1
|
Miyajima C, Nagasaka M, Aoki H, Toriuchi K, Yamanaka S, Hashiguchi S, Morishita D, Aoyama M, Hayashi H, Inoue Y. The Hippo Signaling Pathway Manipulates Cellular Senescence. Cells 2024; 14:13. [PMID: 39791714 PMCID: PMC11719916 DOI: 10.3390/cells14010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/12/2025] Open
Abstract
The Hippo pathway, a kinase cascade, coordinates with many intracellular signals and mediates the regulation of the activities of various downstream transcription factors and their coactivators to maintain homeostasis. Therefore, the aberrant activation of the Hippo pathway and its associated molecules imposes significant stress on tissues and cells, leading to cancer, immune disorders, and a number of diseases. Cellular senescence, the mechanism by which cells counteract stress, prevents cells from unnecessary damage and leads to sustained cell cycle arrest. It acts as a powerful defense mechanism against normal organ development and aging-related diseases. On the other hand, the accumulation of senescent cells without their proper removal contributes to the development or worsening of cancer and age-related diseases. A correlation was recently reported between the Hippo pathway and cellular senescence, which preserves tissue homeostasis. This review is the first to describe the close relationship between aging and the Hippo pathway, and provides insights into the mechanisms of aging and the development of age-related diseases. In addition, it describes advanced findings that may lead to the development of tissue regeneration therapies and drugs targeting rejuvenation.
Collapse
Affiliation(s)
- Chiharu Miyajima
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mai Nagasaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
- Department of Experimental Chemotherapy, Cancer Chemotherapy Center of JFCR, Tokyo 135-8550, Japan
| | - Hiromasa Aoki
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Kohki Toriuchi
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Shogo Yamanaka
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Sakura Hashiguchi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Daisuke Morishita
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Mineyoshi Aoyama
- Department of Pathobiology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (H.A.); (K.T.); (M.A.)
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya 467-8603, Japan; (M.N.); (S.Y.); (S.H.); (D.M.); (H.H.)
| |
Collapse
|
2
|
Amanda B, Pragasta R, Cakrasana H, Mustika A, Faizah Z, Oceandy D. The Hippo Signaling Pathway, Reactive Oxygen Species Production, and Oxidative Stress: A Two-Way Traffic Regulation. Cells 2024; 13:1868. [PMID: 39594616 PMCID: PMC11592687 DOI: 10.3390/cells13221868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The Hippo signaling pathway is recognized for its significant role in cell differentiation, proliferation, survival, and tissue regeneration. Recently, the Hippo signaling pathway was also found to be associated with oxidative stress and reactive oxygen species (ROS) regulation, which are important in the regulation of cell survival. Studies indicate a correlation between components of the Hippo signaling pathway, including MST1, YAP, and TAZ, and the generation of ROS. On the other hand, ROS and oxidative stress can activate key components of the Hippo signaling pathway. For example, ROS production activates MST1, which subsequently phosphorylates FOXO3, leading to apoptotic cell death. ROS was also found to regulate YAP, in addition to MST1/2. Oxidative stress and ROS formation can impair lipids, proteins, and DNA, leading to many disorders, including aging, neurodegeneration, atherosclerosis, and diabetes. Consequently, understanding the interplay between the Hippo signaling pathway, ROS, and oxidative stress is crucial for developing future disease management strategies. This paper aimed to review the association between the Hippo signaling pathway, regulation of ROS production, and oxidative stress to provide beneficial information in understanding cell function and pathological processes.
Collapse
Affiliation(s)
- Bella Amanda
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Airlangga University Teaching Hospital, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Rangga Pragasta
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
- Faculty of Medicine, Universitas Islam Malang, Malang 65144, Indonesia
| | - Haris Cakrasana
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Arifa Mustika
- Department of Anatomy, Histology, and Pharmacology, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia;
| | - Zakiyatul Faizah
- Andrology Study Program, Department of Biomedical Sciences, Faculty of Medicine, Universitas Airlangga, Surabaya 60132, Indonesia; (R.P.); (H.C.); (Z.F.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK;
| |
Collapse
|
3
|
Dresler SR, Pinto BI, Salanga MC, Propper CR, Berry SR, Kellar RS. Arsenic Impairs Wound Healing Processes in Dermal Fibroblasts and Mice. Int J Mol Sci 2024; 25:2161. [PMID: 38396835 PMCID: PMC10888720 DOI: 10.3390/ijms25042161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Inorganic arsenic (NaAsO2) is a naturally occurring metalloid found in water resources globally and in the United States at concentrations exceeding the U.S. Environmental Protection Agency Maximum Contamination Level of 10 ppb. While exposure to arsenic has been linked to cancer, cardiovascular disease, and skin lesions, the impact of arsenic exposure on wound healing is not fully understood. Cultured dermal fibroblasts exposed to NaAsO2 displayed reduced migration (scratch closure), proliferation, and viability with a lowest observable effect level (LOEL) of 10 µM NaAsO2 following 24 h exposure. An enrichment of Matrix Metalloproteinase 1 (MMP1) transcripts was observed at a LOEL of 1 µM NaAsO2 and 24 h exposure. In vivo, C57BL/6 mice were exposed to 10 µM NaAsO2 in their drinking water for eight weeks, then subjected to two full thickness dorsal wounds. Wounds were evaluated for closure after 6 days. Female mice displayed a significant reduction in wound closure and higher erythema levels, while males showed no effects. Gene expression analysis from skin excised from the wound site revealed significant enrichment in Arsenic 3-Methyltransferase (As3mt) and Estrogen Receptor 2 (Esr2) mRNA in the skin of female mice. These results indicate that arsenic at environmentally relevant concentrations may negatively impact wound healing processes in a sex-specific manner.
Collapse
Affiliation(s)
- Sara R. Dresler
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Matthew C. Salanga
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Savannah R. Berry
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA; (S.R.D.); (B.I.P.); (M.C.S.); (C.R.P.); (S.R.B.)
- Center for Materials Interfaces in Research & Applications, ¡MIRA!, Flagstaff, AZ 86011, USA
| |
Collapse
|
4
|
Cao L, Shao N, Du J, Zhu H, Gao J, Li Q, Sun Y, Hu J, Yin G, Xu G. Involvement of reactive oxygen species (ROS) in the hepatopancreatic cytotoxicity, oxidative stress, and apoptosis induced by microcystin-LR in Eriocheir sinensis. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109801. [PMID: 37996048 DOI: 10.1016/j.cbpc.2023.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
There is limited knowledge about the toxicity of Microcystin-LR (MC-LR) in crustaceans, despite its high toxicity to aquatic organisms. This research aimed to explore the effects of MC-LR on cytotoxicity, oxidative stress, and apoptosis in the hepatopancreas of Eriocheir sinensis, as well as elucidate the involvement of reactive oxygen species (ROS) and potential mechanisms of toxicity. In vivo and in vitro exposures of crabs to MC-LR and N-acetylcysteine (NAC) were performed, followed by assessments of cell morphology, viability, tissue pathology, biochemical indicators, gene expression, and hepatopancreatic transcriptome. Results revealed that MC-LR facilitated the entry of the MC-LR transporter oatp3a into hepatopancreatic cells, leading to upregulated expression of phase I detoxification enzyme genes (cyp4c, cyp2e1, and cyp3) and downregulated the phase II enzyme genes (gst1, gpx, gsr2, gclc, and nqo1), resulting in increased ROS levels and cytotoxic effects. MC-LR exhibited cytotoxicity, reducing cell viability and inducing abnormal nuclear morphology with a 48 h-IC50 value of approximately 120 μm. MC-LR exposure caused biochemical changes indicative of oxidative stress damage and evident hepatopancreatic lesions. Additionally, MC-LR exposure regulated the levels of bax and bcl-2 expression, activating caspase 3 and 6 to induce cell apoptosis. Intervention with NAC attenuated MC-LR-induced ROS production and associated toxic effects. Transcriptome analysis revealed enrichment of differentially expressed genes in pathways related to cytochrome P450-mediated xenobiotic metabolism and the FoxO signaling pathway. These findings shed light on the potential mechanisms underlying MC-LR toxicity and provide valuable references for further research and conservation efforts regarding the health of aquatic animals.
