1
|
Elhaik E. Principal Component Analyses (PCA)-based findings in population genetic studies are highly biased and must be reevaluated. Sci Rep 2022; 12:14683. [PMID: 36038559 PMCID: PMC9424212 DOI: 10.1038/s41598-022-14395-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/06/2022] [Indexed: 12/29/2022] Open
Abstract
Principal Component Analysis (PCA) is a multivariate analysis that reduces the complexity of datasets while preserving data covariance. The outcome can be visualized on colorful scatterplots, ideally with only a minimal loss of information. PCA applications, implemented in well-cited packages like EIGENSOFT and PLINK, are extensively used as the foremost analyses in population genetics and related fields (e.g., animal and plant or medical genetics). PCA outcomes are used to shape study design, identify, and characterize individuals and populations, and draw historical and ethnobiological conclusions on origins, evolution, dispersion, and relatedness. The replicability crisis in science has prompted us to evaluate whether PCA results are reliable, robust, and replicable. We analyzed twelve common test cases using an intuitive color-based model alongside human population data. We demonstrate that PCA results can be artifacts of the data and can be easily manipulated to generate desired outcomes. PCA adjustment also yielded unfavorable outcomes in association studies. PCA results may not be reliable, robust, or replicable as the field assumes. Our findings raise concerns about the validity of results reported in the population genetics literature and related fields that place a disproportionate reliance upon PCA outcomes and the insights derived from them. We conclude that PCA may have a biasing role in genetic investigations and that 32,000-216,000 genetic studies should be reevaluated. An alternative mixed-admixture population genetic model is discussed.
Collapse
Affiliation(s)
- Eran Elhaik
- Department of Biology, Lund University, 22362, Lund, Sweden.
| |
Collapse
|
2
|
Lee SR, Choi TY, Jung SY. Genetic Diversity on a Rare Terrestrial Orchid, Habenaria linearifolia in South Korea: Implications for Conservation Offered by Genome-Wide Single Nucleotide Polymorphisms. FRONTIERS IN PLANT SCIENCE 2022; 13:772621. [PMID: 35283866 PMCID: PMC8907889 DOI: 10.3389/fpls.2022.772621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Monitoring intraspecific diversity offers invaluable insights on conservation practices as the variation is the product of species evolution. Accordingly, the role of population genetic diversity has drawn great attention over the last century responding to the biodiversity loss induced by a series of anthropogenic changes. Orchids are one of the most diverse, yet ironically most rapidly disappearing plant groups due to the specialized habitat preferences. Thus, population-level genetic diversity studies may offer a powerful tool for orchid conservation programs. Using the 3 restriction site-associated DNA (3RAD) approach, 2,734 genome-wide single nucleotide polymorphisms (SNPs) were isolated. With the 2,734 SNPs, we investigated genetic diversity and population structure on 72 individuals of Habenaria linearifolia and Habenaria cruciformis in South Korea. Overall, the genetic diversity was well maintained in South Korean Habenaria, but high F ST values were estimated suggesting large population diversification with limited gene flow. Bayesian assignment analysis revealed a morphologically cryptic diversity pattern in Jeju Island populations, which might serve as an evolutionarily significant unit.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Tae-Young Choi
- Department of Biology Education, College of Education, Chosun University, Gwangju, South Korea
| | - Su-Young Jung
- Division of Forest Biodiversity and Herbarium, Korea National Arboretum, Pocheon, South Korea
| |
Collapse
|
3
|
Ghaiyed AP, Sutherland H, Lea RA, Gardam T, Chaseling J, James K, Bernie A, Haupt LM, Christie J, Griffiths LR, Wright KM. Evaluation of an ancestry prediction strategy for historical military remains using a World War II-era sample and pedigrees with family-level admixture. AUST J FORENSIC SCI 2021. [DOI: 10.1080/00450618.2021.2005144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- A. P. Ghaiyed
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - H. Sutherland
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - R. A. Lea
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - T. Gardam
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - J. Chaseling
- School of Environment and Science, Griffith University, Nathan, Australia
| | - K. James
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - A. Bernie
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Canberra, Australia
| | - L. M. Haupt
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - J. Christie
- School of Environment and Science, Griffith University, Nathan, Australia
| | - L. R. Griffiths
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
| | - K. M. Wright
- Genomics Research Centre, Centre for Genomics and Personalised Health, Queensland University of Technology, Kelvin Grove, Australia
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Canberra, Australia
- Royal Australian Air Force (RAAF), Williamtown, Australia
| |
Collapse
|
4
|
Mendiola MJR, Ravago‐Gotanco R. Genetic differentiation and signatures of local adaptation revealed by RADseq for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Ecol Evol 2021; 11:7951-7969. [PMID: 34188864 PMCID: PMC8216953 DOI: 10.1002/ece3.7625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/27/2022] Open
Abstract
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation ( R adj 2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea ( R adj 2 = 0.692-0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.
Collapse
Affiliation(s)
| | - Rachel Ravago‐Gotanco
- The Marine Science InstituteUniversity of the Philippines DilimanQuezon CityPhilippines
| |
Collapse
|
5
|
Parfenchyk MS, Kotava SA. The Theoretical Framework for the Panels of DNA Markers Formation in the Forensic Determination of an Individual Ancestral Origin. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Ghaiyed AP, Chaseling J, Lea RA, Bernie A, Haupt LM, Griffiths LR, Wright KM. Development of an accurate genomic ancestry prediction strategy to enable the accounting of Australian and Japanese historical military remains. AUST J FORENSIC SCI 2020. [DOI: 10.1080/00450618.2020.1853233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- A. P. Ghaiyed
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - J. Chaseling
- School of Environment and Science, Griffith University, Nathan, Australia
| | - R. A. Lea
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - A. Bernie
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Canberra, Australia
| | - L. M. Haupt
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - L. R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Kelvin Grove, Australia
| | - K. M. Wright
- Unrecovered War Casualties-Army, Australian Defence Force, Russell Offices, Canberra, Australia
- Royal Australian Air Force (RAAF) No 2 Expeditionary Health Squadron, Williamtown, Australia
| |
Collapse
|
7
|
Biagini SA, Ramos-Luis E, Comas D, Calafell F. The place of metropolitan France in the European genomic landscape. Hum Genet 2020; 139:1091-1105. [DOI: 10.1007/s00439-020-02158-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/25/2020] [Indexed: 10/24/2022]
|
8
|
Gurinovich A, Andersen SL, Puca A, Atzmon G, Barzilai N, Sebastiani P. Varying Effects of APOE Alleles on Extreme Longevity in European Ethnicities. J Gerontol A Biol Sci Med Sci 2020; 74:S45-S51. [PMID: 31724059 DOI: 10.1093/gerona/glz179] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
APOE is a well-studied gene with multiple effects on aging and longevity. The gene has three alleles: e2, e3, and e4, whose frequencies vary by ethnicity. While the e2 is associated with healthy cognitive aging, the e4 allele is associated with Alzheimer's disease and early mortality and therefore its prevalence among people with extreme longevity (EL) is low. Using the PopCluster algorithm, we identified several ethnically different clusters in which the effect of the e2 and e4 alleles on EL changed substantially. For example, PopCluster discovered a large group of 1,309 subjects enriched of Southern Italian genetic ancestry with weaker protective effect of e2 (odds ratio [OR] = 1.27, p = .14) and weaker damaging effect of e4 (OR = 0.82, p = .31) on the phenotype of EL compared to other European ethnicities. Further analysis of this cluster suggests that the odds for EL in carriers of the e4 allele with Southern Italian genetic ancestry differ depending on whether they live in the United States (OR = 0.29, p = .009) or Italy (OR = 1.21, p = .38). PopCluster also found clusters enriched of subjects with Danish ancestry with varying effect of e2 on EL. The country of residence (Denmark or United States) appears to change the odds for EL in the e2 carriers.
Collapse
Affiliation(s)
- Anastasia Gurinovich
- Bioinformatics Program, Boston University, Massachusetts.,Department of Biostatistics, Boston University School of Public Health, Massachusetts
| | | | - Annibale Puca
- Department of Medicine and Surgery, University of Salerno, Fisciano, SA, Italy.,Cardiovascular Research Unit, IRCCS MultiMedica, Sesto San Giovanni, MI, Italy
| | - Gil Atzmon
- Faculty of Natural Science, University of Haifa, Israel.,Albert Einstein College of Medicine, Bronx, New York
| | - Nir Barzilai
- Albert Einstein College of Medicine, Bronx, New York
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Massachusetts
| |
Collapse
|
9
|
Irish JD, Morez A, Girdland Flink L, Phillips EL, Scott GR. Do dental nonmetric traits actually work as proxies for neutral genomic data? Some answers from continental‐ and global‐level analyses. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:347-375. [DOI: 10.1002/ajpa.24052] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Joel D. Irish
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- Evolutionary Studies Institute and Centre for Excellence in PaleoSciences University of the Witwatersrand South Africa
| | - Adeline Morez
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - Linus Girdland Flink
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
- Department of Archaeology School of Geosciences, University of Aberdeen Aberdeen UK
| | - Emma L.W. Phillips
- School of Biological and Environmental Sciences Liverpool John Moores University Liverpool UK
| | - G. Richard Scott
- Anthropology Department University of Nevada Reno Reno, Nevada USA
| |
Collapse
|
10
|
Ranzenhofer LM, Mayer LES, Davis HA, Mielke-Maday HK, McInerney H, Korn R, Gupta N, Brown AJ, Schebendach J, Tanofsky-Kraff M, Thaker V, Chung WK, Leibel RL, Walsh BT, Rosenbaum M. The FTO Gene and Measured Food Intake in 5- to 10-Year-Old Children Without Obesity. Obesity (Silver Spring) 2019; 27:1023-1029. [PMID: 31119882 PMCID: PMC6561098 DOI: 10.1002/oby.22464] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/15/2019] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Genetic variation in the first intron of FTO (e.g., single-nucleotide polymorphism [SNP] rs9939609) is strongly associated with adiposity. This effect is thought to be mediated (at least in part) via increasing caloric intake, although the precise molecular genetic mechanisms are not fully understood. Prior pediatric studies of FTO have included youth with overweight and obesity; however, they have not informed whether a genotypic effect on ingestive behavior is present prior to obesity onset. Therefore, this study investigated the association between FTO and caloric intake in children aged 5 to 10 years without obesity (adiposity ≤ 95th percentile). METHODS A total of 122 children were genotyped for rs9939609 and ate ad libitum from a laboratory lunch buffet following a standardized breakfast. Linear regressions, adjusting for body mass, were used to examine the association between FTO "dose" (number of copies of SNP rs9939609) and intake variables. RESULTS There was a significant association between FTO and total intake. Each risk allele predicted an additional 64 calories, accounting for 3% of the variance. There were no associations between FTO and macronutrient preference, energy density, or diet variety. Results were influenced by race. CONCLUSIONS Results corroborate and extend prior work by showing a dose-dependent effect on food intake in children without obesity.
