1
|
Cheng K, Pan Y, Yuan B. Cytotoxicity prediction of nano metal oxides on different lung cells via Nano-QSAR. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123405. [PMID: 38244905 DOI: 10.1016/j.envpol.2024.123405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
In recent years, nanomaterials have found extensive applications across diverse domains owing to their distinctive physical and chemical characteristics. It is of great importance in theoretical and practical terms to carry out the relationship between structural characteristics of nanomaterials and different cytotoxicity and to achieve practical assessment and prediction of cytotoxicity. This study investigated the intrinsic quantitative constitutive relationships between the cytotoxicity of nano-metal oxides on human normal lung epithelial cells and human lung adenocarcinoma cells. We first employed quasi-SMILES-based nanostructural descriptors by selecting the five physicochemical properties that are most closely related to the cytotoxicity of nanometal oxides, then established SMILES-based descriptors that can effectively describe and characterize the molecular structure of nanometal oxides, and then built the corresponding Nano-Quantitative Structure-Activity Relationship (Nano-QSAR) prediction models, finally, combined with the theory of reactive oxygen species (ROS) biotoxicity, to reveal the mechanism of toxicity and differences between the two cell types. The established model can efficiently and accurately predict the properties of targets, reveal the corresponding toxicity mechanisms, and guide the safe design, synthesis, and application of nanometal oxides.
Collapse
Affiliation(s)
- Kaixiao Cheng
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China.
| | - Yong Pan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China.
| | - Beilei Yuan
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, PR China
| |
Collapse
|
2
|
Mascarenhas-Melo F, Mathur A, Murugappan S, Sharma A, Tanwar K, Dua K, Singh SK, Mazzola PG, Yadav DN, Rengan AK, Veiga F, Paiva-Santos AC. Inorganic nanoparticles in dermopharmaceutical and cosmetic products: Properties, formulation development, toxicity, and regulatory issues. Eur J Pharm Biopharm 2023; 192:25-40. [PMID: 37739239 DOI: 10.1016/j.ejpb.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/03/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
The use of nanotechnology strategies is a current hot topic, and research in this field has been growing significantly in the cosmetics industry. Inorganic nanoparticles stand out in this context for their distinctive physicochemical properties, leading in particular to an increased refractive index and absorption capacity giving them a broad potential for cutaneous applications and making them of special interest in research for dermopharmaceutical and cosmetic purposes. This performance is responsible for its heavy inclusion in the manufacture of skin health products such as sunscreens, lotions, beauty creams, skin ointments, makeup, and others. In particular, their suitable bandgap energy characteristics allow them to be used as photocatalytic semiconductors. They provide excellent UV absorption, commonly known as UV filters, and are responsible for their wide worldwide use in sunscreen formulations without the undesirable white residue after consumer application. In addition, cosmetics based on inorganic nanoparticles have several additional characteristics relevant to formulation development, such as being less expensive compared to other nanomaterials, having greater stability, and ensuring less irritation, itching, and propensity for skin allergies. This review will address in detail the main inorganic nanoparticles used in dermopharmaceutical and cosmetic products, such as titanium dioxide, zinc oxide, silicon dioxide, silver, gold, copper, and aluminum nanoparticles, nanocrystals, and quantum dots, reporting their physicochemical characteristics, but also their additional intrinsic properties that contribute to their use in this type of formulations. Safety issues regarding inorganic nanoparticles, based on toxicity studies, both to humans and the environment, as well as regulatory affairs associated with their use in dermopharmaceuticals and cosmetics, will be addressed.