Collapse
Affiliation(s)
- Liping Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Nailin Shao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Haojun Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiancao Gao
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Quanjie Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yi Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jiawen Hu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Guojun Yin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
5
|
Deng Y, Adam V, Nepovimova E, Heger Z, Valko M, Wu Q, Wei W, Kuca K. c-Jun N-terminal kinase signaling in cellular senescence. Arch Toxicol 2023; 97:2089-2109. [PMID: 37335314 DOI: 10.1007/s00204-023-03540-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Cellular senescence leads to decreased tissue regeneration and inflammation and is associated with diabetes, neurodegenerative diseases, and tumorigenesis. However, the mechanisms of cellular senescence are not fully understood. Emerging evidence has indicated that c-Jun N-terminal kinase (JNK) signaling is involved in the regulation of cellular senescence. JNK can downregulate hypoxia inducible factor-1α to accelerate hypoxia-induced neuronal cell senescence. The activation of JNK inhibits mTOR activity and triggers autophagy, which promotes cellular senescence. JNK can upregulate the expression of p53 and Bcl-2 and accelerates cancer cell senescence; however, this signaling also mediates the expression of amphiregulin and PD-LI to achieve cancer cell immune evasion and prevents their senescence. The activation of JNK further triggers forkhead box O expression and its target gene Jafrac1 to extend the lifespan of Drosophila. JNK can also upregulate the expression of DNA repair protein poly ADP-ribose polymerase 1 and heat shock protein to delay cellular senescence. This review discusses recent advances in understanding the function of JNK signaling in cellular senescence and includes a comprehensive analysis of the molecular mechanisms underlying JNK-mediated senescence evasion and oncogene-induced cellular senescence. We also summarize the research progress in anti-aging agents that target JNK signaling. This study will contribute to a better understanding of the molecular targets of cellular senescence and provides insights into anti-aging, which may be used to develop drugs for the treatment of aging-related diseases.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, 613 00, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Brno, 602 00, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic.
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain.
| |
Collapse
|
6
|
Lin SC, Tsou SH, Kuo CY, Chen WL, Wu KW, Lin CL, Huang CN. Denosumab Attenuates Glucolipotoxicity-Induced β-Cell Dysfunction and Apoptosis by Attenuating RANK/RANKL Signals. Int J Mol Sci 2023; 24:10289. [PMID: 37373436 DOI: 10.3390/ijms241210289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is strongly associated with insulin sensitivity in type 2 diabetes (T2D), mainly because free fatty acids (FFAs) are released from excess fat tissue. Long-term exposure to high levels of FFAs and glucose leads to glucolipotoxicity, causing damage to pancreatic β-cells, thus accelerating the progression of T2D. Therefore, the prevention of β-cell dysfunction and apoptosis is essential to prevent the development of T2D. Unfortunately, there are currently no specific clinical strategies for protecting β-cells, highlighting the need for effective therapies or preventive approaches to improve the survival of β-cells in T2D. Interestingly, recent studies have shown that the monoclonal antibody denosumab (DMB), used in osteoporosis, displays a positive effect on blood glucose regulation in patients with T2D. DMB acts as an osteoprotegerin (OPG) by inhibiting the receptor activator of the NF-κB ligand (RANKL), preventing the maturation and function of osteoclasts. However, the exact mechanism by which the RANK/RANKL signal affects glucose homeostasis has not been fully explained. The present study used human 1.4 × 107 β-cells to simulate the T2D metabolic condition of high glucose and free fatty acids (FFAs), and it investigated the ability of DMB to protect β-cells from glucolipotoxicity. Our results show that DMB effectively attenuated the cell dysfunction and apoptosis caused by high glucose and FFAs in β-cells. This may be caused by blocking the RANK/RANKL pathway that reduced mammalian sterile 20-like kinase 1 (MST1) activation and indirectly increased pancreatic and duodenal homeobox 1 (PDX-1) expression. Furthermore, the increase in inflammatory cytokines and ROS caused by the RANK/RANKL signal also played an important role in glucolipotoxicity-induced cytotoxicity, and DMB can also protect β-cells by reducing the mechanisms mentioned above. These findings provide detailed molecular mechanisms for the future development of DMB as a potential protective agent of β-cells.
Collapse
Affiliation(s)
- Sheng-Chieh Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Orthopaedics, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Sing-Hua Tsou
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Yin Kuo
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Surgery, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Wei-Liang Chen
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kuan-Wen Wu
- Department of Orthopaedic Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Chien-Ning Huang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| |
Collapse
|
7
|
Shao Y, Wang Y, Sun L, Zhou S, Xu J, Xing D. MST1: A future novel target for cardiac diseases. Int J Biol Macromol 2023; 239:124296. [PMID: 37011743 DOI: 10.1016/j.ijbiomac.2023.124296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Collapse
Affiliation(s)
- Yingchun Shao
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Yanhong Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Li Sun
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Sha Zhou
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Jiazhen Xu
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
8
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
9
|
Mukherjee AG, Valsala Gopalakrishnan A. The interplay of arsenic, silymarin, and NF-ĸB pathway in male reproductive toxicity: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114614. [PMID: 36753973 DOI: 10.1016/j.ecoenv.2023.114614] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Arsenic toxicity is one of the most trending reasons for several malfunctions, particularly reproductive toxicity. The exact mechanism of arsenic poisoning is a big question mark. Exposure to arsenic reduces sperm count, impairs fertilization, and causes inflammation and genotoxicity through interfering with autophagy, epigenetics, ROS generation, downregulation of essential protein expression, metabolite changes, and hampering several signaling cascades, particularly by the alteration of NF-ĸB pathway. This work tries to give a clear idea about the different aspects of arsenic resulting in male reproductive complications, often leading to infertility. The first part of this article explains the implications of arsenic poisoning and the crosstalk of the NF-ĸB pathway in male reproductive toxicity. Silymarin is a bioactive compound that exerts anti-cancer and anti-inflammatory properties and has demonstrated hopeful outcomes in several cancers, including colon cancer, breast cancer, and skin cancer, by downregulating the hyperactive NF-ĸB pathway. The next half of this article thus sheds light on silymarin's therapeutic potential in inhibiting the NF-ĸB signaling cascade, thus offering protection against arsenic-induced male reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| |
Collapse
|
10
|
Das A, Chowdhury O, Gupta P, Das N, Mitra A, Ghosh S, Ghosh S, Sarkar S, Bandyopadhyay D, Chattopadhyay S. Arsenic-induced differential inflammatory responses in mouse thymus involves NF-κB/STAT-3 disruption, Treg bias and autophagy activation. Life Sci 2023; 314:121290. [PMID: 36549349 DOI: 10.1016/j.lfs.2022.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/29/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