Collapse
Affiliation(s)
- Lisa M Ranzenhofer
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Laurel E S Mayer
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Haley A Davis
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Hanna K Mielke-Maday
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Hailey McInerney
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Rachel Korn
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Nikita Gupta
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Amanda J Brown
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Janet Schebendach
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | | | - Vidhu Thaker
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Wendy K Chung
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - Rudolph L Leibel
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| | - B Timothy Walsh
- Department of Psychiatry, Columbia University Irving Medical Center and New York State Psychiatric Institute, New York, New York, USA
| | - Michael Rosenbaum
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
11
|
Liang Z, Bu L, Qin Y, Peng Y, Yang R, Zhao Y. Selection of Optimal Ancestry Informative Markers for Classification and Ancestry Proportion Estimation in Pigs. Front Genet 2019; 10:183. [PMID: 30915106 PMCID: PMC6421339 DOI: 10.3389/fgene.2019.00183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/19/2019] [Indexed: 12/26/2022] Open
Abstract
Using small sets of ancestry informative markers (AIMs) constitutes a cost-effective method to accurately estimate the ancestry proportions of individuals. This study aimed to generate a small and effective number of AIMs from ∼60 K single nucleotide polymorphism (SNP) data of porcine and estimate three ancestry proportions [East China pig (ECHP), South China pig (SCHP), and European commercial pig (EUCP)] from Asian breeds and European domestic breeds. A total of 186 samples of 10 pure breeds were divided into three groups: ECHP, SCHP, and EUCP. Using these samples and a one-vs.-rest SVM classifier, we found that using only seven AIMs could completely separate the three groups. Subsequently, we utilized supervised ADMIXTURE to calculate ancestry proportions and found that the 129 AIMs performed well on ancestry estimates when pseudo admixed individuals were used. Furthermore, another 969 samples of 61 populations were applied to evaluate the performance of the 129 AIMs. We also observed that the 129 AIMs were highly correlated with estimates using ∼60 K SNP data for three ancestry components: ECHP (Pearson correlation coefficient (r) = 0.94), SCHP (r = 0.94), and EUCP (r = 0.99). Our results provided an example of using a small number of pig AIMs for classifications and estimating ancestry proportions with high accuracy and in a cost-effective manner.
Collapse
Affiliation(s)
- Zuoxiang Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lina Bu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yidi Qin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yebo Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ruifei Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yiqiang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
12
|
Hwa HL, Wu MY, Lin CP, Hsieh WH, Yin HI, Lee TT, Lee JCI. A single nucleotide polymorphism panel for individual identification and ancestry assignment in Caucasians and four East and Southeast Asian populations using a machine learning classifier. Forensic Sci Med Pathol 2019; 15:67-74. [PMID: 30649693 DOI: 10.1007/s12024-018-0071-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 11/26/2022]
Abstract
Single nucleotide polymorphism (SNP) profiling is an effective means of individual identification and ancestry inferences in forensic genetics. This study established a SNP panel for the simultaneous individual identification and ancestry assignment of Caucasian and four East and Southeast Asian populations. We analyzed 220 SNPs (125 autosomal, 17 X-chromosomal, 30 Y-chromosomal, and 48 mitochondrial SNPs) of the DNA samples from 563 unrelated individuals of five populations (89 Caucasian, 234 Taiwanese Han, 90 Filipino, 79 Indonesian and 71 Vietnamese) and 18 degraded DNA samples. Informativeness for assignment (In) was used to select ancestry informative SNPs (AISNPs). A machine learning classifier, support vector machine (SVM), was used for ancestry assignment. Of the 220 SNPs, 62 were individual identification SNPs (IISNPs) (51 autosomal and 11 X-chromosomal SNPs) and 191 were AISNPs (100 autosomal, 13 X-chromosomal, 30 Y-chromosomal, and 48 mitochondrial SNPs). The 51 autosomal IISNPs offered cumulative random match probabilities (cRMPs) ranging from 1.56 × 10-21 to 3.16 × 10-22 among these five populations. Using AISNPs with the SVM, the overall accuracy rate of ancestry inference achieved in the testing dataset between Caucasian, Taiwanese Han, and Filipino populations was 88.9%, whereas it was 70.0% between Caucasians and each of the four East and Southeast Asian populations. For the 18 degraded DNA samples with incomplete profiling, the accuracy rate of ancestry assignment was 94.4%. We have developed a 220-SNP panel for simultaneous individual identification and ethnic origin differentiation between Caucasian and the four East and Southeast Asian populations. This SNP panel may assist with DNA analysis of forensic casework.
Collapse
Affiliation(s)
- Hsiao-Lin Hwa
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 7 Chung Shan S. Rd, Taipei, 100, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, No. 7 Chung Shan S. Rd, Taipei, 100, Taiwan
| | - Ming-Yih Wu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, No. 7 Chung Shan S. Rd, Taipei, 100, Taiwan
| | - Chih-Peng Lin
- Yourgene Bioscience, No.376-5 Fuxing Rd., Shulin Dist, New Taipei City, 238, Taiwan
| | - Wei Hsin Hsieh
- Yourgene Bioscience, No.376-5 Fuxing Rd., Shulin Dist, New Taipei City, 238, Taiwan
| | - Hsiang-I Yin
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
| | - Tsui-Ting Lee
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan
| | - James Chun-I Lee
- Department and Graduate Institute of Forensic Medicine, College of Medicine, National Taiwan University, No. 1, Sec. 1, Jen Ai Rd, Taipei, 100, Taiwan.
| |
Collapse
|
13
|
Lombardo D, Silvy F, Crenon I, Martinez E, Collignon A, Beraud E, Mas E. Pancreatic adenocarcinoma, chronic pancreatitis, and MODY-8 diabetes: is bile salt-dependent lipase (or carboxyl ester lipase) at the crossroads of pancreatic pathologies? Oncotarget 2018; 9:12513-12533. [PMID: 29552330 PMCID: PMC5844766 DOI: 10.18632/oncotarget.23619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Pancreatic adenocarcinomas and diabetes mellitus are responsible for the deaths of around two million people each year worldwide. Patients with chronic pancreatitis do not die directly of this disease, except where the pathology is hereditary. Much current literature supports the involvement of bile salt-dependent lipase (BSDL), also known as carboxyl ester lipase (CEL), in the pathophysiology of these pancreatic diseases. The purpose of this review is to shed light on connections between chronic pancreatitis, diabetes, and pancreatic adenocarcinomas by gaining an insight into BSDL and its variants. This enzyme is normally secreted by the exocrine pancreas, and is diverted within the intestinal lumen to participate in the hydrolysis of dietary lipids. However, BSDL is also expressed by other cells and tissues, where it participates in lipid homeostasis. Variants of BSDL resulting from germline and/or somatic mutations (nucleotide insertion/deletion or nonallelic homologous recombination) are expressed in the pancreas of patients with pancreatic pathologies such as chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We discuss the possible link between the expression of BSDL variants and these dramatic pancreatic pathologies, putting forward the suggestion that BSDL and its variants are implicated in the cell lipid metabolism/reprogramming that leads to the dyslipidemia observed in chronic pancreatitis, MODY-8, and pancreatic adenocarcinomas. We also propose potential strategies for translation to therapeutic applications.
Collapse
Affiliation(s)
- Dominique Lombardo
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Françoise Silvy
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Isabelle Crenon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Emmanuelle Martinez
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Aurélie Collignon
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Evelyne Beraud
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| | - Eric Mas
- Aix Marseille Univ, INSERM, CRO2, Centre de Recherche en Oncologie Biologique et Oncopharmacologie, Marseille, France
| |
Collapse
|
14
|
Lee SR, Jo YS, Park CH, Friedman JM, Olson MS. Population genomic analysis suggests strong influence of river network on spatial distribution of genetic variation in invasive saltcedar across the southwestern United States. Mol Ecol 2018; 27:636-646. [PMID: 29274176 DOI: 10.1111/mec.14468] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 11/22/2017] [Accepted: 12/04/2017] [Indexed: 01/19/2023]
Abstract
Understanding the complex influences of landscape and anthropogenic elements that shape the population genetic structure of invasive species provides insight into patterns of colonization and spread. The application of landscape genomics techniques to these questions may offer detailed, previously undocumented insights into factors influencing species invasions. We investigated the spatial pattern of genetic variation and the influences of landscape factors on population similarity in an invasive riparian shrub, saltcedar (Tamarix L.) by analysing 1,997 genomewide SNP markers for 259 individuals from 25 populations collected throughout the southwestern United States. Our results revealed a broad-scale spatial genetic differentiation of saltcedar populations between the Colorado and Rio Grande river basins and identified potential barriers to population similarity along both river systems. River pathways most strongly contributed to population similarity. In contrast, low temperature and dams likely served as barriers to population similarity. We hypothesize that large-scale geographic patterns in genetic diversity resulted from a combination of early introductions from distinct populations, the subsequent influence of natural selection, dispersal barriers and founder effects during range expansion.
