1
|
Younis IR, Nelson C, Weber EJ, Shen G, Qin AR, Xiao D, Watkins TR, Othman AA. Pharmacokinetics and Safety of Cilofexor and Firsocostat in Healthy Japanese and Non-Japanese Participants. J Clin Pharmacol 2024; 64:1586-1593. [PMID: 39213138 DOI: 10.1002/jcph.6114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Cilofexor, an oral farnesoid X receptor agonist, and firsocostat, an oral, liver-targeted inhibitor of acetyl-coenzyme A carboxylase, are being investigated in combination with semaglutide for the treatment of metabolic dysfunction-associated steatohepatitis (previously known as nonalcoholic steatohepatitis; NCT04971785). The pharmacokinetics and safety profiles of cilofexor (100 mg) and firsocostat (20 mg) were separately investigated in two phase 1 studies, each of which included healthy Japanese participants (n = 20 in the cilofexor study and n = 21 in the firsocostat study) and non-Japanese participants (n = 20 in the cilofexor study and n = 21 in the firsocostat study). Intensive pharmacokinetic sampling was performed over 96 h following a single-dose administration of the study drug. Safety was monitored throughout the study. In total, 39 participants completed each study. The plasma exposures of cilofexor and firsocostat (area under the concentration-time curve [AUC] calculated from time 0 to infinity [AUCinf]) in Japanese participants were 1.24-fold and 1.98-fold, respectively, of those in non-Japanese participants. Both study drugs were well tolerated with no clear differences in adverse events or laboratory abnormalities between Japanese and non-Japanese participants. The approximate 2-fold exposure difference of firsocostat between Japanese and non-Japanese participants at the 20 mg dose does not warrant dose reduction given the previously established safety and tolerability of once-daily doses of firsocostat up to 200 mg.
Collapse
Affiliation(s)
| | | | | | - Gong Shen
- Gilead Sciences, Inc., Foster City, CA, USA
| | - Ann R Qin
- Gilead Sciences, Inc., Foster City, CA, USA
| | | | | | | |
Collapse
|
2
|
Cho CK, Kang P, Jang CG, Lee SY, Lee YJ, Choi CI. Physiologically based pharmacokinetic (PBPK) modeling to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. Arch Pharm Res 2023; 46:939-953. [PMID: 38064121 DOI: 10.1007/s12272-023-01472-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Irbesartan, a potent and selective angiotensin II type-1 (AT1) receptor blocker (ARB), is one of the representative medications for the treatment of hypertension. Cytochrome P450 (CYP) 2C9 is primarily involved in the oxidation of irbesartan. CYP2C9 is highly polymorphic, and genetic polymorphism of this enzyme is the leading cause of significant alterations in the pharmacokinetics of irbesartan. This study aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of irbesartan in different CYP2C9 genotypes. The irbesartan PBPK model was established using the PK-Sim® software. Our previously reported pharmacogenomic data for irbesartan was leveraged in the development of the PBPK model and collected clinical pharmacokinetic data for irbesartan was used for the validation of the model. Physicochemical and ADME properties of irbesartan were obtained from previously reported data, predicted by the modeling software, or optimized to fit the observed plasma concentration-time profiles. Model evaluation was performed by comparing the predicted plasma concentration-time profiles and pharmacokinetic parameters to the observed results. Predicted plasma concentration-time profiles were visually similar to observed profiles. Predicted AUCinf in CYP2C9*1/*3 and CYP2C9*1/*13 genotypes were increased by 1.54- and 1.62-fold compared to CYP2C9*1/*1 genotype, respectively. All fold error values for AUC and Cmax in non-genotyped and CYP2C9 genotyped models were within the two-fold error criterion. We properly established the PBPK model of irbesartan in different CYP2C9 genotypes. It can be used to predict the pharmacokinetics of irbesartan for personalized pharmacotherapy in individuals of various races, ages, and CYP2C9 genotypes.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
3
|
Wang P, Murray JW, Wolkoff AW. Interaction of Human OATP1B1 with PDZK1 Is Required for Its Trafficking to the Hepatocyte Plasma Membrane. Drug Metab Dispos 2023; 51:1342-1349. [PMID: 37442606 PMCID: PMC10506696 DOI: 10.1124/dmd.123.001248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023] Open