AIM Arsenic contamination in drinking water is a world-wide public health concern. Sustained arsenic ingestion leads to immune alterations and subsequent development of inflammatory and autoimmune diseases; however, the underlying cellular and molecular intricacies of immunotoxicity remains uncharacterized. We aim to understand how exposure to arsenic at different concentrations affects the immune system differentially and whether arsenic-induced differential inflammation dictates altered T-regulatory cell bias and emphasize the role of autophagy in the pathway. MAIN METHODS Swiss albino mice were exposed to environmentally relevant concentrations of arsenic in drinking water for 28 days. Examination of thymic cyto-architecture was done to evaluate thymic damage. ELISA was performed for key cytokines. Flow cytometry, western blotting, and immunostaining were performed for cell surface and intracellular proteins. Co-immunoprecipitation and transfection with siRNA were performed to examine the direct physical interactions between proteins. KEY FINDINGS Our study distinctly demonstrates that arsenic-induced oxidative stress instigates NF-κB activation, which not only provokes pro-inflammatory responses, but also exhibits immune-suppressive activity depending on the dose of arsenic. Co-immunoprecipitation of NF-κBp65 and pSTAT-3 reveals that arsenic alters their physical interaction, thereby suppressing IL-6/STAT-3/IL-17A feedback loop. Flow cytometry and silencing studies demonstrate that NF-κB-driven Treg cell differentiation induces immune-suppression through FoxP3 up-regulation at the highest dose of arsenic and such immune-suppression is actively supported by NF-κB-driven autophagy activation. SIGNIFICANCE Collectively, our findings reveal that exposure to arsenic differentially impacts the immune system and understanding the molecular cascade might provide direction for prevention/treatment of arsenic-induced inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Ankur Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Olivia Chowdhury
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Payal Gupta
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Nirmal Das
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Ankan Mitra
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sourav Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Sayan Ghosh
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | - Swaimanti Sarkar
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India
| | | | - Sreya Chattopadhyay
- Department of Physiology, University of Calcutta, Kolkata, West Bengal, India; Centre for Research in Nanoscience and Nanotechnology (CRNN), University of Calcutta, JD-2, Salt Lake, Sector III, Kolkata 700098, India.
| |
Collapse
|
11
|
Deng H, Tu Y, Wang H, Wang Z, Li Y, Chai L, Zhang W, Lin Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. ECO-ENVIRONMENT & HEALTH 2022; 1:229-243. [PMID: 38077254 PMCID: PMC10702911 DOI: 10.1016/j.eehl.2022.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 02/23/2024]
Abstract
Heavy metal(loid)s (HMs) have caused serious environmental pollution and health risks. Although the past few years have witnessed the achievements of studies on environmental behavior of HMs, the related toxicity mechanisms, and pollution control, their relationship remains a mystery. Researchers generally focused on one topic independently without comprehensive considerations due to the knowledge gap between environmental science and human health. Indeed, the full life cycle control of HMs is crucial and should be reconsidered with the combination of the occurrence, transport, and fate of HMs in the environment. Therefore, we started by reviewing the environmental behaviors of HMs which are affected by a variety of natural factors as well as their physicochemical properties. Furthermore, the related toxicity mechanisms were discussed according to exposure route, toxicity mechanism, and adverse consequences. In addition, the current state-of-the-art of available technologies for pollution control of HMs wastewater and solid wastes were summarized. Finally, based on the research trend, we proposed that advanced in-operando characterizations will help us better understand the fundamental reaction mechanisms, and big data analysis approaches will aid in establishing the prediction model for risk management.
Collapse
Affiliation(s)
- Haoyu Deng
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yuling Tu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Han Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Ziyi Wang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Yanyu Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
- School of Environment and Energy, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangdong 510006, China
| |
Collapse
|
12
|
Okamura K, Sato M, Suzuki T, Nohara K. Inorganic arsenic exposure-induced premature senescence and senescence-associated secretory phenotype (SASP) in human hepatic stellate cells. Toxicol Appl Pharmacol 2022; 454:116231. [PMID: 36089002 DOI: 10.1016/j.taap.2022.116231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 01/10/2023]
Abstract
Exposure to inorganic arsenic has been known to induce cancers in various organs, however, the underlying mechanisms remain unclear. Premature senescence refers to the irreversible growth arrest induced by stress stimuli. The senescence-associated secretory phenotype (SASP), particularly in fibroblasts, has been shown to promote cancer development. In this study, we examined whether arsenite exposure causes premature senescence and induction of SASP in liver fibroblasts using the human hepatic stellate cell line, LX-2. Exposure of LX-2 cells to 5 or 7.5 μM of sodium arsenite for 144 h induced the features of senescence in the cells, including morphological changes, growth inhibition, increased senescence-associated β-galactosidase activity, increased P21 gene expression, and decreased LAMINB1 gene expression. The mRNA expressions of SASP factors, such as MMP1, MMP3, IL-8, IL-1β, and CXCL1, were also highly upregulated. The wound healing assay revealed that the conditioned medium from LX-2 cells with arsenite-induced senescence increased the migration activity of cells of the human hepatoma cell line, Huh-7. Gene expression data of liver cancer samples from the Human Protein Atlas showed that high expression levels of the SASP factors that were upregulated in the cells with arsenite-induced senescence were strongly associated with a poor prognosis. In addition, the cellular levels of γ-H2AX, a DNA double-strand break marker, were increased by arsenite exposure, suggesting that DNA damage could contribute to premature senescence induction. These results show that arsenite exposure induces premature senescence in hepatic stellate cells and suggest that the SASP factors from the senescent cells promote hepatic carcinogenesis.
Collapse
Affiliation(s)
- Kazuyuki Okamura
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Miyuki Sato
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Takehiro Suzuki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Keiko Nohara
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|
13
|
Assessing the Potential Value and Mechanism of Kaji-Ichigoside F1 on Arsenite-Induced Skin Cell Senescence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9574473. [PMID: 35069981 PMCID: PMC8767413 DOI: 10.1155/2022/9574473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/15/2021] [Indexed: 11/17/2022]
Abstract
Chronic exposure to inorganic arsenic is a major environmental public health issue worldwide affecting more than 220 million of people. Previous studies have shown the correlation between arsenic poisoning and cellular senescence; however, knowledge regarding the mechanism and effective prevention measures has not been fully studied. First, the associations among the ERK/CEBPB signaling pathway, oxidative stress, and arsenic-induced skin cell senescence were confirmed using the HaCaT cell model. In the arsenic-exposed group, the relative mRNA and protein expressions of ERK/CEBPB signaling pathway indicators (ERK1, ERK2, and CEBPB), cell cycle-related genes (p21, p16INK4a), and the secretion of SASP (IL-1α, IL-6, IL-8, TGF-β1, MMP-1, MMP-3, EGF, and VEGF) and the lipid peroxidation product (MDA) were significantly increased in cells (P < 0.05), while the activity of antioxidant enzyme (SOD, GSH-Px, and CAT) was significantly decreased (P < 0.05), and an increased number of cells accumulated in the G1 phase (P < 0.05). Further Kaji-ichigoside F1 intervention experiments showed that compared to that in the arsenic-exposed group, the expression level of the activity of antioxidant enzyme was significantly increased in the Kaji-ichigoside F1 intervention group (P < 0.05), but the indicators of ERK/CEBPB signaling pathway, cell cycle-related genes, and SASP were significantly decreased (P < 0.05), and the cell cycle arrest relieved to a certain extent (P < 0.05). Our study provides some limited evidence that the ERK/CEBPB signaling pathway is involved in low-dose arsenic-induced skin cell senescence, through regulating oxidative stress. The second major finding was that Kaji-ichigoside F1 can downregulate the ERK/CEBPB signaling pathway and regulate the balance between oxidation and antioxidation, alleviating arsenic-induced skin cell senescence. This study provides experimental evidence for further understanding of Kaji-ichigoside F1, a natural medicinal plant that may be more effective in preventing and controlling arsenic poisoning.