Collapse
Affiliation(s)
- Soo-Rang Lee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Yeong-Seok Jo
- National Institute of Biological Resources, Seo-gu, Incheon, Korea
| | - Chan-Ho Park
- National Institute of Biological Resources, Seo-gu, Incheon, Korea
| | | | - Matthew S Olson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Shraga R, Yarnall S, Elango S, Manoharan A, Rodriguez SA, Bristow SL, Kumar N, Niknazar M, Hoffman D, Ghadir S, Vassena R, Chen SH, Hershlag A, Grifo J, Puig O. Evaluating genetic ancestry and self-reported ethnicity in the context of carrier screening. BMC Genet 2017; 18:99. [PMID: 29179688 PMCID: PMC5704547 DOI: 10.1186/s12863-017-0570-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/16/2017] [Indexed: 11/10/2022] Open
Abstract
Background Current professional society guidelines recommend genetic carrier screening be offered on the basis of ethnicity, or when using expanded carrier screening panels, they recommend to compute residual risk based on ethnicity. We investigated the reliability of self-reported ethnicity in 9138 subjects referred to carrier screening. Self-reported ethnicity gathered from test requisition forms and during post-test genetic counseling, and genetic ancestry predicted by a statistical model, were compared for concordance. Results We identified several discrepancies between the two sources of self-reported ethnicity and genetic ancestry. Only 30.3% of individuals who indicated Mediterranean ancestry during consultation self-reported this on requisition forms. Additionally, the proportion of individuals who reported Southeast Asian but were estimated to have a different genetic ancestry was found to depend on the source of self-report. Finally, individuals who reported Latin American demonstrated a high degree of ancestral admixture. As a result, carrier rates and residual risks provided for patient decision-making are impacted if using self-reported ethnicity. Conclusion Our analysis highlights the unreliability of ethnicity classification based on patient self-reports. We recommend the routine use of pan-ethnic carrier screening panels in reproductive medicine. Furthermore, the use of an ancestry model would allow better estimation of carrier rates and residual risks. Electronic supplementary material The online version of this article (10.1186/s12863-017-0570-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roman Shraga
- Phosphorus, Inc, 25 West 26th St, New York, NY, 10010, USA
| | | | - Sonya Elango
- Sarah Lawrence College, Bronxville, New York, USA
| | | | | | - Sara L Bristow
- Phosphorus, Inc, 25 West 26th St, New York, NY, 10010, USA.,Northwell Fertility, North Shore University Hospital, Manhasset, NY, USA
| | | | | | - David Hoffman
- IVF Florida Reproductive Associates, Margate, FL, USA
| | - Shahin Ghadir
- Department of Obstetrics and Gynecology, The David Geffen School of Medicine at UCLA, California, Los Angeles, USA
| | | | - Serena H Chen
- Institute for Reproductive Medicine and Science, Saint Barnabas Medical Center, Livingston, NJ, USA
| | - Avner Hershlag
- Division of Reproductive Endocrinology, Department of Obstetrics and Gynecology, Hofstra Northwell School of Medicine, Manhasset, NY, USA
| | - Jamie Grifo
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics and Gynecology, NYU Langone, New York, NY, USA
| | - Oscar Puig
- Phosphorus, Inc, 25 West 26th St, New York, NY, 10010, USA.
| |
Collapse
|
16
|
Sebastiani P, Gurinovich A, Bae H, Andersen SL, Perls TT. Assortative Mating by Ethnicity in Longevous Families. Front Genet 2017; 8:186. [PMID: 29209360 PMCID: PMC5702482 DOI: 10.3389/fgene.2017.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/07/2017] [Indexed: 12/01/2022] Open
Abstract
Recent work shows strong evidence of ancestry-based assortative mating in spouse pairs of the older generation of the Framingham Heart Study. Here, we extend this analysis to two studies of human longevity: the Long Life Family Study (LLFS), and the New England Centenarian Study (NECS). In the LLFS, we identified 890 spouse pairs spanning two generations, while in the NECS we used data from 102 spouse pairs including offspring of centenarians. We used principal components of genome-wide genotype data to demonstrate strong evidence of ancestry-based assortative mating in spouse pairs of the older generation and also confirm the decreasing trend of endogamy in more recent generations. These findings in studies of human longevity suggest that spouses marrying into longevous families may not be powerful controls for genetic association studies, and that there may be important ethnicity-specific, genetic influences and/or gene–environment interactions that influence extreme survival in old generations. In addition, the decreasing trend of genetic similarity of more recent generations might have ramifications for the incidence of homozygous rare variants necessary for survival to the most extreme ages.
Collapse
Affiliation(s)
- Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | | | - Harold Bae
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, United States
| | - Stacy L Andersen
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Thomas T Perls
- Geriatrics Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
17
|
Ancestry inference using principal component analysis and spatial analysis: a distance-based analysis to account for population substructure. BMC Genomics 2017; 18:789. [PMID: 29037167 PMCID: PMC5644186 DOI: 10.1186/s12864-017-4166-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/05/2017] [Indexed: 12/29/2022] Open
Abstract
Background Accurate inference of genetic ancestry is of fundamental interest to many biomedical, forensic, and anthropological research areas. Genetic ancestry memberships may relate to genetic disease risks. In a genome association study, failing to account for differences in genetic ancestry between cases and controls may also lead to false-positive results. Although a number of strategies for inferring and taking into account the confounding effects of genetic ancestry are available, applying them to large studies (tens thousands samples) is challenging. The goal of this study is to develop an approach for inferring genetic ancestry of samples with unknown ancestry among closely related populations and to provide accurate estimates of ancestry for application to large-scale studies. Methods In this study we developed a novel distance-based approach, Ancestry Inference using Principal component analysis and Spatial analysis (AIPS) that incorporates an Inverse Distance Weighted (IDW) interpolation method from spatial analysis to assign individuals to population memberships. Results We demonstrate the benefits of AIPS in analyzing population substructure, specifically related to the four most commonly used tools EIGENSTRAT, STRUCTURE, fastSTRUCTURE, and ADMIXTURE using genotype data from various intra-European panels and European-Americans. While the aforementioned commonly used tools performed poorly in inferring ancestry from a large number of subpopulations, AIPS accurately distinguished variations between and within subpopulations. Conclusions Our results show that AIPS can be applied to large-scale data sets to discriminate the modest variability among intra-continental populations as well as for characterizing inter-continental variation. The method we developed will protect against spurious associations when mapping the genetic basis of a disease. Our approach is more accurate and computationally efficient method for inferring genetic ancestry in the large-scale genetic studies. Electronic supplementary material The online version of this article (10.1186/s12864-017-4166-8) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
A GHEP-ISFG collaborative study on the genetic variation of 38 autosomal indels for human identification in different continental populations. Forensic Sci Int Genet 2017; 32:18-25. [PMID: 29024923 DOI: 10.1016/j.fsigen.2017.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/09/2017] [Accepted: 09/21/2017] [Indexed: 02/08/2023]
Abstract
A collaborative effort was carried out by the Spanish and Portuguese Speaking Working Group of the International Society for Forensic Genetics (GHEP-ISFG) to promote knowledge exchange between associate laboratories interested in the implementation of indel-based methodologies and build allele frequency databases of 38 indels for forensic applications. These databases include populations from different countries that are relevant for identification and kinship investigations undertaken by the participating laboratories. Before compiling population data, participants were asked to type the 38 indels in blind samples from annual GHEP-ISFG proficiency tests, using an amplification protocol previously described. Only laboratories that reported correct results contributed with population data to this study. A total of 5839 samples were genotyped from 45 different populations from Africa, America, East Asia, Europe and Middle East. Population differentiation analysis showed significant differences between most populations studied from Africa and America, as well as between two Asian populations from China and East Timor. Low FST values were detected among most European populations. Overall diversities and parameters of forensic efficiency were high in populations from all continents.
Collapse
|
19
|
Elhaik E. Editorial: Population Genetics of Worldwide Jewish People. Front Genet 2017; 8:101. [PMID: 28804494 PMCID: PMC5532521 DOI: 10.3389/fgene.2017.00101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/14/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eran Elhaik
- Department of Animal and Plant Sciences, University of SheffieldSheffield, United Kingdom
| |
Collapse
|
20
|
What Ancestry Can Tell Us About the Genetic Origins of Inter-Ethnic Differences in Asthma Expression. Curr Allergy Asthma Rep 2017; 16:53. [PMID: 27393700 DOI: 10.1007/s11882-016-0635-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Differences in asthma prevalence have been described across different populations, suggesting that genetic ancestry can play an important role in this disease. In fact, several studies have demonstrated an association between African ancestry with increased asthma susceptibility and severity, higher immunoglobulin E levels, and lower lung function. In contrast, Native American ancestry has been shown to have a protective role for this disease. Genome-wide association studies have allowed the identification of population-specific genetic variants with varying allele frequency among populations. Additionally, the correlation of genetic ancestry at the chromosomal level with asthma and related traits by means of admixture mapping has revealed regions of the genome where ancestry is correlated with the disease. In this review, we discuss the evidence supporting the association of genetic ancestry with asthma susceptibility and asthma-related traits, and highlight the regions of the genome harboring ancestry-specific genetic risk factors.
Collapse
|
21
|
A panel of 130 autosomal single-nucleotide polymorphisms for ancestry assignment in five Asian populations and in Caucasians. Forensic Sci Med Pathol 2017; 13:177-187. [DOI: 10.1007/s12024-017-9863-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 10/19/2022]
|
22
|
Ehler E, Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. J Forensic Leg Med 2017; 48:46-52. [PMID: 28454050 DOI: 10.1016/j.jflm.2017.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/22/2017] [Accepted: 04/09/2017] [Indexed: 01/27/2023]
Abstract
Isolated populations present a constant threat to the correctness of forensic genetic casework. In this review article we present several examples of how analyzing samples from isolated populations can bias the results of the forensic statistics and analyses. We select our examples from isolated populations from central and southeastern Europe, namely the Valachs and the European Roma. We also provide the reader with general strategies and principles to improve the laboratory practice (best practice) and reporting of samples from supposedly isolated populations. These include reporting the precise population data used for computing the forensic statistics, using the appropriate θ correction factor for calculating allele frequencies, typing ancestry informative markers in samples of unknown or uncertain ethnicity and establishing ethnic-specific forensic databases.