Abstract
Uptake of xenobiotics by hepatocytes is mediated by specific proteins, including organic anion transporting polypeptides (OATPs), residing on the basolateral (sinusoidal) plasma membrane. Many of the OATPs have PDZ consensus binding sites, determined by their C-terminal 4 amino acids, while others do not. Mouse and rat OATP1A1 are associated with PDZK1, which is necessary for their trafficking to the plasma membrane. humanOATP1B1 (hOATP1B1) is a major drug transporter in human liver. Although localized to the plasma membrane, it was thought to lack a PDZ consensus motif, suggesting that the trafficking paradigm for murine OATPs is not applicable to human liver. The aim of the present study was to determine whether hOATP1B1 is a ligand for hPDZK1. hOATP1B1 immunoprecipitates with hPDZK1 following co-expression in 293T cells as well as in normal human liver. Co-expression with each of the 4 PDZ domains revealed interaction with domain 1 only. A truncated version of hOATP1B1 that lacks its terminal 4 amino acid PDZ binding motif as well as hOATP1B3, which does not contain a PDZ binding consensus motif, failed to interact with hPDZK1. Immunofluorescence microscopy of hOATP1B1 in stably transfected HeLa cells that endogenously express hPDZK1 showed that it distributes predominantly along the plasma membrane whereas hOATP1B1 lacking its terminal 4 amino acids distributes primarily intracellularly with little plasma membrane localization. Similar to findings in rats and mice, human OATP1B1 is a ligand for PDZK1 and requires interaction with PDZK1 for optimal trafficking to the hepatocyte plasma membrane. SIGNIFICANCE: Previous studies suggested that OATP1B1, a major xenobiotic transporter in human liver, does not have a PDZ binding consensus motif and does not follow the paradigm for subcellular trafficking and function that was established for OATP1A1 in murine liver. We now demonstrated that OATP1B1 but not OATP1B3 has a PDZ binding consensus motif that mediates binding to PDZK1 and is required for its trafficking to the plasma membrane. Such interaction could be an important previously unrecognized modulator of transport function.
Collapse
Affiliation(s)
- Pijun Wang
- Marion Bessin Liver Research Center (P.W., J.W.M., A.W.W.), Department of Developmental and Molecular Biology (J.W.M., A.W.W.), and Division of Hepatology (A.W.W.), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - John W Murray
- Marion Bessin Liver Research Center (P.W., J.W.M., A.W.W.), Department of Developmental and Molecular Biology (J.W.M., A.W.W.), and Division of Hepatology (A.W.W.), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| | - Allan W Wolkoff
- Marion Bessin Liver Research Center (P.W., J.W.M., A.W.W.), Department of Developmental and Molecular Biology (J.W.M., A.W.W.), and Division of Hepatology (A.W.W.), Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York
| |
Collapse
|
4
|
Wang X, Chen J, Huang J, Hong M. The Double-Leucine Motifs Affect Internalization, Stability, and Function of Organic Anion Transporting Polypeptide 1B1. Pharmaceutics 2023; 15:2279. [PMID: 37765248 PMCID: PMC10536080 DOI: 10.3390/pharmaceutics15092279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1) is specifically expressed at the basolateral membrane of human hepatocytes and plays important roles in the uptake of various endogenous and exogenous compounds including many drugs. The proper functioning of OATP1B1, hence, is essential for the bioavailability of various therapeutic agents and needs to be tightly regulated. Dileucine-based signals are involved in lysosomal targeting, internalization, and trans-Golgi network to endosome transporting of membrane proteins. In the current study, we analyzed the 3 intracellular and 13 transmembrane dileucine motifs (DLMs) within the sequence of OATP1B1. It was found that the simultaneous replacement of I332 and L333 with alanine resulted in a significantly reduced level of the mature form of OATP1B1. The cell surface expression of I332A/L333A could be partially rescued by MG132, as well as agents that prevent clathrin-dependent protein internalization, suggesting that this dileucine motif may be involved in the endocytosis of OATP1B1. On the other hand, I376/L377 and I642/L643, which are localized at transmembrane helices (TM) 8 and 12, respectively, are involved in the interaction of the transporter with its substrates. I642A/L643A exhibited a significantly decreased protein level compared to that of the wild-type, implying that the motif is important for maintaining the stability of OATP1B1 as well.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jieru Chen