Collapse
Affiliation(s)
- Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Ankita Mathur
- Abode Biotec India Private Limited, Hyderbad, Telangana, India
| | - Sivasubramanian Murugappan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India; Department of Physics, Faculty of Science and Engineering, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Arpana Sharma
- Department of Life Sciences, Mewar University, Gangrar, Rajasthan, India
| | | | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab-144411, India
| | | | - Dokkari Nagalaxmi Yadav
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Lozano H, Devis S, Aliaga J, Alegría M, Guzmán H, Villarroel R, Benavente E, González G. Two-Dimensional Titanium Dioxide-Surfactant Photoactive Supramolecular Networks: Synthesis, Properties, and Applications for the Conversion of Light Energy. Int J Mol Sci 2022; 23:4006. [PMID: 35409363 PMCID: PMC8999612 DOI: 10.3390/ijms23074006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/29/2022] [Indexed: 01/25/2023] Open
Abstract
The desire to harness solar energy to address current global environmental problems led us to investigate two-dimensional (2D) core-shell hybrid photocatalysts in the form of a 2D-TiO2-surfactant, mainly composed of fatty acids. The bulk products, prepared by two slightly different methods, consist of stacked host-guest hybrid sheets held together by van der Waals forces between alkyl carboxylate moieties, favoring the synergistic conjugation of the photophysical properties of the core and the hydrophobicity of the self-assembled surfactant monolayer of the shell. X-ray diffraction and the vibrational characteristics of the products revealed the influence of synthesis strategies on two types of supramolecular aggregates that differ in the core chemical structure, guest conformers of alkyl surfactant tails and type, and the bilayer and monolayer of the structure of nanocomposites. The singular ability of the TiO2 core to anchor carboxylate leads to commensurate hybrids, in contrast to both layered clay and layered double-hydroxide-based ion exchangers which have been previously reported, making them potentially interesting for modeling the role of fatty acids and lipids in bio-systems. The optical properties and photocatalytic activity of the products, mainly in composites with smaller bandgap semiconductors, are qualitatively similar to those of nanostructured TiO2 but improve their photoresponse due to bandgap shifts and the extreme aspect-ratio characteristics of two-dimensional TiO2 confinement. These results could be seen as a proof-of-concept of the potential of these materials to create custom-designed 2D-TiO2-surfactant supramolecular photocatalysts.
Collapse
Affiliation(s)
- Harold Lozano
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 111321, Colombia;
| | - Sindy Devis
- Facultad de Ciencias de la Salud, Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Universidad SEK, Santiago 7520317, Chile;
| | - Juan Aliaga
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
| | - Matías Alegría
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
| | - Hernán Guzmán
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Roberto Villarroel
- Instituto de Física, Pontificia, Universidad Católica de Chile, Santiago 7830614, Chile;
| | - Eglantina Benavente
- Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y Medio Ambiente, Universidad Tecnológica Metropolitana Santiago, Santiago 7800003, Chile; (J.A.); (M.A.)
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago 7750000, Chile
| | - Guillermo González
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| |
Collapse
|
4
|
Brassolatti P, de Almeida Rodolpho JM, Franco de Godoy K, de Castro CA, Flores Luna GL, Dias de Lima Fragelli B, Pedrino M, Assis M, Nani Leite M, Cancino-Bernardi J, Speglich C, Frade MA, de Freitas Anibal F. Functionalized Titanium Nanoparticles Induce Oxidative Stress and Cell Death in Human Skin Cells. Int J Nanomedicine 2022; 17:1495-1509. [PMID: 35388270 PMCID: PMC8978907 DOI: 10.2147/ijn.s325767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose Methods Results Conclusion
Collapse
Affiliation(s)
- Patricia Brassolatti
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Correspondence: Patricia Brassolatti, Departamento de Morfologia e Patologia UFSCar, Rod. Washington Luís, Km 235 Caixa Postal 676, São Carlos, CEP. 13565-905, SP, Brazil, Tel +551633518325, Fax +551633518326, Email
| | - Joice Margareth de Almeida Rodolpho
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Krissia Franco de Godoy
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Cynthia Aparecida de Castro
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Genoveva Lourdes Flores Luna
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Bruna Dias de Lima Fragelli
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Matheus Pedrino
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcelo Assis
- Center for the Development of Functional Materials, Department of Chemistry, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Marcel Nani Leite
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, São Carlos, São Paulo, Brazil
| | - Carlos Speglich
- Leopoldo Américo Miguez de Mello CENPES/Petrobras Research Center, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Andrey Frade
