1
|
Yehia D, Leung C, Sin DD. Clinical utilization of airway inflammatory biomarkers in the prediction and monitoring of clinical outcomes in patients with chronic obstructive pulmonary disease. Expert Rev Mol Diagn 2024; 24:409-421. [PMID: 38635513 DOI: 10.1080/14737159.2024.2344777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) accounts for 545 million people living with chronic respiratory disorders and is the third leading cause of morbidity and mortality around the world. COPD is a progressive disease, characterized by episodes of acute worsening of symptoms such as cough, dyspnea, and sputum production. AREAS COVERED Airway inflammation is a prominent feature of COPD. Chronic airway inflammation results in airway structural remodeling and emphysema. Persistent airway inflammation is a treatable trait of COPD and plays a significant role in disease development and progression. In this review, the authors summarize the current and emerging biomarkers that reveal the heterogeneity of airway inflammation subtypes, clinical outcomes, and therapeutic response in COPD. EXPERT OPINION Airway inflammation can be broadly categorized as eosinophilic (type 2 inflammation) and non-eosinophilic (non-type 2 inflammation) in COPD. Currently, blood eosinophil counts are incorporated in clinical practice guidelines to identify COPD patients who are at a higher risk of exacerbations and lung function decline, and who are likely to respond to inhaled corticosteroids. As new therapeutics are being developed for the chronic management of COPD, it is essential to identify biomarkers that will predict treatment response.
Collapse
Affiliation(s)
- Dina Yehia
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Clarus Leung
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, BC, Canada
- Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Wang L, Koelink PJ, Garssen J, Folkerts G, Henricks PAJ, Braber S. Gut Microbiome and Transcriptomic Changes in Cigarette Smoke-Exposed Mice Compared to COPD and CD Patient Datasets. Int J Mol Sci 2024; 25:4058. [PMID: 38612871 PMCID: PMC11012690 DOI: 10.3390/ijms25074058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.
Collapse
Affiliation(s)
- Lei Wang
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Pim J. Koelink
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam Gastroenterology, Endocrinology, Metabolism (AGEM), 1105 BK Amsterdam, The Netherlands;
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
- Nutricia Research, 3584 CT Utrecht, The Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| | - Paul A. J. Henricks
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| | - Saskia Braber
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands; (L.W.); (J.G.); (G.F.); (P.A.J.H.)
| |
Collapse
|
3
|
Wang M, Song J, Yang H, Wu X, Zhang J, Wang S. Gut microbiota was highly related to the immune status in chronic obstructive pulmonary disease patients. Aging (Albany NY) 2024; 16:3241-3256. [PMID: 38349864 PMCID: PMC10929793 DOI: 10.18632/aging.205532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/05/2024] [Indexed: 02/15/2024]
Abstract
This study aimed to explore the profile of gut microbiota and immunological state in COPD patients. 80 fecal and blood samples were collected from 40 COPD patients and 40 healthy controls (HC) and analyzed with 16s-rRNA gene sequencing and immunofactor omics analysis to investigate the profile of gut microbiota and immunologic factors (IFs). The linear discriminant analysis (LDA) effect size (LefSe) was used to determine the biomarker's taxa. The random forest and LASSO regression analysis were executed to screen IFs and develop an IFscore model. The correlation between gut microbiota and IFs, along with the IFscore and the diversity of gut microbiota, was evaluated with the Spearman analysis. The α and β diversity showed that the composition and distribution of gut microbiota in the COPD group differed from that of the HC group. 7 differential taxa at the phylum level and 17 differential taxa at the genus level were found. LefSe analysis screened out 5 biomarker's taxa. 32 differential IFs (up-regulated 27 IFs and down-regulated 5 IFs) were identified between two groups, and 5 IFs (CCL3, CXCL9, CCL7, IL2, IL4) were used to construct an IFscore model. The Spearman analysis revealed that 29 IFs were highly related to 5 biomarker's taxa and enriched in 16 pathways. Furthermore, the relationship between the IFscore and gut microbiota diversity was very close. The gut microbiota and IFs profile in COPD patients differed from that in healthy individuals. Gut microbiota was highly related to the immune status in COPD patients.
Collapse
Affiliation(s)
- Mei Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jun Song
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Huizhen Yang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Xiaoyu Wu
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| | - Jin Zhang
- Department of Psychiatry, Jinhua Second People’s Hospital, Jinhua 321000, Zhejiang, China
| | - Sheng Wang
- Department of Respiratory, Zhejiang Jinhua Guangfu Cancer Hospital, Jinhua 321000, Zhejiang, China
| |
Collapse
|
4
|
Wohnhaas CT, Baßler K, Watson CK, Shen Y, Leparc GG, Tilp C, Heinemann F, Kind D, Stierstorfer B, Delić D, Brunner T, Gantner F, Schultze JL, Viollet C, Baum P. Monocyte-derived alveolar macrophages are key drivers of smoke-induced lung inflammation and tissue remodeling. Front Immunol 2024; 15:1325090. [PMID: 38348034 PMCID: PMC10859862 DOI: 10.3389/fimmu.2024.1325090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Smoking is a leading risk factor of chronic obstructive pulmonary disease (COPD), that is characterized by chronic lung inflammation, tissue remodeling and emphysema. Although inflammation is critical to COPD pathogenesis, the cellular and molecular basis underlying smoking-induced lung inflammation and pathology remains unclear. Using murine smoke models and single-cell RNA-sequencing, we show that smoking establishes a self-amplifying inflammatory loop characterized by an influx of molecularly heterogeneous neutrophil subsets and excessive recruitment of monocyte-derived alveolar macrophages (MoAM). In contrast to tissue-resident AM, MoAM are absent in homeostasis and characterized by a pro-inflammatory gene signature. Moreover, MoAM represent 46% of AM in emphysematous mice and express markers causally linked to emphysema. We also demonstrate the presence of pro-inflammatory and tissue remodeling associated MoAM orthologs in humans that are significantly increased in emphysematous COPD patients. Inhibition of the IRAK4 kinase depletes a rare inflammatory neutrophil subset, diminishes MoAM recruitment, and alleviates inflammation in the lung of cigarette smoke-exposed mice. This study extends our understanding of the molecular signaling circuits and cellular dynamics in smoking-induced lung inflammation and pathology, highlights the functional consequence of monocyte and neutrophil recruitment, identifies MoAM as key drivers of the inflammatory process, and supports their contribution to pathological tissue remodeling.
Collapse
Affiliation(s)
- Christian T. Wohnhaas
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Kevin Baßler
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Carolin K. Watson
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Yang Shen
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Germán G. Leparc
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Cornelia Tilp
- Immunology & Respiratory Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Fabian Heinemann
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - David Kind
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Birgit Stierstorfer
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Denis Delić
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Florian Gantner
- Department of Biology, University of Konstanz, Konstanz, Germany
- Translational Medicine & Clinical Pharmacology, C. H. Boehringer Sohn AG & Co. KG, Biberach, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases (DZNE) and University of Bonn, Bonn, Germany
| | - Coralie Viollet
- Global Computational Biology and Digital Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Patrick Baum
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
5
|
Giraldo-Montoya ÁM, Torres-Duque CA, Giraldo-Cadavid LF, Laucho-Contreras ME, González-Flórez A, Santos AM, Tuta-Quintero EA, Celli BR, González-García M. Sputum Biomarkers in Wood and Tobacco Smoke Etiotypes of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2023; 19:1-10. [PMID: 38179428 PMCID: PMC10763680 DOI: 10.2147/copd.s439064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024] Open
Abstract
Introduction There is a need to better understand the etiotypes of chronic obstructive pulmonary disease (COPD) beyond the tobacco-smoke (TS-COPD). Wood smoke COPD (WS-COPD) is characterized by greater airway compromise, milder emphysema, and slower rate of lung function decline than TS-COPD. However, it is unclear if these two etiotypes of COPD have differences in sputum biomarker concentrations. Objective was to compare sputum levels of selected sputum biomarkers between WS-COPD and TS-COPD, and healthy controls. Methods Eighty-eight women (69±12 years) were recruited and classified into: WS-COPD (n=31), TS-COPD (n=29) and controls (n=28). Using ELISA, we determined induced sputum levels of metalloproteinase 9 (MMP-9), chemokine ligand 5 (CCL5), interleukin-8 (IL-8), chemokine ligand 16 (CCL16/HCC-4) and vascular endothelial growth factor (VEGF-1). Differences were analyzed by Kruskal-Wallis and Mann-Whitney-U tests and correlation between airflow limitation and biomarkers by Spearman's test. Results At similar degree of airflow obstruction, anthropometrics and medications use, the level of sputum CCL5 was higher in TS-COPD than WS-COPD (p=0.03) without differences in MMP-9, IL-8, CCL16/HCC-4, and VEGF-1. Women with WS-COPD and TS-COPD showed significantly higher sputum levels of MMP-9, IL-8 and CCL5 compared with controls (p<0.001). FEV1% predicted correlated negatively with levels of MMP-9 (rho:-0.26; P=0.016), CCL5 (rho:-0.37; P=0.001), IL-8 (rho:-0.42; P<0.001) and VEGF (rho:-0.22; P=0.04). Conclusion While sputum concentrations of MMP-9, IL-8, and CCL5 were higher in COPD women compared with controls, women with TS-COPD had higher levels of CCL5 compared with those with WS-COPD. Whether this finding relates to differences in pathobiological pathways remains to be determined.