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jiujiu Huang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 510642, China
| |
Collapse
|
5
|
Li W, Iusuf D, Sparidans RW, Wagenaar E, Wang Y, de Waart DR, Martins MLF, van Hoppe S, Lebre MC, van Tellingen O, Beijnen JH, Schinkel AH. Organic anion-transporting polypeptide 2B1 knockout and humanized mice; insights into the handling of bilirubin and drugs. Pharmacol Res 2023; 190:106724. [PMID: 36907287 DOI: 10.1016/j.phrs.2023.106724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/12/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.
Collapse
Affiliation(s)
- Wenlong Li
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dilek Iusuf
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Rolf W Sparidans
- Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacology, Universiteitsweg 99, 3584 CG, Utrecht, the Netherlands
| | - Els Wagenaar
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Yaogeng Wang
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Dirk R de Waart
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Meibergdreef 71, 1105 BK, Amsterdam, the Netherlands
| | - Margarida L F Martins
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Maria C Lebre
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Olaf van Tellingen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jos H Beijnen
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Utrecht University, Faculty of Science, Department of Pharmaceutical Sciences, Division of Pharmacoepidemiology & Clinical Pharmacology, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands; The Netherlands Cancer Institute, Department of Pharmacy & Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Pharmacology, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Zhu V, Burhenne J, Weiss J, Haag M, Hofmann U, Schwab M, Urban S, Mikus G, Czock D, Haefeli WE, Blank A. Evaluation of the drug-drug interaction potential of the novel hepatitis B and D virus entry inhibitor bulevirtide at OATP1B in healthy volunteers. Front Pharmacol 2023; 14:1128547. [PMID: 37089922 PMCID: PMC10117888 DOI: 10.3389/fphar.2023.1128547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: Bulevirtide is a first-in-class antiviral drug to treat chronic hepatitis B/D. We investigated the drug-drug interaction potential and pharmacokinetics of high-dose subcutaneous bulevirtide (5 mg twice daily) with organic anion transporting polypeptide 1B1 (OATP1B1) and cytochrome P450 (CYP) 3A4. Methods: This was a single-center, open-label, fixed-sequence drug-drug interaction trial in 19 healthy volunteers. Before and at bulevirtide steady state, participants ingested a single 40 mg dose of pravastatin. A midazolam microdose was applied to quantify CYP3A4 activity. Results: At bulevirtide steady state, pravastatin area under the concentration-time curve (AUC0-∞) increased 1.32-fold (90% CI 1.08-1.61). The 5 mg bulevirtide twice-daily treatment resulted in a mean AUC0-12 of 1210 h*ng/ml (95% CI 1040-1408) and remained essentially unchanged under the influence of pravastatin. CYP3A4 activity did not change to a clinically relevant extent. As expected, total bile acids increased substantially (35-fold) compared to baseline during bulevirtide treatment. All study medication was well tolerated. Discussion: The study demonstrated that high-dose bulevirtide inhibited OATP1B-mediated hepatic uptake of the marker substrate pravastatin but the extent is considered clinically not relevant. Changes in CYP3A4 activity were also not clinically relevant. In conclusion, this study suggests that OATP1B substrate drugs as well as CYP3A4 substrates may safely be used without dose adjustment in patients treated with bulevirtide. However, in patients using high statin doses and where concomitant factors potentially further increase statin exposure, caution may be required when using bulevirtide.