Collapse
|
14
|
Sodium arsenite accelerates D-galactose-induced aging in the testis of the rat: Evidence for mitochondrial oxidative damage, NF-kB, JNK, and apoptosis pathways. Toxicology 2022; 470:153148. [DOI: 10.1016/j.tox.2022.153148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/21/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
|
15
|
Ozturk M, Metin M, Altay V, Bhat RA, Ejaz M, Gul A, Unal BT, Hasanuzzaman M, Nibir L, Nahar K, Bukhari A, Dervash MA, Kawano T. Arsenic and Human Health: Genotoxicity, Epigenomic Effects, and Cancer Signaling. Biol Trace Elem Res 2022; 200:988-1001. [PMID: 33864199 DOI: 10.1007/s12011-021-02719-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Arsenic is a well-known element because of its toxicity. Humans as well as plants and animals are negatively affected by its exposure. Some countries suffer from high levels of arsenic in their tap water and soils, which is considered a primary arsenic-linked risk factor for living beings. Humans generally get exposed to arsenic by contaminated drinking waters, resulting in many health problems, ranging from cancer to skin diseases. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. This issue emphasizes the importance of speciation of the metalloid elements in terms of impacts on health. When species get exposed to arsenic, it affects the cells altering their involvement. It can lead to abnormalities in inflammatory mechanisms and the immune system which contribute to the negative impacts generated on the body. The poisoning originating from arsenic gives rise to various biological signs on the body which can be useful for the diagnosis. It is important to find true biomarkers for the detection of arsenic poisoning. In view of its application in medicine and biology, studies on understanding the biological activity of arsenic have increased. In this review, we aim at summarizing the current state of knowledge of arsenic and the mechanism behind its toxicity including genotoxicity, oxidative insults, epigenomic changes, and alterations in cellular signaling.
Collapse
Affiliation(s)
- Munir Ozturk
- Department of Botany and Centre for Environmental Studies, Ege University, Izmir, Turkey.
| | - Mert Metin
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| | - Volkan Altay
- Department of Biology, Faculty of Science and Arts, Hatay Mustafa Kemal University, Hatay, Turkey
| | - Rouf Ahmad Bhat
- Department of Environmental Science, Sri Pratap College, Cluster University Srinagar, Srinagar, Kashmir, India
| | - Mahnoor Ejaz
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, Nat. University of Sciences & Technology, Islamabad, Pakistan
| | - Bengu Turkyilmaz Unal
- Faculty of Science and Arts, Dept. of Biotechnology, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Lutfunnahar Nibir
- Upazilla Health Complex, Ministry of Health, Government of the People's, Homna, Comilla, Bangladesh
| | - Kamuran Nahar
- Dept. of Agricultural Botany, Faculty of Agriculture, Sher-e-Bangla Agricul. University, Dhaka, Bangladesh
| | - Andleep Bukhari
- Medical Pharmacology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Moonisa Aslam Dervash
- Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Kashmir, India
| | - Tomonori Kawano
- Graduate School of Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
16
|
Jiang C, Sun M, Li S, Tan J, Wang M, He Y. Long non-coding RNA DICER1-AS1-low expression in arsenic-treated A549 cells inhibits cell proliferation by regulating the cell cycle pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103617. [PMID: 33609750 DOI: 10.1016/j.etap.2021.103617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/24/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Arsenic, an environmental pollution with diverse toxicities, incurs public health problems. Arsenic trioxide could inhibit cell proliferation in vitro experiments, but the underlying mechanisms are not fully known. LncRNAs are also involved in the arsenic-induced toxicological responses. In our study, we found that the expression of lncRNA DICER1-AS1 was significantly inhibited by sodium arsenite in a dose-dependent manner. DICER1-AS1 silencing decreased the A549 cell proliferation and inhibited cell cycle progression. Importantly, DICER1-AS1 silencing induced upregulation of p21 and downregulation of Cyclin A2, Cyclin E2, CDK1 and PCNA. In conclusion, our study provided a new lncRNA-dictated regulatory mechanism participating in arsenic-induced inhibition of cell proliferation.
Collapse
Affiliation(s)
- Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Mingjun Sun
- School of Public Health, Dali University, Dali, 650022, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Mengjie Wang
- School of Public Health, Kunming Medical University, Kunming, 650500, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
17
|
Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. CHEMOSPHERE 2021; 262:128350. [PMID: 33182141 DOI: 10.1016/j.chemosphere.2020.128350] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/09/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Heavy metal-induced cellular and organismal toxicity have become a major health concern in biomedical science. Indiscriminate use of heavy metals in different sectors, such as, industrial-, agricultural-, healthcare-, cosmetics-, and domestic-sectors has contaminated environment matrices and poses a severe health concern. Xenobiotics mediated effect is a ubiquitous cellular response. Oxidative stress is one such prime cellular response, which is the result of an imbalance in the redox system. Further, oxidative stress is associated with macromolecular damages and activation of several cell survival and cell death pathways. Epidemiological as well as laboratory data suggest that oxidative stress-induced cellular response following heavy metal exposure is linked with an increased risk of neoplasm, neurological disorders, diabetes, infertility, developmental disorders, renal failure, and cardiovascular disease. During the recent past, a relation among heavy metal exposure, oxidative stress, and signaling pathways have been explored to understand the heavy metal-induced toxicity. Heavy metal-induced oxidative stress and its connection with different signaling pathways are complicated; therefore, the systemic summary is essential. Herein, an effort has been made to decipher the interplay among heavy metals/metalloids (Arsenic, Chromium, Cadmium, and Lead) exposures, oxidative stress, and signal transduction, which are essential to mount the cellular and organismal response. The signaling pathways involved in this interplay include NF-κB, NRF2, JAK-STAT, JNK, FOXO, and HIF.
Collapse
Affiliation(s)
- Jagdish Gopal Paithankar
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Shiwangi Dwivedi
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India
| | - Anurag Sharma
- Nitte (Deemed to Be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Kotekar-Beeri Road, Deralakatte, Mangaluru, 575018, India.