Collapse
Affiliation(s)
- Ángela María Giraldo-Montoya
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad Tecnológica de Pereira, Pereira, Colombia
| | - Carlos A Torres-Duque
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Biosciences Doctoral, Universidad de La Sabana, Chía, Colombia
| | - Luis F Giraldo-Cadavid
- Medical Department, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | | | | | - Eduardo A Tuta-Quintero
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- Epidemiology and Biostatistics Department, Universidad de La Sabana, Chía, Colombia
| | | | - Mauricio González-García
- CINEUMO, Research Center, Fundación Neumológica Colombiana, Bogotá, Colombia
- School of Medicine, Universidad de La Sabana, Chía, Colombia
| |
Collapse
|
6
|
El Fakihi S, El Allam A, Tahoune H, Najimi N, Kadi C, Ibrahimi A, Bourkadi JE, Seghrouchni F. Functional characterization of small and large alveolar macrophages in sarcoidosis and idiopathic pulmonary fibrosis compared with non-fibrosis interstitial lung diseases. Hum Antibodies 2023; 31:59-69. [PMID: 37574726 DOI: 10.3233/hab-230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Sarcoidosis is a granulomatous disease that mostly affects the lungs. Advanced tissue injury caused by this disease can progress to pulmonary fibrosis with similar characteristics shared with idiopathic pulmonary fibrosis (IPF). The initial presentations of both sarcoidosis and IPF may be shared with other interstitial lung diseases (ILDs). Two populations of macrophages have been described in the alveolar space: small alveolar macrophages (AMs) and large alveolar macrophages. Despite their protective function, these cells may also play a role in the initiation and maintenance of inflammation leading to fibrosis. OBJECTIVE The aim of this study was the functional characterization of small and large AM subpopulations in sarcoidosis and IPF as a pathology with respectively mild and advanced tissue injury causing fibrosis, in comparison with non-fibrosis ILDs. METHODS Activation and adhesion surface markers as well as functions of small and large AMs isolated from bronchoalveolar lavage (BAL) were assessed by Flow Cytometry within patients with confirmed sarcoidosis (n= 14), IPF (n= 6), and non-fibrosis ILDs (n= 9). RESULTS Our results showed that small AMs are immunologically more active, which may be important for airway inflammation. They are also proportionally more abundant in IPF, and therefore they may be more involved in a fibrosis process associated with the down-regulation of HLA-DR, LeuCAM, and CD62L expression. In Sarcoidosis, the inflammatory process appears to be associated with up-regulation of CD38 expression and oxidative burst activity. CONCLUSION A relevant potential of the activation and adhesion markers as well as oxidative burst activity expressed on small and large AMs, in the perspective of differential diagnosis of sarcoidosis and IPF.
Collapse
Affiliation(s)
- Sara El Fakihi
- , Rabat, Morocco
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Aicha El Allam
- , Rabat, Morocco
- Department of Immunology, School of Medicine, Yale University, New Haven, CT, USA
| | - Hicham Tahoune
- , Rabat, Morocco
- Department of Microbiology, CHU Mohammed VI, Tangier, Morocco
| | - Nouhaila Najimi
- , Rabat, Morocco
- Laboratory of Human Pathologies, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco
| | - Chaimae Kadi
- , Rabat, Morocco
- Department of Biology, Faculty of Sciences, University Abdelmalek Essaadi, Tetouan, Morocco
| | - Azeddine Ibrahimi
- , Rabat, Morocco
- Medical Biotechnology Laboratory, Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | - Jamal-Eddine Bourkadi
- Pneumo-Phtisiology Department, Moulay Youssef Hospital, Rabat, Morocco
- Faculty of Medicine and Pharmacy, University Mohammed V, Rabat, Morocco
| | | |
Collapse
|
7
|
Aloufi N, Alluli A, Eidelman DH, Baglole CJ. Aberrant Post-Transcriptional Regulation of Protein Expression in the Development of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:ijms222111963. [PMID: 34769392 PMCID: PMC8584689 DOI: 10.3390/ijms222111963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable and prevalent respiratory disorder that is characterized by chronic inflammation and emphysema. COPD is primarily caused by cigarette smoke (CS). CS alters numerous cellular processes, including the post-transcriptional regulation of mRNAs. The identification of RNA-binding proteins (RBPs), microRNAs (miRNAs), and long non-coding RNAs (lncRNAs) as main factors engaged in the regulation of RNA biology opens the door to understanding their role in coordinating physiological cellular processes. Dysregulation of post-transcriptional regulation by foreign particles in CS may lead to the development of diseases such as COPD. Here we review current knowledge about post-transcriptional events that may be involved in the pathogenesis of COPD.
Collapse
Affiliation(s)
- Noof Aloufi
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medical Laboratory Technology, Applied Medical Science, Taibah University, Universities Road, Medina P.O. Box 344, Saudi Arabia
| | - Aeshah Alluli
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
| | - David H. Eidelman
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
| | - Carolyn J. Baglole
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada; (N.A.); (A.A.)
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada;
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
- Correspondence:
| |
Collapse
|
8
|
Macrophages in heterotopic ossification: from mechanisms to therapy. NPJ Regen Med 2021; 6:70. [PMID: 34702860 PMCID: PMC8548514 DOI: 10.1038/s41536-021-00178-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 09/30/2021] [Indexed: 01/04/2023] Open
Abstract
Heterotopic ossification (HO) is the formation of extraskeletal bone in non-osseous tissues. It is caused by an injury that stimulates abnormal tissue healing and regeneration, and inflammation is involved in this process. It is worth noting that macrophages are crucial mediators of inflammation. In this regard, abundant macrophages are recruited to the HO site and contribute to HO progression. Macrophages can acquire different functional phenotypes and promote mesenchymal stem cell (MSC) osteogenic differentiation, chondrogenic differentiation, and angiogenesis by expressing cytokines and other factors such as the transforming growth factor-β1 (TGF-β1), bone morphogenetic protein (BMP), activin A (Act A), oncostatin M (OSM), substance P (SP), neurotrophin-3 (NT-3), and vascular endothelial growth factor (VEGF). In addition, macrophages significantly contribute to the hypoxic microenvironment, which primarily drives HO progression. Thus, these have led to an interest in the role of macrophages in HO by exploring whether HO is a "butterfly effect" event. Heterogeneous macrophages are regarded as the "butterflies" that drive a sequence of events and ultimately promote HO. In this review, we discuss how the recruitment of macrophages contributes to HO progression. In particular, we review the molecular mechanisms through which macrophages participate in MSC osteogenic differentiation, angiogenesis, and the hypoxic microenvironment. Understanding the diverse role of macrophages may unveil potential targets for the prevention and treatment of HO.