Collapse
Affiliation(s)
- Vanessa Zhu
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Burhenne
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- Departments of Clinical Pharmacology and of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180), Image‐guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Stephan Urban
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gerd Mikus
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - David Czock
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E. Haefeli
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Blank
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research (DZIF) Partner Site Heidelberg, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Antje Blank,
| |
Collapse
|
7
|
Kaci H, Bodnárová S, Fliszár-Nyúl E, Lemli B, Pelantová H, Valentová K, Bakos É, Özvegy-Laczka C, Poór M. Interaction of luteolin, naringenin, and their sulfate and glucuronide conjugates with human serum albumin, cytochrome P450 (CYP2C9, CYP2C19, and CYP3A4) enzymes and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Biomed Pharmacother 2023; 157:114078. [PMID: 36481402 DOI: 10.1016/j.biopha.2022.114078] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Luteolin and naringenin are flavonoids found in various foods/beverages and present in certain dietary supplements. After a high intake of these flavonoids, their sulfate and glucuronide conjugates reach micromolar concentrations in the bloodstream. Some pharmacokinetic interactions of luteolin and naringenin have been investigated in previous studies; however, only limited data are available in regard to their metabolites. In this study, we aimed to investigate the interactions of the sulfate and glucuronic acid conjugates of luteolin and naringenin with human serum albumin, cytochrome P450 (CYP2C9, 2C19, and 3A4) enzymes, and organic anion transporting polypeptide (OATP1B1 and OATP2B1) transporters. Our main findings are as follows: (1) Sulfate conjugates formed more stable complexes with albumin than the parent flavonoids. (2) Luteolin and naringenin conjugates showed no or only weak inhibitory action on the CYP enzymes examined. (3) Certain conjugates of luteolin and naringenin are potent inhibitors of OATP1B1 and/or OATP2B1 enzymes. (4) Conjugated metabolites of luteolin and naringenin may play an important role in the pharmacokinetic interactions of these flavonoids.
Collapse
Affiliation(s)
- Hana Kaci
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary; Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Pázmány P. stny. 1/C, H-1117 Budapest, Hungary
| | - Slávka Bodnárová
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Beáta Lemli
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Green Chemistry Research Group, János Szentágothai Research Center, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary
| | - Helena Pelantová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20 Prague, Czech Republic
| | - Éva Bakos
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Drug Resistance Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Magyar tudósok krt. 2., H-1117 Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus u. 2, H-7624 Pécs, Hungary; Food Biotechnology Research Group, János Szentágothai Research Centre, University of Pécs, Ifjúság útja 20, H-7624 Pécs, Hungary.
| |
Collapse
|
8
|
Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity. Int J Mol Sci 2022; 24:ijms24010391. [PMID: 36613834 PMCID: PMC9820151 DOI: 10.3390/ijms24010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Anthracyclines currently play a key role in the treatment of many cancers, but the limiting factor of their use is the widespread phenomenon of drug resistance and untargeted toxicity. Flavonoids have pleiotropic, beneficial effects on human health that, apart from antioxidant activity, are currently considered small molecules-starting structures for drug development and enhancers of conventional therapeutics. This paper is a review of the current and most important data on the participation of a selected series of flavonoids: chrysin, apigenin, kaempferol, quercetin and myricetin, which differ in the presence of an additional hydroxyl group, in the formation of a synergistic effect with anthracycline antibiotics. The review includes a characterization of the mechanism of action of flavonoids, as well as insight into the physicochemical parameters determining their bioavailability in vitro. The crosstalk between flavonoids and the molecular activity of anthracyclines discussed in the article covers the most important common areas of action, such as (1) disruption of DNA integrity (genotoxic effect), (2) modulation of antioxidant response pathways, and (3) inhibition of the activity of membrane proteins responsible for the active transport of drugs and xenobiotics. The increase in knowledge about the relationship between the molecular structure of flavonoids and their biological effect makes it possible to more effectively search for derivatives with a synergistic effect with anthracyclines and to develop better therapeutic strategies in the treatment of cancer.
