1
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
3
|
Sato T, Shizu R, Miura Y, Hosaka T, Kanno Y, Sasaki T, Yoshinari K. Development of a strategy to identify and evaluate direct and indirect activators of constitutive androstane receptor in rats. Food Chem Toxicol 2022; 170:113510. [DOI: 10.1016/j.fct.2022.113510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
4
|
Rendić SP, Crouch RD, Guengerich FP. Roles of selected non-P450 human oxidoreductase enzymes in protective and toxic effects of chemicals: review and compilation of reactions. Arch Toxicol 2022; 96:2145-2246. [PMID: 35648190 PMCID: PMC9159052 DOI: 10.1007/s00204-022-03304-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
This is an overview of the metabolic reactions of drugs, natural products, physiological compounds, and other (general) chemicals catalyzed by flavin monooxygenase (FMO), monoamine oxidase (MAO), NAD(P)H quinone oxidoreductase (NQO), and molybdenum hydroxylase enzymes (aldehyde oxidase (AOX) and xanthine oxidoreductase (XOR)), including roles as substrates, inducers, and inhibitors of the enzymes. The metabolism and bioactivation of selected examples of each group (i.e., drugs, "general chemicals," natural products, and physiological compounds) are discussed. We identified a higher fraction of bioactivation reactions for FMO enzymes compared to other enzymes, predominately involving drugs and general chemicals. With MAO enzymes, physiological compounds predominate as substrates, and some products lead to unwanted side effects or illness. AOX and XOR enzymes are molybdenum hydroxylases that catalyze the oxidation of various heteroaromatic rings and aldehydes and the reduction of a number of different functional groups. While neither of these two enzymes contributes substantially to the metabolism of currently marketed drugs, AOX has become a frequently encountered route of metabolism among drug discovery programs in the past 10-15 years. XOR has even less of a role in the metabolism of clinical drugs and preclinical drug candidates than AOX, likely due to narrower substrate specificity.
Collapse
Affiliation(s)
| | - Rachel D Crouch
- College of Pharmacy and Health Sciences, Lipscomb University, Nashville, TN, 37204, USA
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA
| |
Collapse
|
5
|
Fujino C, Sanoh S, Katsura T. Variation in Expression of Cytochrome P450 3A Isoforms and Toxicological Effects: Endo- and Exogenous Substances as Regulatory Factors and Substrates. Biol Pharm Bull 2021; 44:1617-1634. [PMID: 34719640 DOI: 10.1248/bpb.b21-00332] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The CYP3A subfamily, which includes isoforms CYP3A4, CYP3A5, and CYP3A7 in humans, plays important roles in the metabolism of various endogenous and exogenous substances. Gene and protein expression of CYP3A4, CYP3A5, and CYP3A7 show large inter-individual differences, which are caused by many endogenous and exogenous factors. Inter-individual differences can cause negative outcomes, such as adverse drug events and disease development. Therefore, it is important to understand the variations in CYP3A expression caused by endo- and exogenous factors, as well as the variation in the metabolism and kinetics of endo- and exogenous substrates. In this review, we summarize the factors regulating CYP3A expression, such as bile acids, hormones, microRNA, inflammatory cytokines, drugs, environmental chemicals, and dietary factors. In addition, variations in CYP3A expression under pathological conditions, such as coronavirus disease 2019 and liver diseases, are described as examples of the physiological effects of endogenous factors. We also summarize endogenous and exogenous substrates metabolized by CYP3A isoforms, such as cholesterol, bile acids, hormones, arachidonic acid, vitamin D, and drugs. The relationship between the changes in the kinetics of these substrates and the toxicological effects in our bodies are discussed. The usefulness of these substrates and metabolites as endogenous biomarkers for CYP3A activity is also discussed. Notably, we focused on discrimination between CYP3A4, CYP3A5, and CYP3A7 to understand inter-individual differences in CYP3A expression and function.