Collapse
|
9
|
Gender specific airway gene expression in COPD sub-phenotypes supports a role of mitochondria and of different types of leukocytes. Sci Rep 2021; 11:12848. [PMID: 34145303 PMCID: PMC8213687 DOI: 10.1038/s41598-021-91742-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/20/2021] [Indexed: 01/22/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a destructive inflammatory disease and the genes expressed within the lung are crucial to its pathophysiology. We have determined the RNAseq transcriptome of bronchial brush cells from 312 stringently defined ex-smoker patients. Compared to healthy controls there were for males 40 differentially expressed genes (DEGs) and 73 DEGs for females with only 26 genes shared. The gene ontology (GO) term “response to bacterium” was shared, with several different DEGs contributing in males and females. Strongly upregulated genes TCN1 and CYP1B1 were unique to males and females, respectively. For male emphysema (E)-dominant and airway disease (A)-dominant COPD (defined by computed tomography) the term “response to stress” was found for both sub-phenotypes, but this included distinct up-regulated genes for the E-sub-phenotype (neutrophil-related CSF3R, CXCL1, MNDA) and for the A-sub-phenotype (macrophage-related KLF4, F3, CD36). In E-dominant disease, a cluster of mitochondria-encoded (MT) genes forms a signature, able to identify patients with emphysema features in a confirmation cohort. The MT-CO2 gene is upregulated transcriptionally in bronchial epithelial cells with the copy number essentially unchanged. Both MT-CO2 and the neutrophil chemoattractant CXCL1 are induced by reactive oxygen in bronchial epithelial cells. Of the female DEGs unique for E- and A-dominant COPD, 88% were detected in females only. In E-dominant disease we found a pronounced expression of mast cell-associated DEGs TPSB2, TPSAB1 and CPA3. The differential genes discovered in this study point towards involvement of different types of leukocytes in the E- and A-dominant COPD sub-phenotypes in males and females.
Collapse
|
10
|
Carstensen S, Holz O, Hohlfeld JM, Müller M. Quantitative analysis of endotoxin-induced inflammation in human lung cells by Chipcytometry. Cytometry A 2021; 99:967-976. [PMID: 33860615 DOI: 10.1002/cyto.a.24352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 11/07/2022]
Abstract
Chipcytometry is a tool that uses iterative staining cycles with multiple antibodies for a detailed characterization of cells. Cell recognition is based on morphological features. Cells fixed on microfluidic chips can be stored and shipped enabling a centralized analysis, which is important for assessments in multi-center clinical trials. The method was initially implemented for the analysis of cells from peripheral blood. We adapted it to more heterogeneous human lung cells from bronchoalveolar lavage (BAL) fluid and induced sputum (IS). We aimed to assess the performance of Chipcytometry to detect and quantify the endotoxin induced inflammatory response in healthy subjects. BAL and IS samples of 10 healthy subjects were collected prior to and following segmental and inhaled endotoxin challenge. Samples were analyzed by Chipcytometry and were compared with flow cytometry, and differential cell count (DCC). Chipcytometry clearly detected the endotoxin induced inflammatory response which was characterized by a massive increase of neutrophils (BAL: 2.5% to 54.7%; IS: 40.5% to 71.1%) and monocytes (BAL: 7.7% to 24.7%; IS: 8.0% to 14.5%). While some differences between detection methods exist, the overall results were comparable. The ability of Chipcytometry to verify fluorescent signals with morphological features improved the precision of rare cell analysis such as of induced sputum lymphocytes. In conclusion, Chipcytometry enables the quantitative analysis of cells from BAL fluid and IS. Advantages over DCC and flow cytometry include the storage of cells on chips, the ability for re-analysis and the mapping of surface marker binding to morphological information. It therefore appears to be a promising method for use in clinical respiratory drug development.
Collapse
Affiliation(s)
- Saskia Carstensen
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Olaf Holz
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
| | - Jens M Hohlfeld
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
- German Center for Lung Research (BREATH), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
| | - Meike Müller
- Clinical Airway Research, Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| |
Collapse
|
11
|
Tejwani V, Moughames E, Suresh K, Tang SE, Mair LG, Romero K, Putcha N, Alexis NE, Woo H, D’Alessio FR, Hansel NN. Black Carbon Content in Airway Macrophages is Associated with Reduced CD80 Expression and Increased Exacerbations in Former Smokers With COPD. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2021; 8:91-99. [PMID: 33156984 PMCID: PMC8047619 DOI: 10.15326/jcopdf.2020.0170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/16/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by recurrent exacerbations. Macrophages play a critical role in immune response and tissue repair in COPD. Airway macrophages (AM) are exposed to environmental exposures which are retained in the cytoplasmic material. Both biomass and particulate matter have been linked to higher AM black carbon. It is unknown if AM black carbon is associated with COPD morbidity and macrophage phenotype. METHODS Former smokers with COPD were enrolled and sputum induction was performed to obtain airway macrophages. Macrophages underwent black carbon quantification and flow cytometry phenotyping. Health information was obtained the same day as sputum induction and prospective exacerbations were assessed by monthly telephone calls. RESULTS We studied 30 former smokers with COPD who had a mean age of 67 years and mean forced expiratory volume in 1 second (FEV1)% predicted of 60.8%. Higher AM black carbon content was associated with increased total exacerbations and severe exacerbations and reduced CD80 expression. CONCLUSION AM black carbon association with respiratory morbidity is largely unexplored and this is the first study to identify association with prospective exacerbations. Macrophages expressed reduced CD80, a surface marker providing costimulatory signals required for development of antigen-specific immune responses. Our findings suggest that reduced CD80 expression is the pathophysiologic mechanism for the association of AM black carbon content and increased exacerbations. Therefore, beyond solely serving as a marker for increased exposures, AM black carbon content may be a predictor of future exacerbations given a macrophage less equipped to respond to an acute infectious exposure.
Collapse
Affiliation(s)
- Vickram Tejwani
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Eric Moughames
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Karthik Suresh
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Shih-En Tang
- Division of Pulmonary and Critical Care Medicine, Tri-Service General Hospital, Taipei, Taiwan
| | - Laura G. Mair
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Karina Romero
- Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Neil E. Alexis
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, United States
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- **These authors share senior authorship
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- **These authors share senior authorship
| |
Collapse
|
12
|
Becerra-Diaz M, Song M, Heller N. Androgen and Androgen Receptors as Regulators of Monocyte and Macrophage Biology in the Healthy and Diseased Lung. Front Immunol 2020; 11:1698. [PMID: 32849595 PMCID: PMC7426504 DOI: 10.3389/fimmu.2020.01698] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Androgens, the predominant male sex hormones, drive the development and maintenance of male characteristics by binding to androgen receptor (AR). As androgens are systemically distributed throughout the whole organism, they affect many tissues and cell types in addition to those in male sexual organs. It is now clear that the immune system is a target of androgen action. In the lungs, many immune cells express ARs and are responsive to androgens. In this review, we describe the effects of androgens and ARs on lung myeloid immune cells-monocytes and macrophages-as they relate to health and disease. In particular, we highlight the effect of androgens on lung diseases, such as asthma, chronic obstructive pulmonary disease and lung fibrosis. We also discuss the therapeutic use of androgens and how circulating androgens correlate with lung disease. In addition to human studies, we also discuss how mouse models have helped to uncover the effect of androgens on monocytes and macrophages in lung disease. Although the role of estrogen and other female hormones has been broadly analyzed in the literature, we focus on the new perspectives of androgens as modulators of the immune system that target myeloid cells during lung inflammation.
Collapse
Affiliation(s)
| | | | - Nicola Heller
- Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
13
|
Inflammatory macrophage memory in nonsteroidal anti-inflammatory drug-exacerbated respiratory disease. J Allergy Clin Immunol 2020; 147:587-599. [PMID: 32540397 DOI: 10.1016/j.jaci.2020.04.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drug-exacerbated respiratory disease (N-ERD) is a chronic inflammatory condition, which is driven by an aberrant arachidonic acid metabolism. Macrophages are major producers of arachidonic acid metabolites and subject to metabolic reprogramming, but they have been neglected in N-ERD. OBJECTIVE This study sought to elucidate a potential metabolic and epigenetic macrophage reprogramming in N-ERD. METHODS Transcriptional, metabolic, and lipid mediator profiles in macrophages from patients with N-ERD and healthy controls were assessed by RNA sequencing, Seahorse assays, and LC-MS/MS. Metabolites in nasal lining fluid, sputum, and plasma from patients with N-ERD (n = 15) and healthy individuals (n = 10) were quantified by targeted metabolomics analyses. Genome-wide methylomics were deployed to define epigenetic mechanisms of macrophage reprogramming in N-ERD. RESULTS This study shows that N-ERD monocytes/macrophages exhibit an overall reduction in DNA methylation, aberrant metabolic profiles, and an increased expression of chemokines, indicative of a persistent proinflammatory activation. Differentially methylated regions in N-ERD macrophages included genes involved in chemokine signaling and acylcarnitine metabolism. Acylcarnitines were increased in macrophages, sputum, nasal lining fluid, and plasma of patients with N-ERD. On inflammatory challenge, N-ERD macrophages produced increased levels of acylcarnitines, proinflammatory arachidonic acid metabolites, cytokines, and chemokines as compared to healthy macrophages. CONCLUSIONS Together, these findings decipher a proinflammatory metabolic and epigenetic reprogramming of macrophages in N-ERD.