Collapse
|
9
|
Jilek JL, Frost KL, Marie S, Myers CM, Goedken M, Wright SH, Cherrington NJ. Attenuated Ochratoxin A Transporter Expression in a Mouse Model of Nonalcoholic Steatohepatitis Protects against Proximal Convoluted Tubule Toxicity. Drug Metab Dispos 2022; 50:1389-1395. [PMID: 34921099 PMCID: PMC9513848 DOI: 10.1124/dmd.121.000451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Ochratoxin A (OTA) is an abundant mycotoxin, yet the toxicological impact of its disposition is not well studied. OTA is an organic anion transporter (OAT) substrate primarily excreted in urine despite a long half-life and extensive protein binding. Altered renal transporter expression during disease, including nonalcoholic steatohepatitis (NASH), may influence response to OTA exposure, but the impact of NASH on OTA toxicokinetics, tissue distribution, and associated nephrotoxicity is unknown. By inducing NASH in fast food-dieted/thioacetamide-exposed mice, we evaluated the effect of NASH on a bolus OTA exposure (12.5 mg/kg by mouth) after 3 days. NASH mice presented with less gross toxicity (44% less body weight loss), and kidney and liver weights of NASH mice were 11% and 24% higher, respectively, than healthy mice. Organ and body weight changes coincided with reduced renal proximal tubule cells vacuolation, degeneration, and necrosis, though no OTA-induced hepatic lesions were found. OTA systemic exposure in NASH mice increased modestly from 5.65 ± 1.10 to 7.95 ± 0.61 mg*h/ml per kg BW, and renal excretion increased robustly from 5.55% ± 0.37% to 13.11% ± 3.10%, relative to healthy mice. Total urinary excretion of OTA increased from 24.41 ± 1.74 to 40.07 ± 9.19 µg in NASH mice, and kidney-bound OTA decreased by ∼30%. Renal OAT isoform expression (OAT1-5) in NASH mice decreased by ∼50% with reduced OTA uptake by proximal convoluted cells. These data suggest that NASH-induced OAT transporter reductions attenuate renal secretion and reabsorption of OTA, increasing OTA urinary excretion and reducing renal exposure, thereby reducing nephrotoxicity in NASH. SIGNIFICANCE STATEMENT: These data suggest a disease-mediated transporter mechanism of altered tissue-specific toxicity after mycotoxin exposure, despite minimal systemic changes to ochratoxin A (OTA) concentrations. Further studies are warranted to evaluate the clinical relevance of this functional model and the potential effect of human nonalcoholic steatohepatitis on OTA and other organic anion substrate toxicity.
Collapse
Affiliation(s)
- Joseph L Jilek
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Kayla L Frost
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Solène Marie
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Cassandra M Myers
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Michael Goedken
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Stephen H Wright
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| | - Nathan J Cherrington
- Department of Pharmacology and Toxicology, University of Arizona, College of Pharmacy, Tucson, Arizona (J.L.J., K.L.F., S.M., C.M.M., N.J.C.); Rutgers Translational Sciences, Rutgers University, Piscataway, New Jersey (M.G.); and Department of Physiology, University of Arizona, College of Medicine, Tucson, Arizona (S.H.W.)