Collapse
Affiliation(s)
- Edvard Ehler
- Department of Biology and Environmental Studies, Charles University in Prague, Faculty of Education, Magdaleny Rettigove 4, Prague, 116 39, Czech Republic; Institute of Anthropology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614, Poznan, Poland.
| | - Daniel Vanek
- Forensic DNA Service, Janovskeho 18, Prague 7, 170 00, Czech Republic; Charles University in Prague, 2nd Faculty of Medicine, V Uvalu 84, Prague, 150 06, Czech Republic; Nemocnice Na Bulovce, Institute of Legal Medicine, Budinova 2, Prague, 180 81, Czech Republic.
| |
Collapse
|
23
|
Abstract
Genetic similarity of spouses can reflect factors influencing mate choice, such as physical/behavioral characteristics, and patterns of social endogamy. Spouse correlations for both genetic ancestry and measured traits may impact genotype distributions (Hardy Weinberg and linkage equilibrium), and therefore genetic association studies. Here we evaluate white spouse-pairs from the Framingham Heart Study (FHS) original and offspring cohorts (N = 124 and 755, respectively) to explore spousal genetic similarity and its consequences. Two principal components (PCs) of the genome-wide association (GWA) data were identified, with the first (PC1) delineating clines of Northern/Western to Southern European ancestry and the second (PC2) delineating clines of Ashkenazi Jewish ancestry. In the original (older) cohort, there was a striking positive correlation between the spouses in PC1 (r = 0.73, P = 3x10-22) and also for PC2 (r = 0.80, P = 7x10-29). In the offspring cohort, the spouse correlations were lower but still highly significant for PC1 (r = 0.38, P = 7x10-28) and for PC2 (r = 0.45, P = 2x10-39). We observed significant Hardy-Weinberg disequilibrium for single nucleotide polymorphisms (SNPs) loading heavily on PC1 and PC2 across 3 generations, and also significant linkage disequilibrium between unlinked SNPs; both decreased with time, consistent with reduced ancestral endogamy over generations and congruent with theoretical calculations. Ignoring ancestry, estimates of spouse kinship have a mean significantly greater than 0, and more so in the earlier generations. Adjusting kinship estimates for genetic ancestry through the use of PCs led to a mean spouse kinship not different from 0, demonstrating that spouse genetic similarity could be fully attributed to ancestral assortative mating. These findings also have significance for studies of heritability that are based on distantly related individuals (kinship less than 0.05), as we also demonstrate the poor correlation of kinship estimates in that range when ancestry is or is not taken into account. We analyzed three generations of whites from the Framingham Heart Study (FHS) using genome-wide genotype data to characterize their genetic ancestry. By examination of spouse-pairs, we observed that individuals of Northern/Western European, Southern European and Ashkenazi ancestry preferentially chose spouses of the same ancestry, however, the degree of endogamy decreased in each successive generation, especially between Northern/Western and Southern Europeans. We then showed that the mating pattern results in Hardy-Weinberg disequilibrium (HWD) at ancestrally-informative SNPs, and also results in linkage disequilibrium (LD) between unlinked loci. The HWD and LD decrease as theoretically expected with the decrease in endogamy noted in each generation. In the FHS sample, spouse genetic similarity can be explained by ancestry-related assortative mating.
Collapse
|
24
|
TMEM187-IRAK1 Polymorphisms Associated with Rheumatoid Arthritis Susceptibility in Tunisian and French Female Populations: Influence of Geographic Origin. J Immunol Res 2017; 2017:4915950. [PMID: 28271077 PMCID: PMC5320318 DOI: 10.1155/2017/4915950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 12/12/2022] Open
Abstract
Polymorphisms have been identified in the Xq28 locus as risk loci for rheumatoid arthritis (RA). Here, we investigated the association between three polymorphisms in the Xq28 region containing TMEM187 and IRAK1 (rs13397, rs1059703, and rs1059702) in two unstudied populations: Tunisian and French. The rs13397 G and rs1059703 T major alleles were significantly increased in RA patients (n = 408) compared with age-matched controls (n = 471) in both Tunisian and French women. These results were confirmed by a meta-analysis replication study including two independent Greek and Korean cohorts. The rs1059702 C major allele was significantly associated with RA, only with French women. In the French population, the GTC haplotype displayed a protective effect against RA, while the ATC, GCC, and GTT haplotypes conferred significant risk for RA. No association for these haplotypes was found in the Tunisian population. Our results replicated for the first time the association of the three Xq28 polymorphisms with RA risk in Tunisian and French populations and suggested that RA susceptibility is associated with TMEM187-IRAK1 polymorphisms in women. Our data further support the involvement of X chromosome in RA susceptibility and evidence ethnicities differences that might be explained by differences in the frequencies of SE HLA-DRB1 alleles between both populations.
Collapse
|
25
|
Martinez E, Crenon I, Silvy F, Del Grande J, Mougel A, Barea D, Fina F, Bernard JP, Ouaissi M, Lombardo D, Mas E. Expression of truncated bile salt-dependent lipase variant in pancreatic pre-neoplastic lesions. Oncotarget 2017; 8:536-551. [PMID: 27602750 PMCID: PMC5352176 DOI: 10.18632/oncotarget.11777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 08/13/2016] [Indexed: 01/05/2023] Open
Abstract
Pancreatic adenocarcinoma (PDAC) is a dismal disease. The lack of specific symptoms still leads to a delay in diagnosis followed by death within months for most patients. Exon 11 of the bile salt-dependent lipase (BSDL) gene encoding variable number of tandem repeated (VNTR) sequences has been involved in pancreatic pathologies. We hypothesized that BSDL VNTR sequences may be mutated in PDAC. The amplification of BSDL VNTR from RNA extracted from pancreatic SOJ-6 cells allowed us to identify a BSDL amplicon in which a cytosine residue is inserted in a VNTR sequence. This insertion gives rise to a premature stop codon, resulting in a truncated protein and to a modification of the C-terminal amino-acid sequence; that is PRAAHG instead of PAVIRF. We produced antibodies directed against these sequences and examined pancreatic tissues from patients with PDAC and PanIN. Albeit all tissues were positive to anti-PAVIRF antibodies, 72.2% of patient tissues gave positive reaction with anti-PRAAHG antibodies, particularly in dysplastic areas of the tumor. Neoplastic cells with ductal differentiation were not reactive to anti-PRAAHG antibodies. Some 70% of PanIN tissues were also reactive to anti-PRAAHG antibodies, suggesting that the C insertion occurs early during pancreatic carcinogenesis. Data suggest that anti-PRAAHG antibodies were uniquely reactive with a short isoform of BSDL specifically expressed in pre-neoplastic lesions of the pancreas. The detection of truncated BSDL reactive to antibodies against the PRAAHG C-terminal sequence in pancreatic juice or in pancreatic biopsies may be a new tool in the early diagnosis of PDAC.
Collapse
Affiliation(s)
- Emmanuelle Martinez
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Isabelle Crenon
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Françoise Silvy
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Jean Del Grande
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service d'Anatomopathologie, Marseille, France
| | - Alice Mougel
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Dolores Barea
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Frederic Fina
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- LBM- Assistance Publique Hôpitaux de Marseille, Hôpital Nord, Service de transfert d'Oncologie Biologique, Marseille, France
| | - Jean-Paul Bernard
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Gastroentérologie 2, Marseille, France
| | - Mehdi Ouaissi
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
- Assistance Publique Hôpitaux de Marseille, Hôpital de la Timone, Service de Chirurgie Digestive et Viscérale, Marseille, France
| | - Dominique Lombardo
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| | - Eric Mas
- Aix-Marseille Université, CRO2, Centre de Recherche en Oncologie biologique et Oncopharmacologie, Marseille, France
- INSERM, UMR_S 911, Marseille, France
| |
Collapse
|
26
|
Das R, Wexler P, Pirooznia M, Elhaik E. Localizing Ashkenazic Jews to Primeval Villages in the Ancient Iranian Lands of Ashkenaz. Genome Biol Evol 2016; 8:1132-49. [PMID: 26941229 PMCID: PMC4860683 DOI: 10.1093/gbe/evw046] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/11/2022] Open
Abstract
The Yiddish language is over 1,000 years old and incorporates German, Slavic, and Hebrew elements. The prevalent view claims Yiddish has a German origin, whereas the opposing view posits a Slavic origin with strong Iranian and weak Turkic substrata. One of the major difficulties in deciding between these hypotheses is the unknown geographical origin of Yiddish speaking Ashkenazic Jews (AJs). An analysis of 393 Ashkenazic, Iranian, and mountain Jews and over 600 non-Jewish genomes demonstrated that Greeks, Romans, Iranians, and Turks exhibit the highest genetic similarity with AJs. The Geographic Population Structure analysis localized most AJs along major primeval trade routes in northeastern Turkey adjacent to primeval villages with names that may be derived from "Ashkenaz." Iranian and mountain Jews were localized along trade routes on the Turkey's eastern border. Loss of maternal haplogroups was evident in non-Yiddish speaking AJs. Our results suggest that AJs originated from a Slavo-Iranian confederation, which the Jews call "Ashkenazic" (i.e., "Scythian"), though these Jews probably spoke Persian and/or Ossete. This is compatible with linguistic evidence suggesting that Yiddish is a Slavic language created by Irano-Turko-Slavic Jewish merchants along the Silk Roads as a cryptic trade language, spoken only by its originators to gain an advantage in trade. Later, in the 9th century, Yiddish underwent relexification by adopting a new vocabulary that consists of a minority of German and Hebrew and a majority of newly coined Germanoid and Hebroid elements that replaced most of the original Eastern Slavic and Sorbian vocabularies, while keeping the original grammars intact.
Collapse
Affiliation(s)
- Ranajit Das
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK Manipal Centre for Natural Sciences (MCNS), Manipal University, Manipal, Karnataka, India
| | - Paul Wexler
- Department of Linguistics, Tel Aviv University, Tel-Aviv, Israel
| | - Mehdi Pirooznia
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University
| | - Eran Elhaik
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
27
|
Glutamatergic and GABAergic susceptibility loci for heroin and cocaine addiction in subjects of African and European ancestry. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:118-23. [PMID: 26277529 PMCID: PMC4564302 DOI: 10.1016/j.pnpbp.2015.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 07/28/2015] [Accepted: 08/06/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Drug addiction, a leading health problem, is a chronic brain disease with a significant genetic component. Animal models and clinical studies established the involvement of glutamate and GABA neurotransmission in drug addiction. This study was designed to assess if 258 variants in 27 genes of these systems contribute to the vulnerability to develop drug addiction. METHODS Four independent analyses were conducted in a sample of 1860 subjects divided according to drug of abuse (heroin or cocaine) and ancestry (African and European). RESULTS A total of 11 SNPs in eight genes showed nominally significant associations (P<0.01) with heroin and/or cocaine addiction in one or both ancestral groups but the associations did not survive correction for multiple testing. Of these SNPs, the GAD1 upstream SNP rs1978340 is potentially functional as it was shown to affect GABA concentrations in the cingulate cortex. In addition, SNPs GABRB3 rs7165224; DBI rs12613135; GAD1 SNPs rs2058725, rs1978340, rs2241164; and GRIN2A rs1650420 were previously reported in associations with drug addiction or related phenotypes. CONCLUSIONS The study supports the involvement of genetic variation in the glutamatergic and GABAergic systems in drug addiction with partial overlap in susceptibility loci between cocaine and heroin addiction.