Collapse
|
14
|
Caspase-11 promotes allergic airway inflammation. Nat Commun 2020; 11:1055. [PMID: 32103022 PMCID: PMC7044193 DOI: 10.1038/s41467-020-14945-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/12/2020] [Indexed: 11/29/2022] Open
Abstract
Activated caspase-1 and caspase-11 induce inflammatory cell death in a process termed pyroptosis. Here we show that Prostaglandin E2 (PGE2) inhibits caspase-11-dependent pyroptosis in murine and human macrophages. PGE2 suppreses caspase-11 expression in murine and human macrophages and in the airways of mice with allergic inflammation. Remarkably, caspase-11-deficient mice are strongly resistant to developing experimental allergic airway inflammation, where PGE2 is known to be protective. Expression of caspase-11 is elevated in the lung of wild type mice with allergic airway inflammation. Blocking PGE2 production with indomethacin enhances, whereas the prostaglandin E1 analog misoprostol inhibits lung caspase-11 expression. Finally, alveolar macrophages from asthma patients exhibit increased expression of caspase-4, a human homologue of caspase-11. Our findings identify PGE2 as a negative regulator of caspase-11-driven pyroptosis and implicate caspase-4/11 as a critical contributor to allergic airway inflammation, with implications for pathophysiology of asthma. Caspase 11 activation involves transcriptional upregulation and proteolytic cleavage. Here the authors show that prostaglandin E2 prevents caspase-11-mediated pyroptosis, blocking caspase-11 mRNA and protein upregulation in macrophages and in vivo, and that mice lacking caspase-11 are strongly protected from allergic airway inflammation.
Collapse
|
15
|
Belchamber KBR, Donnelly LE. Targeting defective pulmonary innate immunity - A new therapeutic option? Pharmacol Ther 2020; 209:107500. [PMID: 32061706 DOI: 10.1016/j.pharmthera.2020.107500] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
Chronic pulmonary conditions now account for 1 in 15 deaths in the US and mortality is increasing. Chronic obstructive pulmonary disease (COPD) is due to become the 3rd largest cause of mortality by 2030 and mortality from other respiratory conditions such as asthma, idiopathic pulmonary fibrosis and cystic fibrosis are not reducing. There is an urgent need for novel therapies to address this problem as many of the current strategies targeting inflammation are not sufficient. The innate immune system of the lung is an important defence against invading pathogens, but in many chronic pulmonary diseases, this system mounts an inappropriate response. In COPD, macrophages are increased in number, but fail to clear pathogens correctly and become highly activated. This leads to increased damage and remodelling of the airways. In idiopathic fibrosis, there is a switch of macrophage phenotype to a cell that promotes abnormal repair. Neutrophils also display dysfunction in COPD where aberrant migratory profiles may lead to increased damage to lung tissue and emphysema; while in cystic fibrosis the proteolytic lung environment damages neutrophil receptors leading to ineffective phagocytosis and migration. Targeting the innate immune system to restore 'normal function' could have enormous benefits. Improving phagocytosis of pathogens could reduce exacerbations and hence the associated decline in lung function, and novel therapeutics such as sulforaphane appear to do this in vitro. Other natural products such as resveratrol and derivatives also have anti-inflammatory properties. Statins have traditionally been used to manage cholesterol levels in hypercholesterolaemia, however these molecules also have beneficial effects on the innate immune cells. Statins have been shown to be anti-inflammatory and restore aberrant neutrophil chemotaxis in aged cells. Other possible agents that may be efficacious are senolytics. These compounds include natural products such as quercetin which have anti-inflammatory properties but can also suppress viral replication. As viruses have been shown to suppress phagocytosis of macrophages, it is possible that these compounds could have benefit during viral exacerbations to protect this innate response. These compounds demonstrate that it is possible to address defective innate responses in the lung but a better understanding of the mechanisms driving defective innate immunity in pulmonary disease may lead to improved therapeutics.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Dovehouse Street, London SW3 6LY, UK.
| |
Collapse
|
16
|
Mamber SW, Gurel V, Lins J, Ferri F, Beseme S, McMichael J. Effects of cannabis oil extract on immune response gene expression in human small airway epithelial cells (HSAEpC): implications for chronic obstructive pulmonary disease (COPD). J Cannabis Res 2020; 2:5. [PMID: 33526116 PMCID: PMC7819312 DOI: 10.1186/s42238-019-0014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 12/29/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is commonly associated with both a pro-inflammatory and a T-helper 1 (Th1) immune response. It was hypothesized that cannabis oil extract can alleviate COPD symptoms by eliciting an anti-inflammatory Th2 immune response. Accordingly, the effects of cannabis oil extract on the expression of 84 Th2 and related immune response genes in human small airways epithelial cells (HSAEpC) were investigated. METHODS HSAEpC from a single donor were treated with three dilutions of a standardized cannabis oil extract (1:400, 1:800 and 1:1600) along with a solvent control (0.25% [2.5 ul/ml] ethanol) for 24 h. There were four replicates per treatment dilution, and six for the control. RNA isolated from cells were employed in pathway-focused quantitative polymerase chain reaction (qPCR) microarray assays. RESULTS The extract induced significant (P < 0.05) changes in expression of 37 tested genes. Six genes (CSF2, IL1RL1, IL4, IL13RA2, IL17A and PPARG) were up-regulated at all three dilutions. Another two (CCL22 and TSLP) were up-regulated while six (CLCA1, CMA1, EPX, LTB4R, MAF and PMCH) were down-regulated at the 1:400 and 1:800 dilutions. The relationship of differentially-expressed genes of interest to biologic pathways was explored using the Database for Annotation, Visualization and Integrated Discovery (DAVID). CONCLUSIONS This exploratory investigation indicates that cannabis oil extract may affect expression of specific airway epithelial cell genes that could modulate pro-inflammatory or Th1 processes in COPD. These results provide a basis for further investigations and have prompted in vivo studies of the effects of cannabis oil extract on pulmonary function. TRIAL REGISTRATION NONE (all in vitro experiments).
Collapse
Affiliation(s)
- Stephen W Mamber
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| | - Volkan Gurel
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Jeremy Lins
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
| | - Fred Ferri
- NCM Biotechnology, Newport, RI, 02840, USA
| | - Sarah Beseme
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA.
| | - John McMichael
- Beech Tree Labs Inc., 1 Virginia Ave, Suite 103, Providence, RI, 02905, USA
- The Institute for Therapeutic Discovery, Delanson, NY, 12053, USA
| |
Collapse
|
17
|
Gao HX, Su Y, Zhang AL, Xu JW, Fu Q, Yan L. MiR-34c-5p plays a protective role in chronic obstructive pulmonary disease via targeting CCL22. Exp Lung Res 2019; 45:1-12. [PMID: 31032652 DOI: 10.1080/01902148.2018.1563925] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hai-Xiang Gao
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Yan Su
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Ai-Li Zhang
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Jin-Wei Xu
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Qian Fu
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| | - Li Yan
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
18
|
Knobloch J, Panek S, Yanik SD, Jamal Jameel K, Bendella Z, Jungck D, Bürger P, Bülthoff E, Struck B, Giannakis N, Rupp J, Kronsbein J, Peters M, Koch A. The monocyte-dependent immune response to bacteria is suppressed in smoking-induced COPD. J Mol Med (Berl) 2019; 97:817-828. [PMID: 30929031 DOI: 10.1007/s00109-019-01778-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
COPD patients have an increased susceptibility to bacterial airway infections that can induce exacerbations. In response to infections, circulating monocytes become recruited to the infected tissue and secrete cytokines. We hypothesized that this cytokine response is reduced in COPD. Cultured peripheral blood monocytes of never smokers (NS) and smokers without (S) and with COPD (3 study populations, n = 36-37) were stimulated with extracts of Haemophilus influenzae, Staphylococcus aureus, or Streptococcus pneumoniae or with four different pathogen-associated molecular patterns (PAMPs). Four cytokines and 9 PAMP-related signaling molecules were measured and compared between the groups. Granulocyte-macrophage-colony-stimulating-factor responses to all stimulants were reduced in S and COPD compared to NS. Tumor-necrosis-factor-α responses to all bacterial extracts, peptidoglycan, and lipopolysaccharide were reduced in S and/or COPD. Interleukin-10 responses to S. aureus and lipoteichoic acid were increased in COPD. Correlations to pack-years and lung function were found. The peptidoglycan-receptor NOD2 and the mRNA of the lipopolysaccharide-receptor TLR4 were reduced in S and COPD. Cytokine responses of monocytes to bacteria are suppressed by smoking and in COPD possibly due to NOD2 and TLR4 reduction and/or interleukin-10 increase. This might help to explain the increased susceptibility to bacterial infections. These systemic molecular pathologies might be targets for therapeutic strategies to prevent infection-induced exacerbations. KEY MESSAGES: COPD subjects have an increased susceptibility to bacterial infections. This implies defects in the immune response to bacteria and is critical for disease progression. The cytokine response of monocytes to bacteria is reduced in COPD. This might be due to a reduced NOD2 and TLR4 and an increased IL-10 expression. This can explain the increased susceptibility to infections and help to identify drug targets.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany.