| |
Collapse
|
10
|
Dashti M, Al-Matrouk A, Channanath A, Al-Mulla F, Thanaraj TA. Frequency of functional exonic single-nucleotide polymorphisms and haplotype distribution in the SLCO1B1 gene across genetic ancestry groups in the Qatari population. Sci Rep 2022; 12:14858. [PMID: 36050458 PMCID: PMC9437070 DOI: 10.1038/s41598-022-19318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Organic anion transporting polypeptides (OATP), which are encoded by SLCO genes, participate in the hepatic elimination of drugs and xenobiotics. SLCO1B1 is an important pharmacogenomic gene (encoding OATP1B1) associated with response to the uptake of endogenous compounds, such as statin and bilirubin. Ethnicity of the patient modulates the response to these drugs; the frequency and haplotype data for SLCO1B1 genetic variants in the Arab population is lacking. Therefore, we determined the frequencies of two well-characterized SLCO1B1 single nucleotide polymorphisms (SNP) and haplotypes that affect the OATP1B1 drugs transportation activity in Qatari population. Genotyping data for two SLCO1B1 SNPs (c.388A > G, c.521 T > C) were extracted from whole exome data of 1050 Qatari individuals, who were divided into three ancestry groups, namely Bedouins, Persians/South Asians, and Africans. By way of using Fisher's exact and Chi-square tests, we evaluated the differences in minor allele frequency (MAF) of the two functional SNPs and haplotype frequencies (HF) among the three ancestry groups. The OATP1B1 phenotypes were assigned according to their function by following the guidelines from the Clinical Pharmacogenetics Implementation Consortium for SLCO1B1 and Simvastatin-Induced Myopathy.The MAF of SLCO1B1:c.388A > G was higher compared to that of SLCO1B1:c.521 T > C in the study cohort. It was significantly high in the African ancestry group compared with the other two groups, whereas SLCO1B1:c.521 T > C was significantly low in the African ancestry group compared with the other two groups. The SLCO1B1 *15 haplotype had the highest HF, followed by *1b, *1a, and *5. Only the SLCO1B1 *5 haplotype showed no significant difference in frequency across the three ancestry groups. Furthermore, we observed that the OATP1B1 normal function phenotype accounted for 58% of the Qatari individuals, the intermediate function phenotype accounted for 35% with significant differences across the ancestry groups, and the low function phenotype accounted for 6% of the total Qatari individuals with a higher trend observed in the Bedouin group.The results indicate that the phenotype frequencies of the OATP1B1 intermediate and low function in the Qatari population appear at the higher end of the frequency range seen worldwide. Thus, a pharmacogenetic screening program for SLCO1B1 variants may be necessary for the Qatari population.
Collapse
Affiliation(s)
- Mohammed Dashti
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Abdullah Al-Matrouk
- Narcotic and Psychotropic Department, Ministry of Interior, Farwaniya, Kuwait
| | - Arshad Channanath
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait City, Kuwait.
| | | |
Collapse
|
11
|
Barliana MI, Afifah NN, Amalia R, Hamijoyo L, Abdulah R. Genetic Polymorphisms and the Clinical Response to Systemic Lupus Erythematosus Treatment Towards Personalized Medicine. Front Pharmacol 2022; 13:820927. [PMID: 35370680 PMCID: PMC8972168 DOI: 10.3389/fphar.2022.820927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a broad spectrum of clinical manifestations, an aberrant autoimmune response to self-antigens, which affect organs and tissues. There are several immune-pathogenic pathways, but the exact one is still not well known unless it is related to genetics. SLE and other autoimmune diseases are known to be inseparable from genetic factors, not only pathogenesis but also regarding the response to therapy. Seventy-one human studies published in the last 10 years were collected. Research communications, thesis publication, reviews, expert opinions, and unrelated studies were excluded. Finally, 32 articles were included. A polymorphism that occurs on the genes related to drugs pharmacokinetic, such as CYP, OATP, ABC Transporter, UGT, GST or drug-target pharmacodynamics, such as FCGR, TLR, and BAFF, can change the level of gene expression or its activity, thereby causing a variation on the clinical response of the drugs. A study that summarizes gene polymorphisms influencing the response to SLE therapy is urgently needed for personalized medicine practices. Personalized medicine is an effort to provide individual therapy based on genetic profiles, and it gives better and more effective treatments for SLE and other autoimmune disease patients.
