxidative stress, protein aggregation and mitochondrial dysfunction are suspected to lead to the atrophy and death of substantia nigra (SN) neurons in case of this neurodegenerative disorder. Cu is a trace element whose role in the pathogenesis of PD is widely discussed. The investigation of Cu oxidation state inside single nerve cells from SN of PD and control cases may shed some new light on the role of this element in PD. The differences in Cu chemical state were investigated with the use of X-ray absorption near edge structure (XANES) spectroscopy. The least-square fitting method was applied for the analysis of XANES spectra. The comparison of the positions of white line, multiple scattering and pre-edge peak maximum at the energy scale did not reveal the existence of differences in Cu chemical state between PD and control samples. However, it was found that most of the Cu inside SN neurons occurs in tetrahedral environment and probably as Cu(II).
Collapse
Affiliation(s)
- Joanna Chwiej
- Department of Applied Nuclear Physics, Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
25
|
Fahrni CJ. Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Curr Opin Chem Biol 2007; 11:121-7. [PMID: 17353139 DOI: 10.1016/j.cbpa.2007.02.039] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/16/2007] [Indexed: 11/23/2022]
Abstract
Synchrotron X-ray fluorescence microscopy (SXRF) is a microanalytical technique for the quantitative mapping of elemental distributions. Among currently available imaging modalities, SXRF is the only technique that is compatible with fully hydrated biological samples such as whole cells or tissue sections, while simultaneously offering trace element sensitivity and submicron spatial resolution. Combined with the ability to provide information regarding the oxidation state and coordination environment of metal cations, SXRF is ideally suited to study the intracellular distribution and speciation of trace elements, toxic heavy metals and therapeutic or diagnostic metal complexes.
Collapse
Affiliation(s)
- Christoph J Fahrni
- School of Chemistry and Biochemistry and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332-0400, USA.
| |
Collapse
|