Collapse
Affiliation(s)
- Chieri Fujino
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University.,School of Pharmaceutical Sciences, Wakayama Medical University
| | - Toshiya Katsura
- Laboratory of Clinical Pharmaceutics and Therapeutics, College of Pharmaceutical Sciences, Ritsumeikan University
| |
Collapse
|
6
|
Hosaka T, Wakatsuki A, Sasaki T, Shizu R, Yoshinari K. Construction of a PPARα Reporter Assay System with Drug-Metabolizing Capability. ACTA ACUST UNITED AC 2020. [DOI: 10.1248/bpbreports.3.1_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Takuomi Hosaka
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ayano Wakatsuki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Takamitsu Sasaki
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Shizu
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University
| |
Collapse
|
7
|
Fujino C, Watanabe Y, Sanoh S, Hattori S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Comparative study of the effect of 17 parabens on PXR-, CAR- and PPARα-mediated transcriptional activation. Food Chem Toxicol 2019; 133:110792. [DOI: 10.1016/j.fct.2019.110792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/27/2019] [Accepted: 08/23/2019] [Indexed: 12/24/2022]
|
8
|
Fujino C, Watanabe Y, Sanoh S, Nakajima H, Uramaru N, Kojima H, Yoshinari K, Ohta S, Kitamura S. Activation of PXR, CAR and PPARα by pyrethroid pesticides and the effect of metabolism by rat liver microsomes. Heliyon 2019; 5:e02466. [PMID: 31538121 PMCID: PMC6745485 DOI: 10.1016/j.heliyon.2019.e02466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 11/16/2022] Open
Abstract
In this study, we used reporter gene assays in COS-1 cells to examine the activation of rat pregnane X receptor (PXR), rat constitutive androstane receptor (CAR) and rat peroxisome-proliferator activated receptor (PPAR)α by pyrethroid pesticides, and to understand the effects of metabolic modification on their activities. All eight pyrethroids tested in this study showed rat PXR agonistic activity; deltamethrin was the most potent, followed by cis-permethrin and cypermethrin. However, when the pyrethroids were incubated with rat liver microsomes, their rat PXR activities were decreased to various extents. Cis- and trans-permethrin showed weak rat CAR agonistic activity, while the other pyrethroids were inactive. However, fenvalerate showed dose-dependent inverse agonistic activity toward rat CAR, and this activity was reduced after metabolism. None of the pyrethroids showed rat PPARα agonistic activity, but a metabolite of cis-/trans-permethrin and phenothrin, 3-phenoxybenzoic acid, activated rat PPARα. Since PXR, CAR and PPARα regulate various xenobiotic/endobiotic-metabolizing enzymes, activation of these receptors by pyrethroids may result in endocrine disruption due to changes of hormone-metabolizing activities.
Collapse
Affiliation(s)
- Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Yoko Watanabe
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Seigo Sanoh
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hiroyuki Nakajima
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki, Aoba, Aoba-ku, Sendai, 980-8578, Japan.,School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Naoto Uramaru
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| | - Hiroyuki Kojima
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido, 061-0293, Japan.,Hokkaido Institute of Public Health, Kita-19, Nishi-12, Kita-ku, Sapporo, 060-0819, Japan
| | - Kouichi Yoshinari
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Shigeru Ohta
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.,Wakayama Medical University; 811-1 Kimiidera, Wakayama City, Wakayama, 641-8509, Japan
| | - Shigeyuki Kitamura
- Nihon Pharmaceutical University, Komuro 10281, Ina-machi, Kitaadachi-gun, Saitama, 362-0806, Japan
| |
Collapse
|
9
|
Watanabe Y, Hattori S, Fujino C, Tachibana K, Kojima H, Yoshinari K, Kitamura S. Effects of benzotriazole ultraviolet stabilizers on rat PXR, CAR and PPARα transcriptional activities. ACTA ACUST UNITED AC 2019. [DOI: 10.2131/fts.6.57] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | | | - Chieri Fujino