- Division of Dermatology - Wound Healing & Hansen’s Disease Lab, Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernanda de Freitas Anibal
- Laboratory of Inflammation and Infectious Diseases, Department of Morphology and Pathology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
5
|
Paiva-Santos AC, Mascarenhas-Melo F, Coimbra SC, Pawar KD, Peixoto D, Chá-Chá R, Araujo AR, Cabral C, Pinto S, Veiga F. Nanotechnology-based formulations toward the improved topical delivery of anti-acne active ingredients. Expert Opin Drug Deliv 2021; 18:1435-1454. [PMID: 34214003 DOI: 10.1080/17425247.2021.1951218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Acne vulgaris is a chronic inflammatory skin disorder that affects an extremely concerning percentage of teenagers (ca. 85%), gathering serious negative impacts on the social life and psychological well-being of individuals. Conventional topical formulations for acne show low tolerability and side effects, such as skin irritation, leading to a decrease in the user's adherence to therapy. Nanotechnology-based formulations were developed as new strategies for topical acne management, particularly to overcome the difficulties associated with conventional treatments.Areas covered: This paper presents a critical analysis of reviewed nanosized anti-acne technological strategies, strongly supporting controlled active ingredient release, improved skin permeation, and lower skin irritation. An updated regulatory framework, considering the promising applications in nanomedicine, and the toxicity of these nanosystems are also addressed.Expert opinion: Nanosystems evidence several advantages, attending to the possibility of controlled active ingredient release, better skin permeation, and lower skin irritation. However, novel nanotechnological strategies for acne treatment and care can lead to new side effects, but also environmental nano pollution. Little is known about the toxicology of these nanotechnology-based formulations, therefore, as future trends, more studies should be conducted to assure the consumers' health and environmental safety.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Sara Cabanas Coimbra
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Kiran D Pawar
- School of Nanoscience and Biotechnology, Shivaji University, Kolhapur, Maharashtra, India
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Raquel Chá-Chá
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - André Rts Araujo
- Research Unit for Inland Development (UDI), Polytechnic Institute of Guarda, Guarda, Portugal.,Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Célia Cabral
- Faculty of Medicine, University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (Icbr), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal.,Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal.,Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Selmo Pinto
- INFARMED - Autoridade Nacional Do Medicamento E Produtos De Saúde, I.P., Parque De Saúde De Lisboa, Lisboa, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
6
|
Abstract
Abstract
The field of nanotechnology is being greatly explored by cosmetic industries in order to improve the efficacy of cosmetic products. The increased use of nanomaterials in the field of cosmetics can have two sides as health-related benefits and detrimental effects. This review mainly seeks the pros and cons of the use of nanomaterials in cosmetics along with some examples of nanomaterials that are widely used in cosmetic industries along with different types of nanotechnology-based cosmetic products. The benefits of nanomaterials in cosmetic formulations are huge. Moreover the study regarding the toxic effects on the health also equally matters. This review gives a brief outline of the advantages as well as disadvantages of nanotechnology in cosmetics.
Collapse
|
7
|
Malaviya P, Shukal D, Vasavada AR. Nanotechnology-based Drug Delivery, Metabolism and Toxicity. Curr Drug Metab 2020; 20:1167-1190. [PMID: 31902350 DOI: 10.2174/1389200221666200103091753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 11/23/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nanoparticles (NPs) are being used extensively owing to their increased surface area, targeted delivery and enhanced retention. NPs have the potential to be used in many disease conditions. Despite widespread use, their toxicity and clinical safety still remain a major concern. OBJECTIVE The purpose of this study was to explore the metabolism and toxicological effects of nanotherapeutics. METHODS Comprehensive, time-bound literature search was done covering the period from 2010 till date. The primary focus was on the metabolism of NP including their adsorption, degradation, clearance, and bio-persistence. This review also focuses on updated investigations on NPs with respect to their toxic effects on various in vitro and in vivo experimental models. RESULTS Nanotechnology is a thriving field of biomedical research and an efficient drug delivery system. Further their applications are under investigation for diagnosis of disease and as medical devices. CONCLUSION The toxicity of NPs is a major concern in the application of NPs as therapeutics. Studies addressing metabolism, side-effects and safety of NPs are desirable to gain maximum benefits of nanotherapeutics.