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
| |
Collapse
|
18
|
Mai NNH, Yamaguchi Y, Choijookhuu N, Matsumoto J, Nanashima A, Takagi H, Sato K, Tuan LQ, Hishikawa Y. Photodynamic Therapy Using a Novel Phosphorus Tetraphenylporphyrin Induces an Anticancer Effect via Bax/Bcl-xL-related Mitochondrial Apoptosis in Biliary Cancer Cells. Acta Histochem Cytochem 2020; 53:61-72. [PMID: 32873990 PMCID: PMC7450180 DOI: 10.1267/ahc.20-00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) uses photosensitizer activation by light of a specific wavelength, and is a promising treatment for various cancers; however, the detailed mechanism of PDT remains unclear. Therefore, we investigated the anticancer effect of PDT using a novel phosphorus tetraphenylporphyrin (Ptpp) in combination with light emitting diodes (Ptpp-PDT) in the NOZ human biliary cancer cell line. Cell viability and apoptosis were examined by MTT assay, flow cytometry and TUNEL assay for 24 hr after Ptpp-PDT. MitoTracker and JC-1 were used as markers of mitochondrial localization and membrane potential. The levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes, Bcl-2 family proteins, cytochrome c and cleaved caspase-3 were examined by western blotting and immunohistochemistry. The results revealed that Ptpp localized to mitochondria, and that Ptpp-PDT efficiently decreased cell viability in a dose- and time-dependent manner. JC-1 and OXPHOS complexes decreased, but apoptotic cells increased from 6 to 24 hr after Ptpp-PDT. A decrease in Bcl-xL and increases in Bax, cytochrome c and cleaved caspase-3 were also found from 6 to 24 hr after Ptpp-PDT. Based on these results, we conclude that Ptpp-PDT induces anticancer effects via the mitochondrial apoptotic pathway by altering the Bax/Bcl-xL ratio, and could be an effective treatment for human biliary cancer.
Collapse
Affiliation(s)
- Nguyen Nhat Huynh Mai
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Faculty of Environment and Natural Resources, Nong Lam University
| | - Yuya Yamaguchi
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
- Present address: Division of Cellular Physiology, Department of Physiology, Faculty of Medicine, Toho University
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| | - Jin Matsumoto
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki
| | | | - Hideaki Takagi
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Katsuaki Sato
- Division of Immunology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki
| | - Le Quoc Tuan
- Faculty of Environment and Natural Resources, Nong Lam University
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki
| |
Collapse
|
19
|
Jiang S, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiol Genomics 2020; 52:305-313. [PMID: 32538278 DOI: 10.1152/physiolgenomics.00022.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Contamination with polycyclic aromatic hydrocarbons (PAHs) causes noticeable ecological problems in aquatic ecosystems. 9,10-Phenanthrenequione (9,10-PQ) is an oxidized PAH and is highly toxic to aquatic animals. However, the effects of 9,10-PQ on the molecular metabolism of fish remain largely unknown. In this study, Takifugu obscurus juveniles were acutely exposed to 44.30 µg/L 9,10-PQ for 3 days. The transcriptome profile changes in their livers were compared between the 9,10-PQ treatment group and the control using T. rubripes as the reference genome. The results identified 22,414 genes in our transcriptome. Among them, 767 genes were differentially expressed after exposure to 9,10-PQ, which enriched 16 KEGG pathways. Among them, the glycolysis, phagosome, and FOXO signaling pathways were significantly activated in 9,10-PQ treatment compared with the control. These data indicate that 9,10-PQ increased the glycolysis capacity to produce more energy for resistance and harmed immune function. Moreover, several genes related to tumorigenesis were significantly upregulated in response to 9,10-PQ, displaying the carcinogenic toxicity of 9,10-PQ to T. obscurus. Genes in steroid biosynthesis pathways were downregulated in the 9,10-PQ treatment group, suggesting interference with the endocrine system. Overall, these findings provide information to help evaluate the environmental risks that oxygenated-PAHs present to T. obscurus.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
20
|
Wang Y, Yang Q, Shen S, Zhang L, Xiang Y, Weng X. Mst1 promotes mitochondrial dysfunction and apoptosis in oxidative stress-induced rheumatoid arthritis synoviocytes. Aging (Albany NY) 2020; 12:16211-16223. [PMID: 32692720 PMCID: PMC7485731 DOI: 10.18632/aging.103643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/19/2020] [Indexed: 01/09/2023]
Abstract
In this study, we investigated the role of macrophage stimulating 1 (Mst1) and the AMPK-Sirt1 signaling pathway in the oxidative stress-induced mitochondrial dysfunction and apoptosis seen in rheumatoid arthritis-related fibroblast-like synoviocytes (RA-FLSs). Mst1 mRNA and protein expression was significantly higher in hydrogen peroxide (H2O2)-treated RA-FLSs than untreated controls. H2O2 treatment induced the mitochondrial apoptotic pathway by activating caspase3/9 and Bax in the RA-FLSs. Moreover, H2O2 treatment significantly reduced mitochondrial membrane potential and mitochondrial state-3 and state-4 respiration, but increased reactive oxygen species (ROS). Mst1 silencing significantly reduced oxidative stress-induced mitochondrial dysfunction and apoptosis in RA-FLSs. Sirt1 expression was significantly reduced in the H2O2-treated RA-FLSs, but was higher in the H2O2-treated Mst1-silenced RA-FLSs. Pretreatment with selisistat (Sirt1-specific inhibitor) or compound C (AMPK antagonist) significantly reduced the viability and mitochondrial function in H2O2-treated Mst1-silenced RA-FLSs by inhibiting Sirt1 function or Sirt1 expression, respectively. These findings demonstrate that oxidative stress-related upregulation and activation of Mst1 promotes mitochondrial dysfunction and apoptosis in RA-FLSs by inhibiting the AMPK-Sirt1 signaling pathway. This suggests the Mst1-AMPK-Sirt1 axis is a potential target for RA therapy.
Collapse
Affiliation(s)
- Yingjie Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Qi Yang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, First Hospital of Harbin, Harbin 150010, China
| | - Songpo Shen
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China.,Department of Orthopedic Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Linjie Zhang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Yongbo Xiang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
21
|
Alpire MES, de Camargo EA, Cardoso CM, Salvadori DMF, Pereira CDS, Ribeiro DA. In vivo and in vitro analysis of cytogenotoxicity in populations living in abnormal conditions from Santos-Sao Vicente estuary. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:12039-12046. [PMID: 31982997 DOI: 10.1007/s11356-020-07602-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/01/2020] [Indexed: 06/10/2023]
Abstract
The aim of the study was to evaluate cyto- and genotoxic effects in populations living in subnormal clusters in Santos São Vicente estuary. For in vivo study, samples of buccal mucosa and peripheral blood cells were collected. Micronucleus assay and single-cell gel (comet) assay were performed. For in vitro study, Chinese ovary hamster (CHO) cells were exposed to contaminated water. The results showed that people living in the contaminated estuary have increased DNA damage in oral mucosa and peripheral blood cells, as detected in the micronucleus and comet assays respectively. In addition, estuarine water was able to promote cytotoxicity at the highest concentrations, as well as decrease the number of cells in the G1 phase. In summary, our results indicate that water from the Santos-São Vicente estuary is capable of inducing cytogenotoxicity in mammalian cells in vivo and in vitro.