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany.
| | - Susanne Panek
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Sarah Derya Yanik
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Kaschin Jamal Jameel
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Zeynep Bendella
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Department of Radiology, University of Bonn Medical Center, Bonn, Germany
| | - David Jungck
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
- Department of Pneumology, Clinic III for Internal Medicine, University of Cologne, Cologne, Germany
- Department of Internal Medicine II, Pneumology, Allergology and Respiratory Medicine, Bethel Teaching Hospital, Berlin, Germany
| | - Paul Bürger
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Eike Bülthoff
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Birte Struck
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Nikolaos Giannakis
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany
| | - Juliane Kronsbein
- Medical Clinic III for Pneumology, Allergology, Sleep- and Respiratory Medicine, Bergmannsheil University Hospital, Bürkle-de-la-Camp-Platz 1, 44789, Bochum, Germany
| | - Marcus Peters
- Department of Experimental Pneumology, Ruhr University Bochum, Bochum, Germany
| | - Andrea Koch
- Medical Clinic V, Ludwig-Maximilians-University LMU, Munich, Germany
- German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
19
|
Paplińska-Goryca M, Nejman-Gryz P, Proboszcz M, Kwiecień I, Hermanowicz-Salamon J, Grabczak EM, Krenke R. Expression of TSLP and IL-33 receptors on sputum macrophages of asthma patients and healthy subjects. J Asthma 2018; 57:1-10. [PMID: 30588853 DOI: 10.1080/02770903.2018.1543435] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective: Local cytokine milieu (especially Th2 inflammatory type) secreted into the asthmatic airways affect the alternative activated macrophages polarization (M2). TSLP and IL-33 are important alarmins of allergic response associated with Th2 inflammation. The aim of the study was to investigate the expression of the receptors for epithelial derived cytokines: TSLP (TSLPR) and IL-33 (ST2) on induced sputum CD206 positive macrophages from asthma and healthy subjects and analyze the relationships between these receptors and clinical features of the disease. Methods: Immunofluorescence staining for CD206 and TSLPR or ST2 on sputum macrophages was performed in 20 adult patients with stable asthma - 75% with atopy (3 intermittent, 12 mild-to-moderate, 5 severe, of which 11 were on biological anty-IgE treatment) and 23 healthy adult controls - 48% with atopy. Results: Our study demonstrated an increased expression of TSLP and IL-33 receptors on bronchial CD206 positive macrophages in asthma group. TSLPR but not ST2 had also greater expression on CD206 negative macrophages in asthma patients. Increased expression of both investigated receptors was related to longer disease duration and impaired lung function. We observed increased count of CD206lowTSLPhigh macrophages as well as positive correlation of these cells with total serum IgE in patients with atopy. Conclusions: The macrophage response during allergic reaction is likely to be connected with TSLP but rather not with IL-33 action. Our study indicates an important role of crosstalk between macrophages, TSLP and IL-33 in asthma pathophysiology.
Collapse
Affiliation(s)
- Magdalena Paplińska-Goryca
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Patrycja Nejman-Gryz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Małgorzata Proboszcz
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Kwiecień
- Department of Internal Medicine and Hematology, Laboratory of Flow Cytometry and Hematology, Military Medical Institute, Warsaw, Poland
| | - Joanna Hermanowicz-Salamon
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Elżbieta M Grabczak
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| | - Rafał Krenke
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
20
|
A large lung gene expression study identifying IL1B as a novel player in airway inflammation in COPD airway epithelial cells. Inflamm Res 2018; 67:539-551. [DOI: 10.1007/s00011-018-1145-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/22/2018] [Accepted: 03/24/2018] [Indexed: 01/21/2023] Open
|
21
|
Dysregulated Functions of Lung Macrophage Populations in COPD. J Immunol Res 2018; 2018:2349045. [PMID: 29670919 PMCID: PMC5835245 DOI: 10.1155/2018/2349045] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/29/2017] [Indexed: 01/02/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.
Collapse
|
22
|
Characterisation of lung macrophage subpopulations in COPD patients and controls. Sci Rep 2017; 7:7143. [PMID: 28769058 PMCID: PMC5540919 DOI: 10.1038/s41598-017-07101-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 01/08/2023] Open
Abstract
Lung macrophage subpopulations have been identified based on size. We investigated characteristics of small and large macrophages in the alveolar spaces and lung interstitium of COPD patients and controls. Alveolar and interstitial cells were isolated from lung resection tissue from 88 patients. Macrophage subpopulation cell-surface expression of immunological markers and phagocytic ability were assessed by flow cytometry. Inflammatory related gene expression was measured. Alveolar and interstitial macrophages had subpopulations of small and large macrophages based on size and granularity. Alveolar macrophages had similar numbers of small and large cells; interstitial macrophages were mainly small. Small macrophages expressed significantly higher cell surface HLA-DR, CD14, CD38 and CD36 and lower CD206 compared to large macrophages. Large alveolar macrophages showed lower marker expression in COPD current compared to ex-smokers. Small interstitial macrophages had the highest pro-inflammatory gene expression levels, while large alveolar macrophages had the lowest. Small alveolar macrophages had the highest phagocytic ability. Small alveolar macrophage CD206 expression was lower in COPD patients compared to smokers. COPD lung macrophages include distinct subpopulations; Small interstitial and small alveolar macrophages with more pro-inflammatory and phagocytic function respectively, and large alveolar macrophages with low pro-inflammatory and phagocytic ability.
Collapse
|
23
|
Abstract
In the healthy lung, macrophages maintain homeostasis by clearing inhaled particles, bacteria, and removing apoptotic cells from the local pulmonary environment. However, in respiratory diseases including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis, macrophages appear to be dysfunctional and may contribute to disease pathogenesis. In COPD, phagocytosis of bacterial species and apoptotic cells by both alveolar macrophages and monocyte-derived macrophages is significantly reduced, leading to colonization of the lung with pathogenic bacteria. COPD macrophages also release high levels of pro-inflammatory cytokines and chemokines, including CXCL8, TGFβ, and CCL2, driving recruitment of other inflammatory cells including neutrophils and monocytes to the lungs and promoting disease progression.In asthma, defective phagocytosis and efferocytosis have also been reported, and macrophages appear to have altered cell surface receptor expression; however, it is as yet unclear how this contributes to disease progression but may be important in driving Th2-mediated inflammation. In cystic fibrosis, macrophages also display defective phagocytosis, and reduced bacterial killing, which may be driven by the pro-inflammatory environment present in the lungs of these patients.The mechanisms behind defective macrophage function in lung diseases are not currently understood, but potential mechanisms include alterations in phagocytic receptor expression levels, oxidative stress, but also the possibility that specific diseases are associated with a specific, altered, macrophage phenotype that displays reduced function. Identification of the mechanisms responsible may present novel therapeutic opportunities for treatment.