Collapse
|
28
|
Levran O, Peles E, Randesi M, Correa da Rosa J, Ott J, Rotrosen J, Adelson M, Kreek MJ. Dopaminergic pathway polymorphisms and heroin addiction: further support for association of CSNK1E variants. Pharmacogenomics 2015; 15:2001-9. [PMID: 25521358 DOI: 10.2217/pgs.14.145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND & AIM The dopaminergic pathways have been implicated in the etiology of drug addictions. The aim of this study was to determine if variants in dopaminergic genes are associated with heroin addiction. MATERIALS & METHODS The study includes 828 former heroin addicts and 232 healthy controls, of predominantly European ancestry. Ninety seven SNPs (13 genes) were analyzed. RESULTS Nine nominally significant associations were observed at CSNK1E, ANKK1, DRD2 and DRD3. CONCLUSION The results support our previous report of association of CSNK1E SNP rs1534891 with protection from heroin addiction. CSNK1E interacts with circadian rhythms and DARPP-32 and has been implicated in negative regulation of sensitivity to opioids in rodents. It may be a target for drug addiction treatment. Original submitted 8 August 2014; Revision submitted 8 October 2014.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Levran O, Peles E, Randesi M, Correa da Rosa J, Ott J, Rotrosen J, Adelson M, Kreek MJ. Susceptibility loci for heroin and cocaine addiction in the serotonergic and adrenergic pathways in populations of different ancestry. Pharmacogenomics 2015; 16:1329-42. [PMID: 26227246 PMCID: PMC4896084 DOI: 10.2217/pgs.15.86] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Drug addiction is influenced by genetic factors. AIM To determine if genetic variants in the serotonergic and adrenergic pathways are associated with heroin and/or cocaine addiction. SUBJECTS & METHODS The study examined 140 polymorphisms in 19 genes in 1855 subjects with predominantly European or African ancestries. RESULTS A total of 38 polymorphisms (13 genes) showed nominal associations, including novel associations in S100A10 (p11) and SLC18A2 (VMAT2). The association of HTR3B SNP rs11606194 with heroin addiction in the European ancestry subgroup remained significant after correction for multiple testing (p(corrected) = 0.04). CONCLUSION The study strengthens our previous findings of association of polymorphisms in HTR3A, HTR3B and ADRA1A. The study suggests partial overlap in genetic susceptibility between populations of different ancestry and between heroin and cocaine addiction.
Collapse
Affiliation(s)
- Orna Levran
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Einat Peles
- The Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| | - Joel Correa da Rosa
- Center for Clinical & Translational Science, The Rockefeller University, New York, NY 10065, USA
| | - Jurg Ott
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- The Laboratory of Statistical Genetics, The Rockefeller University, New York, NY 10065, USA
| | - John Rotrosen
- VA New York Harbor Healthcare System & NYU School of Medicine, New York, NY 10010, USA
| | - Miriam Adelson
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
- The Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Tel Aviv Elias Sourasky Medical Center, Tel Aviv, Israel
- Dr Miriam & Sheldon G Adelson Clinic for Drug Abuse Treatment & Research, Las Vegas, NV 89169, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
30
|
Watts RA, Mahr A, Mohammad AJ, Gatenby P, Basu N, Flores-Suárez LF. Classification, epidemiology and clinical subgrouping of antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Nephrol Dial Transplant 2015; 30 Suppl 1:i14-22. [PMID: 25805746 DOI: 10.1093/ndt/gfv022] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is now 25 years since the first European studies on vasculitis--the anti-neutrophil cytoplasmic antibody (ANCA) standardization project. Over that period of time, there have been major developments in the classification of the vasculitides, which has permitted the conduct of high-quality epidemiology studies. Studying the epidemiology of rare diseases such as the ANCA-associated vasculitides (AAV) poses considerable challenges to epidemiologists. The first is the need for a clear definition of a case with good differentiation from similar disorders. The second is case capture. The vasculitides are rare, and therefore, a large population is required to determine the incidence and prevalence, and this poses questions of feasibility. A large population increases the risk of incomplete case detection but permits a reasonable number of cases to be collected in a practicable time frame, whereas a smaller population requires a much longer time frame to collect the necessary cases, which may also not be feasible. Statistical methods of capture-recapture analysis enable estimates to be made of the number of missing cases. The third is case ascertainment. The AAV are virtually always managed in secondary care, and therefore, hospital-based case ascertainment may be appropriate. Fourthly, the rarity of the conditions makes prospective case-control studies investigating risk factors difficult to conduct because the population size required to achieve statistical confidence is in excess of that which is readily available. Thus, much of the data on risk factors are derived from retrospective studies with inherent potential bias.
Collapse
Affiliation(s)
- Richard A Watts
- Department of Rheumatology, Ipswich Hospital and Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alfred Mahr
- Department of Internal Medicine, Hospital Saint-Louis, University Paris 7, Paris, France
| | - Aladdin J Mohammad
- Department of Clinical Sciences, Rheumatology, Lund University, Lund, Sweden Vasculitis and Lupus Clinic, Addenbrooke's Hospital, Cambridge, UK
| | - Paul Gatenby
- Department of Immunology, The Canberra Hospital and Medical School Australian National University, Canberra, Australia
| | - Neil Basu
- Musculoskeletal Collaboration (Epidemiology Group), University of Aberdeen, Aberdeen, UK
| | - Luis Felipe Flores-Suárez
- Primary Systemic Vasculitides Clinic, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| |
Collapse
|
31
|
Prestes PR, Mitchell RJ, Daniel R, Sanchez JJ, van Oorschot RA. Predicting biogeographical ancestry in admixed individuals – values and limitations of using uniparental and autosomal markers. AUST J FORENSIC SCI 2015. [DOI: 10.1080/00450618.2015.1022600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Immunogenetic influences on acquisition of HIV-1 infection: consensus findings from two African cohorts point to an enhancer element in IL19 (1q32.2). Genes Immun 2015; 16:213-20. [PMID: 25633979 PMCID: PMC4409473 DOI: 10.1038/gene.2014.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
Numerous reports have suggested that immunogenetic factors may influence HIV-1 acquisition, yet replicated findings that translate between study cohorts remain elusive. Our work aimed to test several hypotheses about genetic variants within the IL10-IL24 gene cluster that encodes interleukin (IL)-10, IL-19, IL-20, and IL-24. In aggregated data from 515 Rwandans and 762 Zambians with up to 12 years of follow-up, 190 single nucleotide polymorphisms (SNPs) passed quality control procedures. When HIV-1-exposed seronegative subjects (n = 486) were compared with newly seroconverted individuals (n = 313) and seroprevalent subjects (n = 478) who were already infected at enrollment, rs12407485 (G>A) in IL19 showed a robust association signal in adjusted logistic regression models (odds ratio = 0.64, P = 1.7 × 10−4, and q = 0.033). Sensitivity analyses demonstrated that (i) results from both cohorts and subgroups within each cohort were highly consistent; (ii) verification of HIV-1 infection status after enrollment was critical; and (iii) supporting evidence was readily obtained from Cox proportional hazards models. Data from public databases indicate that rs12407485 is part of an enhancer element for three transcription factors. Overall, these findings suggest that molecular features at the IL19 locus may modestly alter the establishment of HIV-1 infection.
Collapse
|
33
|
|
34
|
Stress-related genes and heroin addiction: a role for a functional FKBP5 haplotype. Psychoneuroendocrinology 2014; 45:67-76. [PMID: 24845178 PMCID: PMC4316666 DOI: 10.1016/j.psyneuen.2014.03.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND Stress is a critical risk factor affecting both the development of and the relapse to drug addictions. Drug addictions are caused by genetic, environmental and drug-induced factors. The objective of this hypothesis-driven association study was to determine if genetic variants in stress-related genes are associated with heroin addiction. METHODS 112 selected genetic variants in 26 stress-related genes were genotyped in 852 case subjects and 238 controls of predominantly European ancestry. The case subjects are former heroin addicts with a history of at least one year of daily multiple uses of heroin, treated at a methadone maintenance treatment program (MMTP). The two most promising SNPs were subsequently tested in an African-American sample comprising of 314 cases and 208 control individuals. RESULTS Nineteen single nucleotide polymorphisms (SNPs) in 9 genes (AVP, AVPR1A, CRHR1, CRHR2, FKBP5, GAL, GLRA1, NPY1R and NR3C2) showed nominally significant association with heroin addiction. The associations of two FKBP5 SNPs that are part of one haplotype block, rs1360780 (intron 2) and rs3800373 (the 3' untranslated region), remained significant after correction for multiple testing (Pcorrected=0.03; OR=2.35, Pcorrected=0.0018; OR=2.85, respectively). The two SNPs also showed nominally significant association (P<0.05) with heroin addiction in an independent African-American cohort. FKBP5 is a co-chaperone that regulates glucocorticoid sensitivity. These FKBP5 SNPs were previously associated with diverse affective disorders and showed functional differences in gene expression and stress response. This study also supports our and others' previous reports of association of the GAL SNP rs694066 and the AVPR1A SNPs rs11174811, rs1587097 and rs10784339 with heroin and general drug addiction, respectively. CONCLUSIONS This study suggests that variations in the FKBP5 gene contribute to the development of opiate addiction by modulating the stress response. These findings may enhance the understanding of the interaction between stress and heroin addiction.