Collapse
Affiliation(s)
- Maria Esther Suarez Alpire
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Vila Mathias, Santos, SP, 11060-001, Brazil
| | | | - Caroline Margonato Cardoso
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Vila Mathias, Santos, SP, 11060-001, Brazil
| | | | - Camilo Dias Seabra Pereira
- Department of Sea Sciences, Federal University of São Paulo, UNIFESP, Campus Baixada Santista, Santos, SP, Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo, UNIFESP, Av. Ana Costa, 95, Vila Mathias, Santos, SP, 11060-001, Brazil.
| |
Collapse
|
22
|
Chiu CY, Chung MN, Lan KC, Yang RS, Liu SH. Exposure of low-concentration arsenic induces myotube atrophy by inhibiting an Akt signaling pathway. Toxicol In Vitro 2020; 65:104829. [PMID: 32184170 DOI: 10.1016/j.tiv.2020.104829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 11/26/2022]
Abstract
Arsenic, a widely distributed toxic metalloid, has been found to be associated with the low-birth-weight infants and the impairment of muscle regenerative capacity in areas with high levels of arsenic in drinking water. The distal muscular atrophy is one of side effects of arsenic trioxide (As2O3) for acute promyelocytic leukemia therapy. We hypothesized that arsenic may be a potential risk factor for skeletal muscle atrophy. Here, we investigated the action and molecular mechanism of low-dose arsenic on the induction of skeletal muscle atrophy in a skeletal muscle cell model. The differentiated C2C12 myotubes were treated with As2O3 (0.25-1 μM) for 48 h without apparent effects on cell viability. The signaling molecules for myotube atrophy were assessed. Submicromolar-concentration As2O3 dose-dependently triggered C2C12 myotube atrophy and increased the protein expressions of atrogenes Atrogin1 and MuRF1 and inhibited the upstream phosphorylated proteins Akt and FoxO1, while As2O3 dose-dependently increased AMPK phosphorylation in myotubes. Akt activator SC79 could significantly reverse the As2O3-induced myotube atrophy. These results suggest that arsenic is capable of inducing myotube atrophy by inhibiting an Akt signaling pathway.
Collapse
Affiliation(s)
- Chen-Yuan Chiu
- Department of Botanicals, Medical and Pharmaceutical Industry Technology and Development Center, New Taipei City, Taiwan
| | - Min-Ni Chung
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Cheng Lan
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Rong-Sen Yang
- Department of Orthopaedics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pediatrics, College of Medicine, National Taiwan University & Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Arsenic induces human chondrocyte senescence and accelerates rat articular cartilage aging. Arch Toxicol 2019; 94:89-101. [PMID: 31734849 DOI: 10.1007/s00204-019-02607-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022]
Abstract
Arsenic-contaminated drinking water is known to be a serious human health problem. A previous epidemiological study has indicated that arsenic levels in blood were higher in arthritis patients compared to age-matched control subjects. Bone is known as an important arsenic store compartment in the body. Arsenic exposure has been suggested to promote senescence in human mesenchymal stem cells that may affect the balance of adipogenic and osteogenic differentiation. The toxicological effect and mechanism of arsenic exposure on articular chondrocytes still remain unclear. Here, we investigated the arsenic-induced senescence in cultured human articular chondrocytes and long-term arsenic-exposed rat articular cartilage. Arsenic trioxide (As2O3; 1-5 μM) significantly induced senescence in human articular chondrocytes by increasing senescence-associated β-galactosidase (SA-β-Gal) activity and protein expression of p16, p53, and p21. Arsenic induced the phosphorylation of p38 and c-Jun N-terminal kinase (JNK) proteins. The inhibitors of p38 and JNK significantly reversed the arsenic-induced chondrocyte senescence. Arsenic could also trigger the induction of GATA4-NF-κB signaling and senescence-associated secretory phenotype (SASP) by increasing IL-1α, IL-1β, TGF-β, TNF-α, CCL2, PAI-1, and MMP13 mRNA expression. The increased cartilage senescence and abrasion were also observed in a rat model long-term treatment with arsenic (0.05 and 0.5 ppm) in drinking water for 36 weeks as compared to age-matched control rats. The phosphorylation of p38 and JNK and the induction of GATA4-NF-κB signaling and SASP were enhanced in the rat cartilages. Taken together, these findings suggest that arsenic exposure is capable of inducing chondrocyte senescence and accelerating rat articular cartilage aging and abrasion.
Collapse
|
24
|
Isoflurane preconditioning protects hepatocytes from oxygen glucose deprivation injury by regulating FoxO6. J Biosci 2019. [DOI: 10.1007/s12038-019-9967-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Wu H, Zhang R, Fan X, Lian Z, Hu Y. FoxOs could play an important role during influenza A viruses infection via microarray analysis based on GEO database. INFECTION GENETICS AND EVOLUTION 2019; 75:104009. [PMID: 31437558 DOI: 10.1016/j.meegid.2019.104009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/25/2019] [Accepted: 08/18/2019] [Indexed: 01/02/2023]
Abstract
Influenza is a highly contagious respiratory illness caused by influenza A viruses (IAVs). The response and reaction from the host vary due to different subtypes. In this study, we identified the global transcriptomics of HUVEC (human umbilical vein endothelial cells) and macrophage cells after infection of H5N1 and H1N1 strains using microarray data from Gene Expression Omnibus (GEO), respectively. Our data showed that influenza A viruses (IAVs) could induce more global profound transcriptomics in HUVEC than macrophage cells. H5N1 infection led to much more rigorous apoptosis than H1N1 did in macrophage cells. Our data is consistent with the idea that by maintaining normal levels of FoxO1 could be maintained, the pro-apoptotic effects of IAV virus infection could be reduced. Anti-inflammatory and anti-apoptosis responses could be manipulated via FoxOs in response to IAVs infection, indicating that FoxOs could function as candidate target for the treatment of IAVs infection. Our result thus provides new insight for the future strategy of anti-IAVs therapy.
Collapse
Affiliation(s)
- Hongping Wu
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Rui Zhang
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Xiaoxu Fan
- National Surveillance and Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, No. 369 Nanjing Rd, Shibei, Qingdao 266032, Shandong, PR China.
| | - Zhengxing Lian
- Beijing Key Laboratory of Animal Genetic Improvement, Beijing Key Laboratory of Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| | - Yanxin Hu
- Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Rd, Haidian, Beijing 100193, PR China.