Collapse
Affiliation(s)
- Kylie B R Belchamber
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Louise E Donnelly
- Department of Airway Disease, National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
24
|
Pharmacological and genetic reappraisals of protease and oxidative stress pathways in a mouse model of obstructive lung diseases. Sci Rep 2016; 6:39305. [PMID: 27982104 PMCID: PMC5159865 DOI: 10.1038/srep39305] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 11/22/2016] [Indexed: 01/01/2023] Open
Abstract
Protease-antiprotease imbalance and oxidative stress are considered to be major pathophysiological hallmarks of severe obstructive lung diseases including chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), but limited information is available on their direct roles in the regulation of pulmonary phenotypes. Here, we utilized βENaC-transgenic (Tg) mice, the previously established mouse model of severe obstructive lung diseases, to produce lower-mortality but pathophysiologically highly useful mouse model by backcrossing the original line with C57/BL6J mice. C57/BL6J-βENaC-Tg mice showed higher survival rates and key pulmonary abnormalities of COPD/CF, including mucous hypersecretion, inflammatory and emphysematous phenotypes and pulmonary dysfunction. DNA microarray analysis confirmed that protease- and oxidative stress-dependent pathways are activated in the lung tissue of C57/BL6J-βENaC-Tg mice. Treatments of C57/BL6J-βENaC-Tg mice with a serine protease inhibitor ONO-3403, a derivative of camostat methylate (CM), but not CM, and with an anti-oxidant N-acetylcystein significantly improved pulmonary emphysema and dysfunction. Moreover, depletion of a murine endogenous antioxidant vitamin C (VC), by genetic disruption of VC-synthesizing enzyme SMP30 in C57/BL6J-βENaC-Tg mice, exaggerated pulmonary phenotypes. Thus, these assessments clarified that protease-antiprotease imbalance and oxidative stress are critical pathways that exacerbate the pulmonary phenotypes of C57/BL6J-βENaC-Tg mice, consistent with the characteristics of human COPD/CF.
Collapse
|
25
|
A pathogenic role for tumor necrosis factor-related apoptosis-inducing ligand in chronic obstructive pulmonary disease. Mucosal Immunol 2016; 9:859-72. [PMID: 26555706 DOI: 10.1038/mi.2015.111] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/18/2015] [Indexed: 02/04/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory respiratory disorder, often induced by cigarette smoke (CS) exposure. The development of effective therapies is impaired by a lack of understanding of the underlining mechanisms. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine with inflammatory and apoptotic properties. We interrogated a mouse model of CS-induced experimental COPD and human tissues to identify a novel role for TRAIL in COPD pathogenesis. CS exposure of wild-type mice increased TRAIL and its receptor messenger RNA (mRNA) expression and protein levels, as well as the number of TRAIL(+)CD11b(+) monocytes in the lung. TRAIL and its receptor mRNA were also increased in human COPD. CS-exposed TRAIL-deficient mice had decreased pulmonary inflammation, pro-inflammatory mediators, emphysema-like alveolar enlargement, and improved lung function. TRAIL-deficient mice also developed spontaneous small airway changes with increased epithelial cell thickness and collagen deposition, independent of CS exposure. Importantly, therapeutic neutralization of TRAIL, after the establishment of early-stage experimental COPD, reduced pulmonary inflammation, emphysema-like alveolar enlargement, and small airway changes. These data provide further evidence for TRAIL being a pivotal inflammatory factor in respiratory diseases, and the first preclinical evidence to suggest that therapeutic agents that target TRAIL may be effective in COPD therapy.
Collapse
|
26
|
Kim V, Cornwell WD, Oros M, Durra H, Criner GJ, Rogers TJ. Plasma Chemokine signature correlates with lung goblet cell hyperplasia in smokers with and without chronic obstructive pulmonary disease. BMC Pulm Med 2015; 15:111. [PMID: 26424214 PMCID: PMC4589974 DOI: 10.1186/s12890-015-0103-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/17/2015] [Indexed: 11/10/2022] Open
Abstract
Background Chronic Obstructive Pulmonary Disease (COPD) is characterized by lung and systemic inflammation as well as airway goblet cell hyperplasia (GCH). Mucin production is activated in part by stimulation of the epidermal growth factor (EGF) receptor pathway through neutrophils and macrophages. How circulating cytokine levels relate to GCH is not clear. Methods We performed phlebotomy and bronchoscopy on 25 subjects (six nonsmokers, 11 healthy smokers, and eight COPD subjects FEV1 30–60 %). Six endobronchial biopsies per subject were performed. GCH was measured by measuring mucin volume density (MVD) using stereological techniques on periodic acid fast-Schiff stained samples. We measured the levels of chemokines CXCL8/IL-8, CCL2/MCP-1, CCL7/MCP-3, CCL22/MCD, CCL3/MIP-1α, and CCL4/MIP-1β, and the cytokines IL-1, IL-4, IL-6, IL-9, IL-17, EGF, and vascular endothelial growth factor (VEGF). Differences between groups were assessed using one-way ANOVA, t test, or Chi squared test. Post hoc tests after ANOVA were performed using Bonferroni correction. Results MVD was highest in healthy smokers (27.78 ± 10.24 μL/mm2) compared to COPD subjects (16.82 ± 16.29 μL/mm2, p = 0.216) and nonsmokers (3.42 ± 3.07 μL/mm2, p <0.0001). Plasma CXCL8 was highest in healthy smokers (11.05 ± 8.92 pg/mL) compared to nonsmokers (1.20 ± 21.92 pg/mL, p = 0.047) and COPD subjects (6.01 ± 5.90 pg/mL, p = 0.366). CCL22 and CCL4 followed the same trends. There were no significant differences in the other cytokines measured. When the subjects were divided into current smokers (healthy smokers and COPD current smokers) and non/ex-smokers (nonsmokers and COPD ex-smokers), plasma CXCL8, CCL22, CCL4, and MVD were greater in current smokers. No differences in other cytokines were seen. Plasma CXCL8 moderately correlated with MVD (r = 0.552, p = 0.003). Discussion In this small cohort, circulating levels of the chemokines CXCL8, CCL4, and CCL22, as well as MVD, attain the highest levels in healthy smokers compared to nonsmokers and COPD subjects. These findings seem to be driven by current smoking and are independent of airflow obstruction. Conclusions These data suggest that smoking upregulates a systemic pattern of neutrophil and macrophage chemoattractant expression, and this correlates significantly with the development of goblet cell hyperplasia.
Collapse
Affiliation(s)
- Victor Kim
- Division of Pulmonary and Critical Care Medicine, Temple University School of Medicine, 3401 North Broad Street, 785 Parkinson Pavilion, Philadelphia, PA, 19140, USA.
| | - William D Cornwell
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Michelle Oros
- Department of Pathology, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Heba Durra
- Department of Pathology, Temple University School of Medicine, Philadelphia, PA, USA.
| | - Gerard J Criner
- Division of Pulmonary and Critical Care Medicine, Temple University School of Medicine, 3401 North Broad Street, 785 Parkinson Pavilion, Philadelphia, PA, 19140, USA.
| | - Thomas J Rogers
- Center for Inflammation, Translational and Clinical Lung Research, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Ziegler-Heitbrock L. Blood Monocytes and Their Subsets: Established Features and Open Questions. Front Immunol 2015; 6:423. [PMID: 26347746 PMCID: PMC4538304 DOI: 10.3389/fimmu.2015.00423] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/03/2015] [Indexed: 01/20/2023] Open
Abstract
In contrast to the past reliance on morphology, the identification and enumeration of blood monocytes are nowadays done with monoclonal antibodies and flow cytometry and this allows for subdivision into classical, intermediate, and non-classical monocytes. Using specific cell surface markers, dendritic cells in blood can be segregated from these monocytes. While in the past, changes in monocyte numbers as determined in standard hematology counters have not had any relevant clinical impact, the subset analysis now has uncovered informative changes that may be used in management of disease.