Collapse
Affiliation(s)
- Pooja Malaviya
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Dhaval Shukal
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India.,Ph.D. Scholars, Manipal Academy of Higher Education, Manipal, India
| | - Abhay R Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Memnagar, Ahmedabad 380052, India
| |
Collapse
|
8
|
Geppert M, Schwarz A, Stangassinger LM, Wenger S, Wienerroither LM, Ess S, Duschl A, Himly M. Interactions of TiO 2 Nanoparticles with Ingredients from Modern Lifestyle Products and Their Effects on Human Skin Cells. Chem Res Toxicol 2020; 33:1215-1225. [PMID: 32088960 PMCID: PMC7238409 DOI: 10.1021/acs.chemrestox.9b00428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
The
number of consumer products containing nanoparticles (NPs)
experienced a rapid increase during the past decades. However, most
studies of nanosafety have been conducted using only pure NPs produced
in the laboratory, while the interactions with other ingredients in
consumer products have rarely been considered so far. In the present
study, we investigated such interactions—with a special focus
on modern lifestyle products (MLPs) used by adolescents. An extensive
survey was undertaken at different high schools all over Austria to
identify MLPs that either contain NPs or that could come easily in
contact with NPs from other consumer products (such as TiO2 from sunscreens). Based on the results from a survey among secondary
schools students, we focused on ingredients from Henna tattoos (2-hydroxy-1,4-naphtoquinone,
HNQ, and p-phenylenediamine, PPD), fragrances (butylphenyl
methylpropional, known as Lilial), cosmetics and skin-care products
(four different parabens). As a cellular model, we decided to use
neonatal normal human dermal fibroblasts (nNHDF), since skin contact
is the main route of exposure for these compounds. TiO2 NPs interacted with these compounds as evidenced by alterations
in their hydrodynamic diameter observed by nanoparticle tracking analysis.
Combinations of TiO2 NPs with the different MLP components
did not show altered cytotoxicity profiles compared to MLP components
without TiO2 NPs. Nevertheless, altered cellular glutathione
contents were detected after incubation of the cells with Lilial.
This effect was independent of the presence of TiO2 NPs.
Testing mixtures of NPs with other compounds from consumer products
is an important approach to achieve a more reliable safety assessment.
Collapse
Affiliation(s)
- Mark Geppert
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Alexandra Schwarz
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lea Maria Stangassinger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Susanna Wenger
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Lisa Maria Wienerroither
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Stefanie Ess
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Albert Duschl
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| | - Martin Himly
- Department of Biosciences and Allergy Cancer Bio Nano Research Centre, University of Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
9
|
Bashiri Rezaie A, Montazer M, Mahmoudi Rad M. Facile fabrication of cytocompatible polyester fiber composite incorporated via photocatalytic nano copper ferrite/myristic-lauric fatty acids coating with antibacterial and hydrophobic performances. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109888. [PMID: 31499937 DOI: 10.1016/j.msec.2019.109888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/29/2019] [Accepted: 06/11/2019] [Indexed: 11/24/2022]
Abstract
Benign polymeric and textile based materials having multifaceted features such as antibacterial performance, hydrophobic property and photocatalytic activity are highly interesting from the both human health and environment observations. Herein, a cytocompatible polyester fiber composite incorporated via photocatalytic nano copper ferrite/myristic-lauric fatty acids coating with antibacterial and hydrophobic performances was prepared through one-pot facile fabrication route. X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, mapping images, Field-emission scanning electron microscope and Fourier transform infrared spectra were accomplished to indemnify the prepared composites. An appropriate hydrophobic feature with maximum water contact angle of 143° was achieved for the fabricated sample. Moreover, the prepared samples demonstrated excellent antibacterial effect (100%) toward pathogenic bacteria comprising Escherichia coli as Gram-negative and Staphylococcus aureus as Gram-positive bacteria. The impact of the prepared samples on normal human skin fibroblast was further verified according to the cytotoxicity test (MTT). Adjusting the copper ferrite dosage in the composite as well as presence of fatty acids as benign materials surrounding nanoparticles led to decline the cytotoxicity of the fabricated samples. The prepared composite also showed excellent activity against degradation of methylene blue dye under daylight irradiation. On the whole, cytocompatible nano copper ferrite/fatty acids/polyester composites with bio and photo catalytic activities and hydrophobic property fabricated by effective and one-pot approach could be useful for applying in various industries such as medical, polymers, textiles and water treatment industries.