| |
Collapse
|
26
|
Cui J, Zhou Z, Yang H, Jiao F, Li N, Gao Y, Wang L, Chen J, Quan M. MST1 Suppresses Pancreatic Cancer Progression via ROS-Induced Pyroptosis. Mol Cancer Res 2019; 17:1316-1325. [PMID: 30796177 DOI: 10.1158/1541-7786.mcr-18-0910] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/16/2018] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease, and its incidence is increasing annually. It is critical to reveal and delineate the molecular mechanism promoting PDAC development and progression. Mammalian STE20-like kinase 1 (MST1) is a proapoptotic cytoplasmic kinase and also one of the core components of the Hippo pathway. Here, we showed that MST1 expression was decreased in PDAC, and restored expression of MST1 promoted PDAC cell death and suppressed the proliferation, migration, invasion, and cell spheroid formation of PDAC via caspase-1-induced pyroptosis. Further studies demonstrated that pyroptosis induced by MST1 was independent of the Hippo pathway, but mediated by reactive oxygen species (ROS). And ROS scavenger N-acetyl-cysteine attenuated the activation of caspase-1 induced by MST1 and the effect of MST1 in PDAC cell death, proliferation, migration, and invasion. Collectively, our study demonstrated that MST1 suppressed the progression of PDAC cells at least partly through ROS-induced pyroptosis. IMPLICATIONS: In this study, we identified a new mechanism of MST1 in inhibiting PDAC development and progression and revealed that MST1 would be a potential prognostic and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Jiujie Cui
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhuqing Zhou
- Department of Gastroenterological Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haiyan Yang
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Jiao
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ning Li
- Department of Oncology, First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yong Gao
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liwei Wang
- Department of Medical Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogene and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jingde Chen
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ming Quan
- Department of Oncology and Tumor Institute, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
27
|
Li X, Ding D, Yao J, Zhou B, Shen T, Qi Y, Ni T, Wei G. Chromatin remodeling factor BAZ1A regulates cellular senescence in both cancer and normal cells. Life Sci 2019; 229:225-232. [PMID: 31085244 DOI: 10.1016/j.lfs.2019.05.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022]
Abstract
AIMS Cellular senescence is a well-known cancer prevention mechanism, inducing cancer cells to senescence can enhance cancer immunotherapy. However, how cellular senescence is regulated is not fully understood. Dynamic chromatin changes have been discovered during cellular senescence, while the causality remains elusive. BAZ1A, a gene coding the accessory subunit of ATP-dependent chromatin remodeling complex, showed decreased expression in multiple cellular senescence models. We aim to investigate the functional role of BAZ1A in regulating senescence in cancer and normal cells. MATERIALS AND METHODS Knockdown of BAZ1A was performed via lentivirus mediated short hairpin RNA (shRNA) in various cancer cell lines (A549 and U2OS) and normal cells (HUVEC, NIH3T3 and MEF). A series of senescence-associated phenotypes were quantified by CCK-8 assay, SA-β-Gal staining and EdU incorporation assay, etc. KEY FINDINGS: Knockdown (KD) of BAZ1A induced series of senescence-associated phenotypes in both cancer and normal cells. BAZ1A-KD caused the upregulated expression of SMAD3, which in turn activated the transcription of p21 coding gene CDKN1A and resulted in senescence-associated phenotypes in human cancer cells (A549 and U2OS). SIGNIFICANCE Our results revealed chromatin remodeling modulator BAZ1A acting as a novel regulator of cellular senescence in both normal and cancer cells, indicating a new target for potential cancer treatment.
Collapse
Affiliation(s)
- Xueping Li
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Dong Ding
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jun Yao
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Bin Zhou
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Shen
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yun Qi
- The State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Ting Ni
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Gang Wei
- Ministry of Education (MOE) Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
28
|
Wahiduzzaman M, Ota A, Karnan S, Hanamura I, Mizuno S, Kanasugi J, Rahman ML, Hyodo T, Konishi H, Tsuzuki S, Takami A, Hosokawa Y. Novel combined Ato-C treatment synergistically suppresses proliferation of Bcr-Abl-positive leukemic cells in vitro and in vivo. Cancer Lett 2018; 433:117-130. [PMID: 29944906 DOI: 10.1016/j.canlet.2018.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/28/2022]
Abstract
Chronic myelogenous leukemia (CML) accounts for 15-20% of all leukemias affecting adults. Despite recent advances in the development of specific Bcr-Abl tyrosine kinase inhibitors (TKIs), some CML patients suffer from relapse due to TKI resistance. Here, we assessed the efficacy of a novel combinatorial arsenic trioxide (ATO) and cisplatin (CDDP) treatment (Ato-C) in human Bcr-Abl-positive leukemic cells. Combination index analyses revealed that a synergistic interaction of ATO and CDDP elicits a wide range of effects in K562, KU-812, MEG-A2, and KCL-22 cells. Notably, Ato-C synergistically enhanced apoptosis and decreased the survival of both acquired TKI-resistant CML cells and the cells expressing mutant Bcr-AblT315I. In addition, Ato-C dramatically decreased the phosphorylation level of forkhead transcription factor FOXO1/3a and STAT5 as well as c-Myc protein level. Interestingly, results of gene set enrichment analysis showed that Ato-C significantly downregulates the expression of MYC- and/or E2F1-target genes. Furthermore, Ato-C significantly suppressed the proliferation of MEG-A2-derived tumor when compared with that following monotherapy in vivo. Collectively, these results suggest that combined Ato-C treatment could be a promising alternative to the current therapeutic regime in CML.
Collapse
Affiliation(s)
- Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan.
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Jo Kanasugi
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University, Aichi, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
29
|
Pinto BI, Lujan OR, Ramos SA, Propper CR, Kellar RS. Estrogen Mitigates the Negative Effects of Arsenic Contamination in an In Vitro Wound Model. APPLIED IN VITRO TOXICOLOGY 2018; 4:24-29. [PMID: 30956995 PMCID: PMC5881251 DOI: 10.1089/aivt.2017.0020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Arsenic, a naturally occurring environmental contaminant, is harmful to humans at elevated concentrations. Increased levels of arsenic in the environment occur as a result of human activities and from natural geologically sourced leaching into ground and surface water. These sources pose an exposure risk above the USEPA standard to individuals whose food and water sources become contaminated. Arsenic exposure negatively impacts organ function and increases the risk for developing pathologies, including cancer. Some of the effects of arsenic on cancer translate to normal cell function in wound healing. To evaluate whether arsenic influences wound healing, an in vitro scratch assay was employed to study the effects of arsenic on cellular migration, which is a key component in the normal wound-healing process. In this study, skin cells were exposed to environmentally relevant concentrations of arsenic, and wound closure was evaluated. Results indicated that arsenic significantly decreased the rate of cellular migration in the scratch assay when compared with controls. In addition, estradiol, which has been shown to positively influence cellular and tissue processes involved in wound healing, reversed the slowing effects of arsenic on wound closure. These results suggest that arsenic contamination may inhibit, and estrogen may provide a therapeutic benefit for individuals with arsenic-contaminated wounds.
Collapse
Affiliation(s)
- Bronson I. Pinto
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Oscar R. Lujan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Stephan A. Ramos
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
| | - Robert S. Kellar
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Center for Bioengineering Innovation, Northern Arizona University, Flagstaff, Arizona
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona
| |
Collapse
|
30
|
Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity: Knowns and unknowns. Semin Cancer Biol 2018; 50:53-64. [PMID: 29309928 DOI: 10.1016/j.semcancer.2018.01.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 12/26/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
In the tumor microenvironment (TME), cancer cells, stromal cells, and immune cells, along with their extracellular factors, have profound effects on either promoting or repressing anti-cancer immunity. Accumulating evidence has shown the paradoxical intrinsic role of the Forkhead box O (FOXO) family of transcription factors in cancer, which can act as a tumor repressor while also maintaining cancer stem cells. FOXOs also regulate cancer immunity. FOXOs promote antitumor activity through negatively regulating the expression of immunosuppressive proteins, such as programmed death 1 ligand 1 (PD-L1), and vascular endothelial growth factor (VEGF) in tumor cells or stromal cells, which can shape an immunotolerant state in the TME. FOXOs also intrinsically control the anti-tumor immune response as well as the homeostasis and development of immune cells, including T cells, B cells, natural killer (NK) cells, macrophages, and dendritic cells. As a cancer repressor, reviving the activity of Foxo1 forces tumor-infiltrating activated regulatory T (Treg) cells to egress from tumor tissues. As a promoter of cancer development, Foxo3 and Foxo1 negatively regulate cytotoxicity of both CD8+ T cells and NK cells against tumor cells. In this review, we focus on the complex role of FOXOs in regulating cancer immunity due to the various roles that they play in cancer cells, stromal cells, and immune cells. We also speculate on some possible additional roles of FOXOs in cancer immunity based on findings regarding FOXOs in non-cancer settings, such as infectious disease.