Collapse
|
28
|
Cross-talk between PKA-Cβ and p65 mediates synergistic induction of PDE4B by roflumilast and NTHi. Proc Natl Acad Sci U S A 2015; 112:E1800-9. [PMID: 25831493 DOI: 10.1073/pnas.1418716112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) plays a key role in regulating inflammation. Roflumilast, a phosphodiesterase (PDE)4-selective inhibitor, has recently been approved for treating severe chronic obstructive pulmonary disease (COPD) patients with exacerbation. However, there is also clinical evidence suggesting the development of tachyphylaxis or tolerance on repeated dosing of roflumilast and the possible contribution of PDE4B up-regulation, which could be counterproductive for suppressing inflammation. Thus, understanding how PDE4B is up-regulated in the context of the complex pathogenesis and medications of COPD may help improve the efficacy and possibly ameliorate the tolerance of roflumilast. Here we show that roflumilast synergizes with nontypeable Haemophilus influenzae (NTHi), a major bacterial cause of COPD exacerbation, to up-regulate PDE4B2 expression in human airway epithelial cells in vitro and in vivo. Up-regulated PDE4B2 contributes to the induction of certain important chemokines in both enzymatic activity-dependent and activity-independent manners. We also found that protein kinase A catalytic subunit β (PKA-Cβ) and nuclear factor-κB (NF-κB) p65 subunit were required for the synergistic induction of PDE4B2. PKA-Cβ phosphorylates p65 in a cAMP-dependent manner. Moreover, Ser276 of p65 is critical for mediating the PKA-Cβ-induced p65 phosphorylation and the synergistic induction of PDE4B2. Collectively, our data unveil a previously unidentified mechanism underlying synergistic up-regulation of PDE4B2 via a cross-talk between PKA-Cβ and p65 and may help develop new therapeutic strategies to improve the efficacy of PDE4 inhibitor.
Collapse
|
29
|
Jones RO, Brittan M, Anderson NH, Conway Morris A, Murchison JT, Walker WS, Simpson AJ. Serial characterisation of monocyte and neutrophil function after lung resection. BMJ Open Respir Res 2014; 1:e000045. [PMID: 25478189 PMCID: PMC4212786 DOI: 10.1136/bmjresp-2014-000045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/15/2014] [Accepted: 07/19/2014] [Indexed: 01/28/2023] Open
Abstract
Objectives The primary aim of this prospective study was to perform a comprehensive serial characterisation of monocyte and neutrophil function, circulating monocyte subsets, and bronchoalveolar lavage (BAL) fluid after lung resection. A secondary aim was to perform a pilot, hypothesis-generating evaluation of whether innate immune parameters were associated with postoperative pneumonia. Methods Forty patients undergoing lung resection were studied in detail. Blood monocytes and neutrophils were isolated preoperatively and at 6, 24 and 48 h postoperatively. BAL was performed preoperatively and immediately postoperatively. Monocyte subsets, monocyte responsiveness to lipopolysaccharide (LPS) and neutrophil phagocytic capacity were quantified at all time points. Differential cell count, protein and cytokine concentrations were measured in BAL. Pneumonia evaluation at 72 h was assessed using predefined criteria. Results After surgery, circulating subsets of classical and intermediate monocytes increased significantly. LPS-induced release of proinflammatory cytokines from monocytes increased significantly and by 48 h a more proinflammatory profile was found. Neutrophil phagocytosis demonstrated a small but significant fall. Factors associated with postoperative pneumonia were: increased release of specific proinflammatory and anti-inflammatory cytokines from monocytes; preoperative neutrophilia; and preoperative BAL cell count. Conclusions We conclude that postoperative lung inflammation is associated with specific changes in the cellular innate immune response, a better understanding of which may improve patient selection and prediction of complications in the future.
Collapse
Affiliation(s)
- Richard O Jones
- The University of Edinburgh/Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute , Edinburgh , UK ; Department of Thoracic Surgery , The Royal Infirmary of Edinburgh , Edinburgh , UK
| | - Mairi Brittan
- The University of Edinburgh/Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute , Edinburgh , UK
| | - Niall H Anderson
- Centre for Population Health Sciences, The University of Edinburgh, Medical School , Edinburgh , UK
| | - Andrew Conway Morris
- The University of Edinburgh/Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute , Edinburgh , UK ; Department of Anaesthesia, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, UK
| | - John T Murchison
- Department of Radiology , The Royal Infirmary of Edinburgh , Edinburgh , UK
| | - William S Walker
- Department of Thoracic Surgery , The Royal Infirmary of Edinburgh , Edinburgh , UK
| | - A John Simpson
- The University of Edinburgh/Medical Research Council Centre for Inflammation Research, The Queen's Medical Research Institute , Edinburgh , UK ; Institute of Cellular Medicine, Medical School, Newcastle University , Newcastle upon Tyne , UK
| |
Collapse
|
30
|
Decreased expression of HLA-DQ and HLA-DR on cells of the monocytic lineage in cystic fibrosis. J Mol Med (Berl) 2014; 92:1293-304. [PMID: 25146850 DOI: 10.1007/s00109-014-1200-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/15/2014] [Accepted: 07/29/2014] [Indexed: 12/24/2022]
Abstract
UNLABELLED We studied HLA class II molecules on blood monocyte subsets, blood dendritic cells, sputum macrophages, and monocyte-derived macrophages at the protein (flow cytometry) and mRNA level (RT-PCR) in adult patients with cystic fibrosis (CF) and healthy control subjects as putative contributors to the CF phenotype. In healthy donors, we found a high average HLA-DQ expression of 4.35 mean specific fluorescence intensity units (ΔMnI) on classical blood monocytes. In F508del homozygous CF patients, the average ΔMnI was low (1.80). Patients were divided into two groups, in which 14 of these patients had HLA-DQ expression above 2 ΔMnI (average 3.25 ΔMnI, CF-DQ(group1)) and 36 below (average 1.24 ΔMnI, CF-DQ(group2)). Also, the CD16-positive monocyte subset and blood dendritic cells showed much lower levels of HLA-DQ for the CF-DQ(group2) patients compared with healthy controls. In macrophages from sputum and derived from monocytes, in vitro HLA-DQ expression was dramatically decreased to background levels in CF-DQ(group2). MHC class II transcripts were reduced in CF with a sevenfold decrease in HLA-DQβ1 for CF-DQ(group2) patients. Higher levels of the inflammation marker CRP were associated with low HLA-DQ protein expression, and in vitro treatment with the inflammatory molecule lipopolysaccharide reduced HLA-DQ expression. Interferon γ (IFNγ) could overcome this effect in healthy donor cells while, in CF, the IFNγ-induced activation was impaired. Our data demonstrate a pronounced reduction of HLA-DQ expression in CF, which is associated with inflammation and a reduced response to IFNγ. KEY MESSAGE • CF patients show a reduced expression of MHCII molecules in monocytes and macrophages. • HLA-DQ and HLA-DR transcript levels are also reduced in CF patients. • CF patient C-reactive protein levels correlate with low HLA-DQ expression. • Reduced expression of MHC class II molecules appears to be linked to inflammation. • CF patients exhibit an impaired response to IFNgamma.
Collapse
|
31
|
Ghebre MA, Bafadhel M, Desai D, Cohen SE, Newbold P, Rapley L, Woods J, Rugman P, Pavord ID, Newby C, Burton PR, May RD, Brightling CE. Biological clustering supports both "Dutch" and "British" hypotheses of asthma and chronic obstructive pulmonary disease. J Allergy Clin Immunol 2014; 135:63-72. [PMID: 25129678 PMCID: PMC4282726 DOI: 10.1016/j.jaci.2014.06.035] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 06/15/2014] [Accepted: 06/18/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous diseases. OBJECTIVE We sought to determine, in terms of their sputum cellular and mediator profiles, the extent to which they represent distinct or overlapping conditions supporting either the "British" or "Dutch" hypotheses of airway disease pathogenesis. METHODS We compared the clinical and physiological characteristics and sputum mediators between 86 subjects with severe asthma and 75 with moderate-to-severe COPD. Biological subgroups were determined using factor and cluster analyses on 18 sputum cytokines. The subgroups were validated on independent severe asthma (n = 166) and COPD (n = 58) cohorts. Two techniques were used to assign the validation subjects to subgroups: linear discriminant analysis, or the best identified discriminator (single cytokine) in combination with subject disease status (asthma or COPD). RESULTS Discriminant analysis distinguished severe asthma from COPD completely using a combination of clinical and biological variables. Factor and cluster analyses of the sputum cytokine profiles revealed 3 biological clusters: cluster 1: asthma predominant, eosinophilic, high TH2 cytokines; cluster 2: asthma and COPD overlap, neutrophilic; cluster 3: COPD predominant, mixed eosinophilic and neutrophilic. Validation subjects were classified into 3 subgroups using discriminant analysis, or disease status with a binary assessment of sputum IL-1β expression. Sputum cellular and cytokine profiles of the validation subgroups were similar to the subgroups from the test study. CONCLUSIONS Sputum cytokine profiling can determine distinct and overlapping groups of subjects with asthma and COPD, supporting both the British and Dutch hypotheses. These findings may contribute to improved patient classification to enable stratified medicine.