Collapse
|
35
|
Progress toward an efficient panel of SNPs for ancestry inference. Forensic Sci Int Genet 2014; 10:23-32. [DOI: 10.1016/j.fsigen.2014.01.002] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 01/03/2014] [Accepted: 01/07/2014] [Indexed: 01/31/2023]
|
36
|
Levran O, Peles E, Randesi M, Shu X, Ott J, Shen PH, Adelson M, Kreek MJ. Association of genetic variation in pharmacodynamic factors with methadone dose required for effective treatment of opioid addiction. Pharmacogenomics 2014; 14:755-68. [PMID: 23651024 DOI: 10.2217/pgs.13.58] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM The interindividual variability in the dose required for effective methadone maintenance treatment (MMT) for opioid addiction may be influenced in part by genetic variations in genes encoding pharmacodynamic factors of methadone. This study was conducted to identify some of these variants. MATERIALS & METHODS This study focused on 11 genes encoding components of the opioidergic (OPRM1, POMC and ARRB2), the dopaminergic (ANKK1 and DRD2) and the glutamatergic pathways (GRIN1 and GRIN2A), as well as the neurotrophin system (NGFB, BDNF, NTRK1 and NTRK2). The study includes 227 Israeli patients undergoing stable MMT. RESULTS Out of the 110 variants analyzed, 12 SNPs (in BDNF, NTRK2, OPRM1, DRD2 and ANKK1) were associated with methadone dose (nominal p < 0.05). Of these SNPs, ANKK1 rs7118900 and DRD2 rs2283265 are known to affect gene expression. Logistic regression of five representative SNPs discriminated between individuals requiring a methadone dose of >120 mg/day and <120 mg/day (p = 0.019), and showed moderate sensitivity and specificity (AUC of 0.63 in receiver operating characteristic analysis). CONCLUSION This data should stimulate further research on the potential influence and clinical significance of these variants on MMT.
Collapse
Affiliation(s)
- Orna Levran
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Elhaik E, Greenspan E, Staats S, Krahn T, Tyler-Smith C, Xue Y, Tofanelli S, Francalacci P, Cucca F, Pagani L, Jin L, Li H, Schurr TG, Greenspan B, Spencer Wells R. The GenoChip: a new tool for genetic anthropology. Genome Biol Evol 2013; 5:1021-31. [PMID: 23666864 PMCID: PMC3673633 DOI: 10.1093/gbe/evt066] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Genographic Project is an international effort aimed at charting human migratory history. The project is nonprofit and nonmedical, and, through its Legacy Fund, supports locally led efforts to preserve indigenous and traditional cultures. Although the first phase of the project was focused on uniparentally inherited markers on the Y-chromosome and mitochondrial DNA (mtDNA), the current phase focuses on markers from across the entire genome to obtain a more complete understanding of human genetic variation. Although many commercial arrays exist for genome-wide single-nucleotide polymorphism (SNP) genotyping, they were designed for medical genetic studies and contain medically related markers that are inappropriate for global population genetic studies. GenoChip, the Genographic Project’s new genotyping array, was designed to resolve these issues and enable higher resolution research into outstanding questions in genetic anthropology. The GenoChip includes ancestry informative markers obtained for over 450 human populations, an ancient human (Saqqaq), and two archaic hominins (Neanderthal and Denisovan) and was designed to identify all known Y-chromosome and mtDNA haplogroups. The chip was carefully vetted to avoid inclusion of medically relevant markers. To demonstrate its capabilities, we compared the FST distributions of GenoChip SNPs to those of two commercial arrays. Although all arrays yielded similarly shaped (inverse J) FST distributions, the GenoChip autosomal and X-chromosomal distributions had the highest mean FST, attesting to its ability to discern subpopulations. The chip performances are illustrated in a principal component analysis for 14 worldwide populations. In summary, the GenoChip is a dedicated genotyping platform for genetic anthropology. With an unprecedented number of approximately 12,000 Y-chromosomal and approximately 3,300 mtDNA SNPs and over 130,000 autosomal and X-chromosomal SNPs without any known health, medical, or phenotypic relevance, the GenoChip is a useful tool for genetic anthropology and population genetics.
Collapse
Affiliation(s)
- Eran Elhaik
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nievergelt CM, Maihofer AX, Shekhtman T, Libiger O, Wang X, Kidd KK, Kidd JR. Inference of human continental origin and admixture proportions using a highly discriminative ancestry informative 41-SNP panel. INVESTIGATIVE GENETICS 2013; 4:13. [PMID: 23815888 PMCID: PMC3699392 DOI: 10.1186/2041-2223-4-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 05/14/2013] [Indexed: 02/07/2023]
Abstract
Background Accurate determination of genetic ancestry is of high interest for many areas such as biomedical research, personal genomics and forensics. It remains an important topic in genetic association studies, as it has been shown that population stratification, if not appropriately considered, can lead to false-positive and -negative results. While large association studies typically extract ancestry information from available genome-wide SNP genotypes, many important clinical data sets on rare phenotypes and historical collections assembled before the GWAS area are in need of a feasible method (i.e., ease of genotyping, small number of markers) to infer the geographic origin and potential admixture of the study subjects. Here we report on the development, application and limitations of a small, multiplexable ancestry informative marker (AIM) panel of SNPs (or AISNP) developed specifically for this purpose. Results Based on worldwide populations from the HGDP, a 41-AIM AISNP panel for multiplex application with the ABI SNPlex and a subset with 31 AIMs for the Sequenome iPLEX system were selected and found to be highly informative for inferring ancestry among the seven continental regions Africa, the Middle East, Europe, Central/South Asia, East Asia, the Americas and Oceania. The panel was found to be least informative for Eurasian populations, and additional AIMs for a higher resolution are suggested. A large reference set including over 4,000 subjects collected from 120 global populations was assembled to facilitate accurate ancestry determination. We show practical applications of this AIM panel, discuss its limitations for admixed individuals and suggest ways to incorporate ancestry information into genetic association studies. Conclusion We demonstrated the utility of a small AISNP panel specifically developed to discern global ancestry. We believe that it will find wide application because of its feasibility and potential for a wide range of applications.
Collapse
Affiliation(s)
- Caroline M Nievergelt
- Department of Psychiatry, School of Medicine, University of San Diego California, La Jolla, CA, 92093, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Genetic ancestry inference using support vector machines, and the active emergence of a unique American population. Eur J Hum Genet 2012; 21:554-62. [PMID: 23211701 DOI: 10.1038/ejhg.2012.258] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We use genotype data from the Marshfield Clinical Research Foundation Personalized Medicine Research Project to investigate genetic similarity and divergence between Europeans and the sampled population of European Americans in Central Wisconsin, USA. To infer recent genetic ancestry of the sampled Wisconsinites, we train support vector machines (SVMs) on the positions of Europeans along top principal components (PCs). Our SVM models partition continent-wide European genetic variance into eight regional classes, which is an improvement over the geographically broader categories of recent ancestry reported by personal genomics companies. After correcting for misclassification error associated with the SVMs (<10%, in all cases), we observe a >14% discrepancy between insular ancestries reported by Wisconsinites and those inferred by SVM. Values of FST as well as Mantel tests for correlation between genetic and European geographic distances indicate minimal divergence between Europe and the local Wisconsin population. However, we find that individuals from the Wisconsin sample show greater dispersion along higher-order PCs than individuals from Europe. Hypothesizing that this pattern is characteristic of nascent divergence, we run computer simulations that mimic the recent peopling of Wisconsin. Simulations corroborate the pattern in higher-order PCs, demonstrate its transient nature, and show that admixture accelerates the rate of divergence between the admixed population and its parental sources relative to drift alone. Together, empirical and simulation results suggest that genetic divergence between European source populations and European Americans in Central Wisconsin is subtle but already under way.
Collapse
|
40
|
Manjarrez-Orduño N, Marasco E, Chung SA, Katz MS, Kiridly JF, Simpfendorfer KR, Freudenberg J, Ballard DH, Nashi E, Hopkins TJ, Cunninghame Graham DS, Lee AT, Coenen MJH, Franke B, Swinkels DW, Graham RR, Kimberly RP, Gaffney PM, Vyse TJ, Behrens TW, Criswell LA, Diamond B, Gregersen PK. CSK regulatory polymorphism is associated with systemic lupus erythematosus and influences B-cell signaling and activation. Nat Genet 2012; 44:1227-30. [PMID: 23042117 PMCID: PMC3715052 DOI: 10.1038/ng.2439] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/11/2012] [Indexed: 12/11/2022]
Abstract
C-src tyrosine kinase, Csk, physically interacts with the intracellular phosphatase Lyp (PTPN22) and can modify the activation state of downstream Src kinases, such as Lyn, in lymphocytes. We identified an association of Csk with systemic lupus erythematosus (SLE) and refined its location to an intronic polymorphism rs34933034 (OR 1.32, p = 1.04 × 10−9). The risk allele is associated with increased CSK expression and augments inhibitory phosphorylation of Lyn. In carriers of the risk allele, B cell receptor (BCR)-mediated activation of mature B cells, as well as plasma IgM, are increased. Moreover, the fraction of transitional B cells is doubled in the cord blood of carriers of the risk allele compared to non-risk haplotypes due to an expansion of the late transitional cells, a stage targeted by selection mechanisms. This suggests that the Lyp-Csk complex increases susceptibility to lupus at multiple maturation and activation points of B cells.
Collapse
Affiliation(s)
- Nataly Manjarrez-Orduño
- Center for Autoimmune and Musculoskeletal Disorders, The Feinstein Institute for Medical Research, North Shore-Long Island Jewish, Manhasset, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
An overview of the genetic structure within the Italian population from genome-wide data. PLoS One 2012; 7:e43759. [PMID: 22984441 PMCID: PMC3440425 DOI: 10.1371/journal.pone.0043759] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
In spite of the common belief of Europe as reasonably homogeneous at genetic level, advances in high-throughput genotyping technology have resolved several gradients which define different geographical areas with good precision. When Northern and Southern European groups were considered separately, there were clear genetic distinctions. Intra-country genetic differences were also evident, especially in Finland and, to a lesser extent, within other European populations. Here, we present the first analysis using the 125,799 genome-wide Single Nucleotide Polymorphisms (SNPs) data of 1,014 Italians with wide geographical coverage. We showed by using Principal Component analysis and model-based individual ancestry analysis, that the current population of Sardinia can be clearly differentiated genetically from mainland Italy and Sicily, and that a certain degree of genetic differentiation is detectable within the current Italian peninsula population. Pair-wise F(ST) statistics Northern and Southern Italy amounts approximately to 0.001 between, and around 0.002 between Northern Italy and Utah residents with Northern and Western European ancestry (CEU). The Italian population also revealed a fine genetic substructure underscoring by the genomic inflation (Sardinia vs. Northern Italy = 3.040 and Northern Italy vs. CEU = 1.427), warning against confounding effects of hidden relatedness and population substructure in association studies.