Collapse
Affiliation(s)
- Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), China.
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), China
| | - Tiffany Hughes
- Comprehensive Cancer Center, The Ohio State University, United States
| | - Jianhua Yu
- Comprehensive Cancer Center, The Ohio State University, United States; Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, United States; The James Cancer Hospital and Solove Research Institute, The Ohio State University, United States.
| |
Collapse
|
31
|
Madhyastha H, Madhyastha R, Nakajima Y, Maruyama M. Deciphering the molecular events during arsenic induced transcription signal cascade activation in cellular milieu. Biometals 2017; 31:7-15. [PMID: 29143154 DOI: 10.1007/s10534-017-0065-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Anthropogenic sources of arsenic poses and creates unintentional toxico-pathological concerns to humans in many parts of the world. The understanding of toxicity of this metalloid, which shares properties of both metal and non-metal is principally structured on speciation types and holy grail of toxicity prevention. Visible symptoms of arsenic toxicity include nausea, vomiting, diarrhea and abdominal pain. In this review, we focused on the dermal cell stress caused by trivalent arsenic trioxide and pentavalent arsanilic acid. Deciphering the molecular events involved during arsenic toxicity and signaling cascade interaction is key in arsenicosis prevention. FoxO1 and FoxO2 transcription factors, members of the Forkhead/Fox family, play important roles in this aspect. Like Foxo family proteins, ATM/CHK signaling junction also plays important role in DNA nuclear factor guided cellular development. This review will summarize and discuss current knowledge about the interplay of these pathways in arsenic induced dermal pathogenesis.
Collapse
Affiliation(s)
- Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 8891692, Japan.
| |
Collapse
|
32
|
Paul S, Bhattacharjee P, Giri AK, Bhattacharjee P. Arsenic toxicity and epimutagenecity: the new LINEage. Biometals 2017; 30:505-515. [PMID: 28516305 DOI: 10.1007/s10534-017-0021-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
Abstract
Global methylation pattern regulates the normal functioning of a cell. Research have shown arsenic alter these methylation landscapes within the genome leading to aberrant gene expression and inducts various pathophysiological outcomes. Long interspersed nuclear elements (LINE-1) normally remains inert due to heavy methylation of it's promoters, time and various environmental insults, they lose these methylation signatures and begin retro-transposition that has been associated with genomic instability and cancerous outcomes. Of the various high throughput technologies available to detect global methylation profile, development of LINE-1 methylation index shall provide a cost effect-screening tool to detect epimutagenic events in the wake of toxic exposure in a large number of individuals. In the present review, we tried to discuss the state of research and whether LINE-1 methylation can be considered as a potent epigenetic signature for arsenic toxicity.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India. .,Department of Epigenetics & Molecular Carcinogenesis, The Virginia Harris Cockrell Cancer Center, The University of Texas, M.D. Anderson Cancer Center, Science Park, 1808 Park Road 1C, Smithville, TX, 78957, USA.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
33
|
Molecular insight of arsenic-induced carcinogenesis and its prevention. Naunyn Schmiedebergs Arch Pharmacol 2017; 390:443-455. [PMID: 28229170 DOI: 10.1007/s00210-017-1351-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022]
Abstract
Population of India and Bangladesh and many other parts of the world are badly exposed to arsenic through drinking water. Due to non-availability of safe drinking water, they are dependent on arsenic-contaminated water. Generally, poverty level is high in those areas with lack of proper nutrition. Arsenic is considered to be an environmental contaminant and widely distributed in the environment due to its natural existence and anthropogenic applications. Contamination of arsenic in both human and animal could occur through air, soil, and other sources. Arsenic exposure mainly occurs in food materials through drinking water with high levels of arsenic in it. High levels of arsenic in groundwater have been found to be associated with various health-related problems including arsenicosis, skin lesions, cardiovascular diseases, reproductive problems, psychological, neurological, immunotoxic, and carcinogenesis. The mechanism of arsenic toxicity consists in its transformation in metaarsenite, which acylates protein sulfhydryl groups, affect on mitochondria by inhibiting succinic dehydrogenase activity and can uncouple oxidative phosphorylation with production of active oxygen species by tissues. A variety of dietary antioxidant supplements are useful to protect the carcinogenetic effects of arsenic. They play crucial role for counteracting oxidative damage and protect carcinogenesis by chelating with heavy metal moiety. Phytochemicals and chelating agents will be beneficial for combating heavy metal-induced carcinogenesis through its biopharmaceutical properties.
Collapse
|
34
|
Chayapong J, Madhyastha H, Madhyastha R, Nurrahmah QI, Nakajima Y, Choijookhuu N, Hishikawa Y, Maruyama M. Arsenic trioxide induces ROS activity and DNA damage, leading to G0/G1 extension in skin fibroblasts through the ATM-ATR-associated Chk pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5316-5325. [PMID: 28013460 DOI: 10.1007/s11356-016-8215-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 12/06/2016] [Indexed: 06/06/2023]
Abstract
Arsenic (As) toxicity is a global health problem, affecting millions of people. Exposure to arsenic, mostly via drinking water, has been associated with cancer of skin, lungs, and blood, in addition to several kinds of skin lesions. The present study focused on the effect of arsenic trioxide (As2O3) on normal skin fibroblast cells. Specifically, the effect of As2O3 on ROS generation and oxidative stress was investigated. Proteins involved in the DNA damage signaling pathway and cell cycle were also studied. As2O3 induced the generation of intracellular ROS. Immunohistochemistry analysis revealed a dose-dependent increase in the number of 8-OHdG-positive cells, an indication of oxidative stress. Cell cycle analysis by flow cytometry demonstrated that As2O3 caused a significant percentage of cells to accumulate in the G0/G1 phase with a concomitant reduction in the S phase. Increases in the activated forms of DNA damage signaling proteins, ATM and ATR, and their effector molecules, Chk2 and p53, were also observed. In addition, expression of oncogene p21 was also increased. The study shows that exposure of normal skin fibroblast cells to As2O3 could lead to cell cycle arrest through ATM/ATR and DNA damage signaling pathways. In conclusion, we report here that arsenic trioxide increases cellular oxidative stress leading to shift in cell cycle and leads to DNA damage through ATM/ATR and the CHK-dependent signaling pathway.
Collapse
Affiliation(s)
- Jutapon Chayapong
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Queen Intan Nurrahmah
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Narantsog Choijookhuu
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Yoshitaka Hishikawa
- Department of Anatomy, Histochemistry and Cell Biology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan.
| |
Collapse
|
35
|
Norambuena-Soto I, Núñez-Soto C, Sanhueza-Olivares F, Cancino-Arenas N, Mondaca-Ruff D, Vivar R, Díaz-Araya G, Mellado R, Chiong M. Transforming growth factor-beta and Forkhead box O transcription factors as cardiac fibroblast regulators. Biosci Trends 2017; 11:154-162. [PMID: 28239053 DOI: 10.5582/bst.2017.01017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | - Raul Vivar
- Facultad de Medicina; Universidad de Chile
| | | | | | - Mario Chiong
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile
- Centro de Estudios Moleculares de la Célula, Universidad de Chile
| |
Collapse
|