Collapse
Affiliation(s)
- Michael A Ghebre
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospitals of Leicester, Leicester, United Kingdom; Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Mona Bafadhel
- Department of Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Dhananjay Desai
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospitals of Leicester, Leicester, United Kingdom
| | - Suzanne E Cohen
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Paul Newbold
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Laura Rapley
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Jo Woods
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Paul Rugman
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Ian D Pavord
- Department of Respiratory Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Chris Newby
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospitals of Leicester, Leicester, United Kingdom; Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Paul R Burton
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom; School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Richard D May
- MedImmune Ltd, Milstein Building, Granta Park, Cambridge, United Kingdom
| | - Chris E Brightling
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, United Kingdom; NIHR Respiratory Biomedical Research Unit, University Hospitals of Leicester, Leicester, United Kingdom.
| |
Collapse
|
32
|
Al Faraj A, Sultana Shaik A, Pureza MA, Alnafea M, Halwani R. Preferential macrophage recruitment and polarization in LPS-induced animal model for COPD: noninvasive tracking using MRI. PLoS One 2014; 9:e90829. [PMID: 24598763 PMCID: PMC3945006 DOI: 10.1371/journal.pone.0090829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/05/2014] [Indexed: 11/22/2022] Open
Abstract
Noninvasive imaging of macrophages activity has raised increasing interest for diagnosis of chronic obstructive respiratory diseases (COPD), which make them attractive vehicles to deliver contrast agents for diagnostic or drugs for therapeutic purposes. This study was designed to monitor and evaluate the migration of differently polarized M1 and M2 iron labeled macrophage subsets to the lung of a LPS-induced COPD animal model and to assess their polarization state once they have reached the inflammatory sites in the lung after intravenous injection. Ex vivo polarized bone marrow derived M1 or M2 macrophages were first efficiently and safely labeled with amine-modified PEGylated dextran-coated SPIO nanoparticles and without altering their polarization profile. Their biodistribution in abdominal organs and their homing to the site of inflammation in the lung was tracked for the first time using a free-breathing non-invasive MR imaging protocol on a 4.7T magnet after their intravenous administration. This imaging protocol was optimized to allow both detection of iron labeled macrophages and visualization of inflammation in the lung. M1 and M2 macrophages were successfully detected in the lung starting from 2 hours post injection with no variation in their migration profile. Quantification of cytokines release, analysis of surface membrane expression using flow cytometry and immunohistochemistry investigations confirmed the successful recruitment of injected iron labeled macrophages in the lung of COPD mice and revealed that even with a continuum switch in the polarization profile of M1 and M2 macrophages during the time course of inflammation a balanced number of macrophage subsets predominate.
Collapse
Affiliation(s)
- Achraf Al Faraj
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
- * E-mail:
| | - Asma Sultana Shaik
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Mary Angeline Pureza
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Alnafea
- College of Applied Medical Sciences, Department of Radiological Sciences, Molecular and Cellular Imaging Lab, King Saud University, Riyadh, Saudi Arabia
| | - Rabih Halwani
- Asthma Research Chair and Prince Naif Center for Immunology Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Knobloch J, Lin Y, Konradi J, Jungck D, Behr J, Strauch J, Stoelben E, Koch A. Inflammatory responses of airway smooth muscle cells and effects of endothelin receptor antagonism. Am J Respir Cell Mol Biol 2013; 49:114-27. [PMID: 23590298 DOI: 10.1165/rcmb.2012-0287oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Endothelin receptor antagonists (ETRAs), authorized for pulmonary hypertension, have failed to prove their utility in chronic lung diseases with corticosteroid-resistant airway inflammation when applied at late disease stages with emphysema/fibrosis. Earlier administration might prove effective by targeting the interaction between airway inflammation and tissue remodeling. We hypothesized that human airway smooth muscle cells (HASMCs) participate in linking inflammation with remodeling and that associated genes become differentially suppressed by ambrisentan (A-receptor selective ETRA) and bosentan (nonselective/dual ETRA). Inflammatory responses of ex vivo-cultivated HASMCs to TNF-α were investigated by whole-genome microarray analyses. qRT-PCR and ELISA were used to test inflammatory and remodeling genes for sensitivity to bosentan and ambrisentan and to investigate differential sensitivities mechanistically. ETRA and corticosteroid effects were compared in HASMCs from patients with chronic obstructive pulmonary disease. TNF-α induced the expression of 18 cytokines/chemokines and five tissue remodeling genes involved in severe, corticosteroid-insensitive asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, and/or pulmonary hypertension. Thirteen cytokines/chemokines, MMP13, and WISP1 were suppressed by ETRAs. Eight genes had differential sensitivity to bosentan and ambrisentan depending on the endothelin-B receptor impact on transcriptional regulation and mRNA stabilization. Chemokine (C-C motif) ligands 2 and 5, granulocyte macrophage colony-stimulating factor, and MMP13 had increased sensitivity to bosentan or bosentan/dexamethasone combination versus dexamethasone alone. Suppression of cytokine and remodeling gene expression by ETRAs was confirmed in TNF-α-activated human bronchial epithelial cells. HASMCs and human bronchial epithelial cells participate in the interaction of inflammation and tissue remodeling. This interaction is targeted differentially by selective and nonselective ETRAs, which could be used in therapies of chronic lung diseases with corticosteroid-resistant airway inflammation at early disease stages to attenuate inflammation-induced airway remodeling.
Collapse
Affiliation(s)
- Jürgen Knobloch
- Department of Internal Medicine III, University Hospital Bergmannsheil, Bochum, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Grotenhuis N, Bayon Y, Lange J, Van Osch G, Bastiaansen-Jenniskens Y. A culture model to analyze the acute biomaterial-dependent reaction of human primary macrophages. Biochem Biophys Res Commun 2013; 433:115-20. [DOI: 10.1016/j.bbrc.2013.02.054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
35
|
Frankenberger M, Hofer TPJ, Marei A, Dayyani F, Schewe S, Strasser C, Aldraihim A, Stanzel F, Lang R, Hoffmann R, Prazeres da Costa O, Buch T, Ziegler-Heitbrock L. Transcript profiling of CD16-positive monocytes reveals a unique molecular fingerprint. Eur J Immunol 2012; 42:957-74. [PMID: 22531920 DOI: 10.1002/eji.201141907] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
CD16-positive (CD14(++) CD16(+) and CD14(+) CD16(++) ) monocytes have unique features with respect to phenotype and function. We have used transcriptional profiling for comparison of CD16-positive monocytes and classical monocytes. We show herein that 187 genes are greater than fivefold differentially expressed, including 90 genes relevant to immune response and inflammation. Hierarchical clustering of data for monocyte subsets and CD1c(+) myeloid blood dendritic cells (DCs) demonstrate that CD16-positive cells are more closely related to classical monocytes than to DCs. Reverse transcriptase polymerase chain reaction for ten genes with the strongest differential expression confirmed the pattern including a lower messenger RNA level for CD14, CD163, and versican in CD16-positive monocytes. The pattern was similar for CD16-positive monocytes at rest and after exercise mobilization from the marginal pool. By contrast, alveolar macrophages, small sputum macrophages, breast milk macrophages, and synovial macrophages all showed a different pattern. When monocyte-derived macrophages (MDMs) were generated from CD16-positive monocytes by culture with macrophage colony-stimulating factor in vitro, then the MDMs maintained properties of their progeny with lower expression of CD14, CD163, and versican compared with CD14(++) CD16(-) MDMs. Furthermore, CD16-positive MDMs showed a higher phagocytosis for opsonized Escherichia coli. The data demonstrate that CD16-positive monocytes form a distinct type of cell, which gives rise to a distinct macrophage phenotype.
Collapse
Affiliation(s)
- Marion Frankenberger
- Comprehensive Pneumology Center, Helmholtz Zentrum München, Ludwig-Maximilians University and Asklepios Fachklinik Gauting, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|