Collapse
|
42
|
Tal O. Two complementary perspectives on inter-individual genetic distance. Biosystems 2012; 111:18-36. [PMID: 22898797 DOI: 10.1016/j.biosystems.2012.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 11/29/2022]
Abstract
This paper examines population structure through the prism of pairwise genetic distances. Two complementary perspectives, framed as two simple questions, are explored: Q1: What is the probability that a random pair of individuals from the same local population is more genetically dissimilar than a random pair from two distinct populations? Q2: On average, how genetically different are two individuals from the same local population, in comparison with two individuals chosen from any two distinct populations? Models are developed to provide quantitative answers for the two questions, given allele frequencies across any number of markers from two diploid populations. The probability from Q1 is shown to drop to zero with increasing number of genetic markers even for very closely-related populations and rare alleles. The average genetic dissimilarity of two individuals from distinct populations diverges from the average dissimilarity of two individuals from the same population by a percentage dependent on estimates of population differentiation. This perspective also suggests a measure of population distance based on the intuitive notion of pairwise genetic distance, along with a simple method of estimation. Results from recent empirical research on inter-individual genetic distance in human populations are analyzed in the context of the theoretical framework.
Collapse
Affiliation(s)
- Omri Tal
- School of Philosophy and The Cohn Institute for the History and Philosophy of Science and Ideas, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
43
|
Levran O, Awolesi O, Shen PH, Adelson M, Kreek MJ. Estimating ancestral proportions in a multi-ethnic US sample: implications for studies of admixed populations. Hum Genomics 2012; 6:2. [PMID: 23244743 PMCID: PMC3437566 DOI: 10.1186/1479-7364-6-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/05/2012] [Indexed: 02/04/2023] Open
Abstract
This study was designed to determine the ancestral composition of a multi-ethnic sample collected for studies of drug addictions in New York City and Las Vegas, and to examine the reliability of self-identified ethnicity and three-generation family history data. Ancestry biographical scores for seven clusters corresponding to world major geographical regions were obtained using STRUCTURE, based on genotypes of 168 ancestry informative markers (AIMs), for a sample of 1,291 African Americans (AA), European Americans (EA), and Hispanic Americans (HA) along with data from 1,051 HGDP-CEPH ‘diversity panel’ as a reference. Self-identified ethnicity and family history data, obtained in an interview, were accurate in identifying the individual major ancestry in the AA and the EA samples (approximately 99% and 95%, respectively) but were not useful for the HA sample and could not predict the extent of admixture in any group. The mean proportions of the combined clusters corresponding to European and Middle Eastern populations in the AA sample, revealed by AIMs analysis, were 0.13. The HA subjects, predominantly Puerto Ricans, showed a highly variable hybrid contribution pattern of clusters corresponding to Europe (0.27), Middle East (0.27), Africa (0.20), and Central Asia (0.14). The effect of admixture on allele frequencies is demonstrated for two single-nucleotide polymorphisms (118A > G, 17 C > T) of the mu opioid receptor gene (OPRM1). This study reiterates the importance of AIMs in defining ancestry, especially in admixed populations.
Collapse
|
44
|
Shearin AL, Hedan B, Cadieu E, Erich SA, Schmidt EV, Faden DL, Cullen J, Abadie J, Kwon EM, Gröne A, Devauchelle P, Rimbault M, Karyadi DM, Lynch M, Galibert F, Breen M, Rutteman GR, André C, Parker HG, Ostrander EA. The MTAP-CDKN2A locus confers susceptibility to a naturally occurring canine cancer. Cancer Epidemiol Biomarkers Prev 2012; 21:1019-27. [PMID: 22623710 PMCID: PMC3392365 DOI: 10.1158/1055-9965.epi-12-0190-t] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Advantages offered by canine population substructure, combined with clinical presentations similar to human disorders, makes the dog an attractive system for studies of cancer genetics. Cancers that have been difficult to study in human families or populations are of particular interest. Histiocytic sarcoma is a rare and poorly understood neoplasm in humans that occurs in 15% to 25% of Bernese Mountain Dogs (BMD). METHODS Genomic DNA was collected from affected and unaffected BMD in North America and Europe. Both independent and combined genome-wide association studies (GWAS) were used to identify cancer-associated loci. Fine mapping and sequencing narrowed the primary locus to a single gene region. RESULTS Both populations shared the same primary locus, which features a single haplotype spanning MTAP and part of CDKN2A and is present in 96% of affected BMD. The haplotype is within the region homologous to human chromosome 9p21, which has been implicated in several types of cancer. CONCLUSIONS We present the first GWAS for histiocytic sarcoma in any species. The data identify an associated haplotype in the highly cited tumor suppressor locus near CDKN2A. These data show the power of studying distinctive malignancies in highly predisposed dog breeds. IMPACT Here, we establish a naturally occurring model of cancer susceptibility due to CDKN2 dysregulation, thus providing insight about this cancer-associated, complex, and poorly understood genomic region.
Collapse
Affiliation(s)
- Abigail L. Shearin
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815 USA
| | - Benoit Hedan
- UMR 6290 CNRS, Université de Rennes 1, Faculté de Médecine, CS 34317 France
- Departments of Population Health and Pathobiology, College of Veterinary Medicine and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606 USA
| | - Edouard Cadieu
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Suzanne A. Erich
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Emmett V. Schmidt
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
- Cancer Research Center at Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114 USA
| | - Daniel L. Faden
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815 USA
| | - John Cullen
- Departments of Population Health and Pathobiology, College of Veterinary Medicine and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606 USA
| | - Jerome Abadie
- Histopathology Unit, Ecole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes - ONIRIS, Nantes, France
| | - Erika M. Kwon
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Andrea Gröne
- Department of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Patrick Devauchelle
- Centre de Cancerologie Vétérinaire, Ecole Nationale Vétérinaire de Maisons Alfort, France
| | - Maud Rimbault
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Danielle M. Karyadi
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Mary Lynch
- Cancer Research Center at Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114 USA
| | - Francis Galibert
- UMR 6290 CNRS, Université de Rennes 1, Faculté de Médecine, CS 34317 France
| | - Matthew Breen
- Departments of Population Health and Pathobiology, College of Veterinary Medicine and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606 USA
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine and Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, NC 27606 USA
- Cancer Genetics Program, UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599 USA
| | - Gerard R. Rutteman
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Catherine André
- UMR 6290 CNRS, Université de Rennes 1, Faculté de Médecine, CS 34317 France
| | - Heidi G. Parker
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| | - Elaine A. Ostrander
- Cancer Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
45
|
Rodriguez S, Williams DM, Guthrie PAI, McArdle WL, Smith GD, Evans DM, Gaunt TR, Day INM. Molecular and population analysis of natural selection on the human haptoglobin duplication. Ann Hum Genet 2012; 76:352-62. [PMID: 22607059 PMCID: PMC3963445 DOI: 10.1111/j.1469-1809.2012.00716.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Haptoglobin binds free haemoglobin that prevents oxidative damage produced by haemolysis. There is a copy number variant (CNV) in the haptoglobin gene (HP) consisting of two alleles, Hp1 (no duplication), and Hp2 (1.7kb duplication involving two exons). The spread of the Hp2 allele is believed to have taken place under selective pressures conferred by malaria resistance. However, molecular evidence is lacking and Hp did not emerge in genomewide SNPs surveys for evidence of selection. In Europe, there is geographical constancy of Hp2 frequency, indicative of absence of clinal pressures and that modern day European alleles represent a “snapshot” of their out-of-Africa migrations. In this work we test for signatures of natural selection acting on the Hp CNV in a sample from the UK population (Avon Longitudinal Study of Parents and Children, ALSPAC). We present here heterozygosity decay, pairwise FST values observed between ALSPAC and 301 populations from all five populated continents, extended haplotype homozygosity analyses involving the CNV and 80 SNPs surrounding the CNV ∼500kb in each direction, and linkage disequilibrium and pairwise haplotypic analyses involving 160 SNPs on chromosome 16q22.1. Taken together, our results represent the first molecular analysis of natural selection in the Hp CNV genetic region.
Collapse
Affiliation(s)
- Santiago Rodriguez
- MRC Centre for Causal Analyses in Translational Epidemiology (CAiTE) Bristol Genetic Epidemiology Laboratories (BGEL), School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Alonso-Perez E, Suarez-Gestal M, Calaza M, Sebastiani GD, Pullmann R, Papasteriades C, Kovacs A, Skopouli FN, Bijl M, Suarez A, Marchini M, Migliaresi S, Carreira P, Ordi-Ros J, Witte T, Ruzickova S, Santos MJ, Barizzone N, Blanco FJ, Lauwerys BR, Gomez-Reino JJ, Gonzalez A. Bias in effect size of systemic lupus erythematosus susceptibility loci across Europe: a case-control study. Arthritis Res Ther 2012; 14:R94. [PMID: 22541939 PMCID: PMC3446468 DOI: 10.1186/ar3818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 03/27/2012] [Accepted: 04/27/2012] [Indexed: 01/11/2023] Open
Abstract
Introduction We aimed to investigate whether the effect size of the systemic lupus erythematosus (SLE) risk alleles varies across European subpopulations. Methods European SLE patients (n = 1,742) and ethnically matched healthy controls (n = 2,101) were recruited at 17 centres from 10 different countries. Only individuals with self-reported ancestry from the country of origin were included. In addition, participants were genotyped for top ancestry informative markers and for 25 SLE associated SNPs. The results were used to compare effect sizes between the Central Eureopan and Southern European subgroups. Results Twenty of the 25 SNPs showed independent association with SLE, These SNPs showed a significant bias to larger effect sizes in the Southern subgroup, with 15/20 showing this trend (P = 0.019) and a larger mean odds ratio of the 20 SNPs (1.46 vs. 1.34, P = 0.02) as well as a larger difference in the number of risk alleles (2.06 vs. 1.63, P = 0.027) between SLE patients and controls than for Central Europeans. This bias was reflected in a very significant difference in the cumulative genetic risk score (4.31 vs. 3.48, P = 1.8 × 10-32). Effect size bias was accompanied by a lower number of SLE risk alleles in the Southern subjects, both patients and controls, the difference being more marked between the controls (P = 1.1 × 10-8) than between the Southern and Central European patients (P = 0.016). Seven of these SNPs showed significant allele frequency clines. Conclusion Our findings showed a bias to larger effect sizes of SLE loci in the Southern Europeans relative to the Central Europeans together with clines of SLE risk allele frequencies. These results indicate the need to study risk allele clines and the implications of the polygenic model of inheritance in SLE.