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | - Ken Tachibana
- Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University
| | | | | | | |
Collapse
|
10
|
Dziewirska E, Radwan M, Wielgomas B, Klimowska A, Radwan P, Kałużny P, Hanke W, Słodki M, Jurewicz J. Human Semen Quality, Sperm DNA Damage, and the Level of Urinary Concentrations of 1N and TCPY, the Biomarkers of Nonpersistent Insecticides. Am J Mens Health 2018; 13:1557988318816598. [PMID: 30813854 PMCID: PMC6775546 DOI: 10.1177/1557988318816598] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to evaluate the association between environmental exposure to nonpersistent insecticides and semen quality (concentration, motility, morphology, computer-aided semen analysis [CASA] parameters, and sperm DNA damage). Urine samples (n = 315) collected from men who attended the infertility clinic with normal semen concentration of 15 to 300 mln/ml and age under 45 years were analyzed for two metabolites (1-naphthol [1N] and 3,5,6-trichloro-2-pyridinol [TCPY]) of nonpersistent insecticides. Participants provided semen, blood, and saliva samples; additionally, men filled a detailed questionnaire. The results identified that urinary TCPY concentration was significantly associated with a decrease in motility; also there was a positive association between TCPY and DNA fragmentation index (DFI). 1N concentration was negatively associated with a percentage of sperm with normal morphology and positively with one of the CASA parameters (curvilinear velocity [VCL]). The results suggest that environmental exposure to nonpersistent insecticides may have an impact on semen quality parameters and sperm DNA damage.
Collapse
Affiliation(s)
| | - Michał Radwan
- 2 Department of Gynecology and Reproduction, "Gameta" Hospital, Rzgów, Poland.,3 Faculty of Health Sciences. The State University of Applied Sciences in Płock, Poland
| | - Bartosz Wielgomas
- 4 Department of Toxicology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Klimowska
- 4 Department of Toxicology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Radwan
- 2 Department of Gynecology and Reproduction, "Gameta" Hospital, Rzgów, Poland
| | - Paweł Kałużny
- 1 Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Wojciech Hanke
- 1 Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Maciej Słodki
- 3 Faculty of Health Sciences. The State University of Applied Sciences in Płock, Poland
| | | |
Collapse
|
11
|
Tian X, Zhao S, Guo Z, Hu B, Wei Q, Tang Y, Su J. Molecular characterization, expression pattern and metabolic activity of flavin-dependent monooxygenases in Spodoptera exigua. INSECT MOLECULAR BIOLOGY 2018; 27:533-544. [PMID: 29749684 DOI: 10.1111/imb.12392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Enhanced detoxification is one of the important mechanisms for insecticide resistance. Most research in this field to date has focused on the role of cytochrome P450s. Our previous work revealed that flavin-dependent monooxygenases (FMOs) were involved in metabolic resistance of Spodoptera exigua. In the present study we investigated the molecular characteristics, expression patterns and oxidative activities of SeFMO on insecticides. Three FMO genes, which encode proteins with the typical FMO motifs, were cloned from S. exigua. The oxidative activities of eukaryotically expressed SeFMO enzymes were verified with the model substrate of FMO. Importantly, the SeFMOs had significantly higher oxidative activities on metaflumizone and lambda-cyhalothrin than on model substrates and other insecticides tested. The three SeFMOs were mainly expressed in the midgut, fat body and Malpighian tubules. The tissues responsible for xenobiotic metabolism and their expression characteristics were similar to those of P450s acting as detoxification genes. The study also revealed that the expression of SeFMOs could be induced by insecticide exposure, and that SeFMOs were over-expressed in a metaflumizone-resistant strain of S. exigua. These results suggest that SeFMOs are important insecticide detoxifying enzymes, and that over-expression of FMO genes may be one of the mechanisms for metabolic resistance in S. exigua.