Collapse
Affiliation(s)
- Ali Bashiri Rezaie
- Department of Textile Engineering, Amirkabir University of Technology, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Tehran, Iran
| | - Majid Montazer
- Department of Textile Engineering, Amirkabir University of Technology, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Tehran, Iran.
| | - Mahnaz Mahmoudi Rad
- Skin Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Bashiri Rezaie A, Montazer M, Mahmoudi Rad M. Low toxic antibacterial application with hydrophobic properties on polyester through facile and clean fabrication of nano copper with fatty acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 97:177-187. [DOI: 10.1016/j.msec.2018.12.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/18/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022]
|
11
|
Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-Silva M, Veiga F, Ribeiro A. Nanotechnology for the development of new cosmetic formulations. Expert Opin Drug Deliv 2019; 16:313-330. [DOI: 10.1080/17425247.2019.1585426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ana Cláudia Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisca Morais
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Simões
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Irina Pereira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Joana A. D. Sequeira
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António Ribeiro
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
- i3S, Group Genetics of Cognitive Dysfunction, Institute for Molecular and Cell Biology, Porto, Portugal
| |
Collapse
|
12
|
Wang M, Lai X, Shao L, Li L. Evaluation of immunoresponses and cytotoxicity from skin exposure to metallic nanoparticles. Int J Nanomedicine 2018; 13:4445-4459. [PMID: 30122919 PMCID: PMC6078075 DOI: 10.2147/ijn.s170745] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nanotechnology is an interdisciplinary science that has developed rapidly in recent years. Metallic nanoparticles (NPs) are increasingly utilized in dermatology and cosmetology, because of their unique properties. However, skin exposure to NPs raises concerns regarding their transdermal toxicity. The tight junctions of epithelial cells form the skin barrier, which protects the host against external substances. Recent studies have found that NPs can pass through the skin barrier into deeper layers, indicating that skin exposure is a means for NPs to enter the body. The distribution and interaction of NPs with skin cells may cause toxic side effects. In this review, possible penetration pathways and related toxicity mechanisms are discussed. The limitations of current experimental methods on the penetration and toxic effects of metallic NPs are also described. This review contributes to a better understanding of the risks of topically applied metallic NPs and provides a foundation for future studies.
Collapse
Affiliation(s)
- Menglei Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| | - Xuan Lai
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Li Li
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China,
| |
Collapse
|
13
|
Hu Q, Guo F, Zhao F, Fu Z. Effects of titanium dioxide nanoparticles exposure on parkinsonism in zebrafish larvae and PC12. CHEMOSPHERE 2017; 173:373-379. [PMID: 28129614 DOI: 10.1016/j.chemosphere.2017.01.063] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 05/09/2023]
Abstract
Nanomaterials hold significant potential for industrial and biomedical application these years. Therefore, the relationship between nanoparticles and neurodegenerative disease is of enormous interest. In this contribution, zebrafish embryos and PC12 cell lines were selected for studying neurotoxicity of titanium dioxide nanoparticles (TiO2 NPs). After exposure of different concentrations of TiO2 NPs to embryos from fertilization to 96 hpf, the hatching time of zebrafish was decreased, accompanied by an increase in malformation rate. However, no significant increases in mortality relative to control were observed. These results indicated that TiO2 NPs exposure hold a risk for premature of zebrafish embryos, but not fatal. The further investigation confirmed that TiO2 NPs could accumulate in the brain of zebrafish larvae, resulting in reactive oxygen species (ROS) generation and cell death of hypothalamus. Meanwhile, q-PCR analysis showed that TiO2 NPs exposure increased the pink1, parkin, α-syn and uchl1 gene expression, which are related with the formation of Lewy bodies. We also observed loss of dopaminergic neurons in zebrafish and in vitro. These remarkable hallmarks are all linked to these Parkinson's disease (PD) symptoms. Our results indicate that TiO2NPs exposure induces neurotoxicity in vivo and in vitro, which poses a significant risk factor for the development of PD.
Collapse
Affiliation(s)
- Qinglian Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fengliang Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Fenghui Zhao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|