Collapse
Affiliation(s)
- Elisa Alonso-Perez
- Laboratorio de Investigacion 10 and Rheumatology Unit, Instituto de Investigacion Sanitaria - Hospital Clinico Universitario de Santiago, Choupana s/n, Santiago de Compostela 15706, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Frkonja A, Gredler B, Schnyder U, Curik I, Sölkner J. Prediction of breed composition in an admixed cattle population. Anim Genet 2012; 43:696-703. [PMID: 23061480 DOI: 10.1111/j.1365-2052.2012.02345.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2011] [Indexed: 12/20/2022]
Abstract
Swiss Fleckvieh was established in 1970 as a composite of Simmental (SI) and Red Holstein Friesian (RHF) cattle. Breed composition is currently reported based on pedigree information. Information on a large number of molecular markers potentially provides more accurate information. For the analysis, we used Illumina BovineSNP50 Genotyping Beadchip data for 90 pure SI, 100 pure RHF and 305 admixed bulls. The scope of the study was to compare the performance of hidden Markov models, as implemented in structure software, with methods conventionally used in genomic selection [BayesB, partial least squares regression (PLSR), least absolute shrinkage and selection operator (LASSO) variable selection)] for predicting breed composition. We checked the performance of algorithms for a set of 40 492 single nucleotide polymorphisms (SNPs), subsets of evenly distributed SNPs and subsets with different allele frequencies in the pure populations, using F(ST) as an indicator. Key results are correlations of admixture levels estimated with the various algorithms with admixture based on pedigree information. For the full set, PLSR, BayesB and structure performed in a very similar manner (correlations of 0.97), whereas the correlation of LASSO and pedigree admixture was lower (0.93). With decreasing number of SNPs, correlations decreased substantially only for 5% or 1% of all SNPs. With SNPs chosen according to F(ST) , results were similar to results obtained with the full set. Only when using 96 and 48 SNPs with the highest F(ST) , correlations dropped to 0.92 and 0.90 respectively. Reducing the number of pure animals in training sets to 50, 20 and 10 each did not cause a drop in the correlation with pedigree admixture.
Collapse
Affiliation(s)
- A Frkonja
- Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna, Gregor Mendel Str. 33, A-1180, Vienna, Austria
| | | | | | | | | |
Collapse
|
48
|
Martin JE, Broen JC, Carmona FD, Teruel M, Simeon CP, Vonk MC, van 't Slot R, Rodriguez-Rodriguez L, Vicente E, Fonollosa V, Ortego-Centeno N, González-Gay MA, García-Hernández FJ, de la Peña PG, Carreira P, Voskuyl AE, Schuerwegh AJ, van Riel PLCM, Kreuter A, Witte T, Riemekasten G, Airo P, Scorza R, Lunardi C, Hunzelmann N, Distler JHW, Beretta L, van Laar J, Chee MM, Worthington J, Herrick A, Denton C, Tan FK, Arnett FC, Assassi S, Fonseca C, Mayes MD, Radstake TRDJ, Koeleman BPC, Martin J. Identification of CSK as a systemic sclerosis genetic risk factor through Genome Wide Association Study follow-up. Hum Mol Genet 2012; 21:2825-35. [PMID: 22407130 DOI: 10.1093/hmg/dds099] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic sclerosis (SSc) is complex autoimmune disease affecting the connective tissue; influenced by genetic and environmental components. Recently, we performed the first successful genome-wide association study (GWAS) of SSc. Here, we perform a large replication study to better dissect the genetic component of SSc. We selected 768 polymorphisms from the previous GWAS and genotyped them in seven replication cohorts from Europe. Overall significance was calculated for replicated significant SNPs by meta-analysis of the replication cohorts and replication-GWAS cohorts (3237 cases and 6097 controls). Six SNPs in regions not previously associated with SSc were selected for validation in another five independent cohorts, up to a total of 5270 SSc patients and 8326 controls. We found evidence for replication and overall genome-wide significance for one novel SSc genetic risk locus: CSK [P-value = 5.04 × 10(-12), odds ratio (OR) = 1.20]. Additionally, we found suggestive association in the loci PSD3 (P-value = 3.18 × 10(-7), OR = 1.36) and NFKB1 (P-value = 1.03 × 10(-6), OR = 1.14). Additionally, we strengthened the evidence for previously confirmed associations. This study significantly increases the number of known putative genetic risk factors for SSc, including the genes CSK, PSD3 and NFKB1, and further confirms six previously described ones.
Collapse
|
49
|
Guha S, Rosenfeld JA, Malhotra AK, Lee AT, Gregersen PK, Kane JM, Pe'er I, Darvasi A, Lencz T. Implications for health and disease in the genetic signature of the Ashkenazi Jewish population. Genome Biol 2012; 13:R2. [PMID: 22277159 PMCID: PMC3334583 DOI: 10.1186/gb-2012-13-1-r2] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 01/13/2012] [Accepted: 01/25/2012] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Relatively small, reproductively isolated populations with reduced genetic diversity may have advantages for genomewide association mapping in disease genetics. The Ashkenazi Jewish population represents a unique population for study based on its recent (< 1,000 year) history of a limited number of founders, population bottlenecks and tradition of marriage within the community. We genotyped more than 1,300 Ashkenazi Jewish healthy volunteers from the Hebrew University Genetic Resource with the Illumina HumanOmni1-Quad platform. Comparison of the genotyping data with that of neighboring European and Asian populations enabled the Ashkenazi Jewish-specific component of the variance to be characterized with respect to disease-relevant alleles and pathways. RESULTS Using clustering, principal components, and pairwise genetic distance as converging approaches, we identified an Ashkenazi Jewish-specific genetic signature that differentiated these subjects from both European and Middle Eastern samples. Most notably, gene ontology analysis of the Ashkenazi Jewish genetic signature revealed an enrichment of genes functioning in transepithelial chloride transport, such as CFTR, and in equilibrioception, potentially shedding light on cystic fibrosis, Usher syndrome and other diseases over-represented in the Ashkenazi Jewish population. Results also impact risk profiles for autoimmune and metabolic disorders in this population. Finally, residual intra-Ashkenazi population structure was minimal, primarily determined by class 1 MHC alleles, and not related to host country of origin. CONCLUSIONS The Ashkenazi Jewish population is of potential utility in disease-mapping studies due to its relative homogeneity and distinct genomic signature. Results suggest that Ashkenazi-associated disease genes may be components of population-specific genomic differences in key functional pathways.
Collapse
Affiliation(s)
- Saurav Guha
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore - Long Island Jewish Health System, 75-59, 263rd St Glen Oaks, NY 11004, USA
| | - Jeffrey A Rosenfeld
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore - Long Island Jewish Health System, 75-59, 263rd St Glen Oaks, NY 11004, USA
| | - Anil K Malhotra
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore - Long Island Jewish Health System, 75-59, 263rd St Glen Oaks, NY 11004, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Hofstra University School of Medicine, Hempstead, NY 11549, USA
| | - Annette T Lee
- Robert S Boas Center for Human Genetics and Genomics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - Peter K Gregersen
- Department of Molecular Medicine, Hofstra University School of Medicine, Hempstead, NY 11549, USA
- Robert S Boas Center for Human Genetics and Genomics, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
| | - John M Kane
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore - Long Island Jewish Health System, 75-59, 263rd St Glen Oaks, NY 11004, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Hofstra University School of Medicine, Hempstead, NY 11549, USA
| | - Itsik Pe'er
- Department of Computer Science, Columbia University, 500 W 120th St New York, NY 10027, USA
| | - Ariel Darvasi
- Department of Genetics The Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | - Todd Lencz
- Department of Psychiatry, Division of Research, The Zucker Hillside Hospital Division of the North Shore - Long Island Jewish Health System, 75-59, 263rd St Glen Oaks, NY 11004, USA
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, 350 Community Drive, Manhasset, NY 11030, USA
- Department of Psychiatry and Behavioral Science, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Ave, Bronx, NY 10461, USA
- Department of Psychiatry, Hofstra University School of Medicine, Hempstead, NY 11549, USA
- Department of Molecular Medicine, Hofstra University School of Medicine, Hempstead, NY 11549, USA
| |
Collapse
|
50
|
Fernando MMA, Freudenberg J, Lee A, Morris DL, Boteva L, Rhodes B, Gonzalez-Escribano MF, Lopez-Nevot MA, Navarra SV, Gregersen PK, Martin J, Vyse TJ. Transancestral mapping of the MHC region in systemic lupus erythematosus identifies new independent and interacting loci at MSH5, HLA-DPB1 and HLA-G. Ann Rheum Dis 2012; 71:777-84. [PMID: 22233601 PMCID: PMC3329227 DOI: 10.1136/annrheumdis-2011-200808] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Objectives Systemic lupus erythematosus (SLE) is a chronic multisystem genetically complex autoimmune disease characterised by the production of autoantibodies to nuclear and cellular antigens, tissue inflammation and organ damage. Genome-wide association studies have shown that variants within the major histocompatibility complex (MHC) region on chromosome 6 confer the greatest genetic risk for SLE in European and Chinese populations. However, the causal variants remain elusive due to tight linkage disequilibrium across disease-associated MHC haplotypes, the highly polymorphic nature of many MHC genes and the heterogeneity of the SLE phenotype. Methods A high-density case-control single nucleotide polymorphism (SNP) study of the MHC region was undertaken in SLE cohorts of Spanish and Filipino ancestry using a custom Illumina chip in order to fine-map association signals in these haplotypically diverse populations. In addition, comparative analyses were performed between these two datasets and a northern European UK SLE cohort. A total of 1433 cases and 1458 matched controls were examined. Results Using this transancestral SNP mapping approach, novel independent loci were identified within the MHC region in UK, Spanish and Filipino patients with SLE with some evidence of interaction. These loci include HLA-DPB1, HLA-G and MSH5 which are independent of each other and HLA-DRB1 alleles. Furthermore, the established SLE-associated HLA-DRB1*15 signal was refined to an interval encompassing HLA-DRB1 and HLA-DQA1. Increased frequencies of MHC region risk alleles and haplotypes were found in the Filipino population compared with Europeans, suggesting that the greater disease burden in non-European SLE may be due in part to this phenomenon. Conclusion These data highlight the usefulness of mapping disease susceptibility loci using a transancestral approach, particularly in a region as complex as the MHC, and offer a springboard for further fine-mapping, resequencing and transcriptomic analysis.
Collapse
Affiliation(s)
- Michelle M A Fernando
- Division of Genetics and Molecular Medicine and Division of Immunology, Infection and Inflammatory Disease, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|