Collapse
Affiliation(s)
- X Tian
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - S Zhao
- Zoonbio Biotechnology Co., Ltd, Nanjing, China
| | - Z Guo
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - B Hu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q Wei
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Y Tang
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - J Su
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Lukowicz C, Ellero-Simatos S, Régnier M, Polizzi A, Lasserre F, Montagner A, Lippi Y, Jamin EL, Martin JF, Naylies C, Canlet C, Debrauwer L, Bertrand-Michel J, Al Saati T, Théodorou V, Loiseau N, Mselli-Lakhal L, Guillou H, Gamet-Payrastre L. Metabolic Effects of a Chronic Dietary Exposure to a Low-Dose Pesticide Cocktail in Mice: Sexual Dimorphism and Role of the Constitutive Androstane Receptor. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:067007. [PMID: 29950287 PMCID: PMC6084886 DOI: 10.1289/ehp2877] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.
Collapse
Affiliation(s)
- Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Marion Régnier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Frédéric Lasserre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Alexandra Montagner
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Jean-François Martin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
- Axiom Platform, MetaToul-MetaboHUB, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Justine Bertrand-Michel
- Plateforme Lipidomique Inserm/UPS UMR 1048 - I2MC Institut des Maladies Métaboliques et Cardiovasculaires, Toulouse, France
| | - Talal Al Saati
- Service d’histopathologie Expérimentale Unité Inserm/UPS/ENVT -US006/CREFRE Inserm, Bât. F, CHU Purpan, Toulouse, France
| | - Vassilia Théodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Laïla Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
13
|
Kitamura S. [Effect of the Metabolic Modification of Environmental Chemicals on Endocrine-disrupting Activity]. YAKUGAKU ZASSHI 2018; 138:693-713. [PMID: 29710015 DOI: 10.1248/yakushi.17-00214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endocrine-disrupting activities of various environmental chemicals are metabolically activated. For example, diphenyls, styrene oligomers, chalcones, trans-stilbene and 2-nitrofluorene are not estrogens, but after incubation with liver microsomes, their metabolites show estrogenic activities. Thus, these chemicals are estrogenically activated by the cytochrome P450 system. In contrast, the antiandrogenic activity of fenthion, an organophosphorus insecticide, is abolished after metabolism to sulfoxide and sulfone derivatives. Structural requirements of twenty bisphenol A related compounds, as well as various benzophenones, for estrogenic and antiandrogenic activities have been investigated. The estrogenic and antiandrogenic activities of Benzophenone 3, a representative UV absorbant, are activated by oxidative metabolism. Parabens (used as antimicrobial agents) exhibit estrogenic activity, and their potency shows a bell-shaped curve between C1 (methylparaben) and C12 (dodecylparaben) parabens. The AhR ligand activity of indirubin is decreased by metabolism. Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDE) are activated by hydroxylation to show estrogenic and thyroid hormone-disrupting activities. Halogen adjacent to a hydroxyl group is essential for thyroid hormone-disrupting activity. Tetrabromobisphenol A, tetrachlorobisphenol A and tetramethylbisphenol A also exhibit thyroid hormone-disrupting activity. Amphibian metamorphosis of tadpoles to frogs is affected by hydroxylated PCB, hydroxylated PBDE and bisphenol A derivatives. These chemicals suppress thyroid hormone-dependent metamorphosis, acting as antagonists of thyroid hormone. Thus, metabolic modification can have a dramatic impact on the endocrine-disrupting activities of environmental chemicals.
Collapse
|
14
|
Giri P, Gupta L, Naidu S, Joshi V, Patel N, Giri S, Srinivas NR. In Vitro Drug-Drug Interaction Potential of Sulfoxide and/or Sulfone Metabolites of Albendazole, Triclabendazole , Aldicarb, Methiocarb, Montelukast and Ziprasidone. Drug Metab Lett 2018; 12:101-116. [PMID: 30117405 PMCID: PMC6416464 DOI: 10.2174/1872312812666180816164626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The use of polypharmacy in the present day clinical therapy has made the identification of clinical drug-drug interaction risk an important aspect of drug development process. Although many drugs can be metabolized to sulfoxide and/or sulfone metabolites, seldom is known on the CYP inhibition potential and/or the metabolic fate for such metabolites. OBJECTIVE The key objectives were: a) to evaluate the in vitro CYP inhibition potential of selected parent drugs with sulfoxide/sulfone metabolites; b) to assess the in vitro metabolic fate of the same panel of parent drugs and metabolites. METHODS In vitro drug-drug interaction potential of test compounds was investigated in two stages; 1) assessment of CYP450 inhibition potential of test compounds using human liver microsomes (HLM); and 2) assessment of test compounds as substrate of Phase I enzymes; including CYP450, FMO, AO and MAO using HLM, recombinant human CYP enzymes (rhCYP), Human Liver Cytosol (HLC) and Human Liver Mitochondrial (HLMit). All samples were analysed by LC-MS-MS method. RESULTS CYP1A2 was inhibited by methiocarb, triclabendazole, triclabendazole sulfoxide, and ziprasidone sulfone with IC50 of 0.71 µM, 1.07 µM, 4.19 µM, and 17.14 µM, respectively. CYP2C8 was inhibited by montelukast, montelukast sulfoxide, montelukast sulfone, tribendazole, triclabendazole sulfoxide, and triclabendazole sulfone with IC50 of 0.08 µM, 0.05 µM, 0.02 µM, 3.31 µM, 8.95 µM, and 1.05 µM, respectively. CYP2C9 was inhibited by triclabendazole, triclabendazole sulfoxide, triclabendazole sulfone, montelukast, montelukast sulfoxide and montelukast sulfone with IC50 of 1.17 µM, 1.95 µM, 0.69 µM, 1.34 µM, 3.61 µM and 2.15 µM, respectively. CYP2C19 was inhibited by triclabendazole and triclabendazole sulfoxide with IC50 of 0.25 and 0.22, respectively. CYP3A4 was inhibited by montelukast sulfoxide and triclabendazole with IC50 of 9.33 and 15.11, respectively. Amongst the studied sulfoxide/sulfone substrates, the propensity of involvement of CY2C9 and CYP3A4 enzyme was high (approximately 56% of total) in the metabolic fate experiments. CONCLUSION Based on the findings, a proper risk assessment strategy needs to be factored (i.e., perpetrator and/or victim drug) to overcome any imminent risk of potential clinical drug-drug interaction when sulfoxide/sulfone metabolite(s) generating drugs are coadministered in therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nuggehally R. Srinivas
- Address correspondence to this author at the Cadila Health Care Ltd. (Zydus Research Centre) Survey No. 396/403, NH-8A, Tal-Sanand, Ahmedabad, Moraiya, Gujarat, Pin-382213, India; Tel: +91-2717-665555; Fax: +91-2717-665355; E-mail:
| |
Collapse
|
15
|
De Jesús Andino F, Lawrence BP, Robert J. Long term effects of carbaryl exposure on antiviral immune responses in Xenopus laevis. CHEMOSPHERE 2017; 170:169-175. [PMID: 27988452 PMCID: PMC5205582 DOI: 10.1016/j.chemosphere.2016.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 05/06/2023]
Abstract
Water pollutants associated with agriculture may contribute to the increased prevalence of infectious diseases caused by ranaviruses. We have established the amphibian Xenopus laevis and the ranavirus Frog Virus 3 (FV3) as a reliable experimental platform for evaluating the effects of common waterborne pollutants, such as the insecticide carbaryl. Following 3 weeks of exposure to 10 ppb carbaryl, X. laevis tadpoles exhibited a marked increase in mortality and accelerated development. Exposure at lower concentrations (0.1 and 1.0 ppb) was not toxic, but it impaired tadpole innate antiviral immune responses, as evidenced by significantly decreased TNF-α, IL-1β, IFN-I, and IFN-III gene expression. The defect in IFN-I and IL-1β gene expression levels persisted after metamorphosis in froglets, whereas only IFN-I gene expression in response to FV3 was attenuated when carbaryl exposure was performed at the adult stage. These findings suggest that the agriculture-associated carbaryl exposure at low but ecologically-relevant concentrations has the potential to induce long term alterations in host-pathogen interactions and antiviral immunity.
Collapse
Affiliation(s)
| | - B Paige Lawrence
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, USA; Department of Environmental Medicine, University of Rochester Medical Center, Rochester, USA.
| |
Collapse
|