Collapse
Affiliation(s)
- Melisa Intan Barliana
- Department of Biological Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- *Correspondence: Melisa Intan Barliana,
| | - Nadiya Nurul Afifah
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Laniyati Hamijoyo
- Department of Internal Medicine, Rheumatology Division, Faculty of Medicine, Universitas Padjadjaran, Hasan Sadikin Hospital, Bandung, Indonesia
| | - Rizky Abdulah
- Centre of Excellence in Higher Education for Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
12
|
Oda A, Suzuki Y, Sato B, Sato H, Tanaka R, Ono H, Ando T, Shin T, Mimata H, Itoh H, Ohno K. Highly sensitive simultaneous quantification of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human plasma using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Sep Sci 2022; 45:1672-1682. [PMID: 35247297 DOI: 10.1002/jssc.202100950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 11/08/2022]
Abstract
Indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid are uremic toxins that accumulate in renal failure, and have been reported to decrease the activities of the drug metabolizing enzyme cytochrome P450 3A and the drug transporter organic anion transporting polypeptides 1B, respectively. In this study, we established and validated an assay for simultaneous quantification of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid in human plasma. The samples were pretreated by SPE, and measured by UHPLC-MS/MS. The validation results for this assay were within the acceptable limits recommended by the US Food and Drug Administration, with a lower limit of quantification of 0.05 μg/mL for both indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid. Recovery rates of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid corrected by internal standard were 100.7%-101.9% and 100.2%-101.3%, respectively. Matrix effects of indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid corrected by internal standard were 101.1%-105.5% and 97.0%-103.8%, respectively. The validated assay was used to analyze indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid concentrations in the plasma samples of healthy volunteers and patients with chronic kidney disease. All the measured plasma indoxyl sulfate and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid concentrations were within the calibration ranges. This novel method may contribute to predict the activities of drug metabolizing enzymes and drug transporters in individual patients. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ayako Oda
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yosuke Suzuki
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Banri Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Haruki Sato
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Ryota Tanaka
- Department of Clinical Pharmacy, Oita University Hospital, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hiroyuki Ono
- Department of Clinical Pharmacy, Oita University Hospital, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Tadasuke Ando
- Department of Urology, Oita University Faculty of Medicine, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Toshitaka Shin
- Department of Urology, Oita University Faculty of Medicine, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hiromitsu Mimata
- Department of Urology, Oita University Faculty of Medicine, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Hiroki Itoh
- Department of Clinical Pharmacy, Oita University Hospital, 1-1 Hasama-machi, Yufu, Oita, 879-5593, Japan
| | - Keiko Ohno
- Department of Medication Use Analysis and Clinical Research, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
13
|
Chen J, Xue Y, Shuai X, Ni C, Fang Z, Ye L, Hong M. Effect of major components of Tripterygium wilfordii Hook. f on the uptake function of organic anion transporting polypeptide 1B1. Toxicol Appl Pharmacol 2021; 435:115848. [PMID: 34958783 DOI: 10.1016/j.taap.2021.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022]
Abstract
Organic anion transporting polypeptide 1B1 (OATP1B1), which is specifically expressed at the basolateral membrane of human hepatocytes, is well recognized as the key determinant in the pharmacokinetics of a wide variety of drugs and considered as an important drug-drug interaction (DDI) site. Triptergium wilfordii Hook. f. (TWHF) is a traditional Chinese medicine that has a long history in treating diseases and more pharmacological effects were demonstrated recently. Components of TWHF mainly belong to the groups of alkaloids, diterpenoids, and triterpenoids. However, whether TWHF constituents are involved in herb-drug interaction (HDI) remains largely unknown. In the present study, we investigated the effect of four major components of TWHF, i.e. Triptolide (TPL), Celastrol (CL), and two alkaloids Wilforine (WFR) and Wilforgine (WFG) on the function of OATP1B1. It was found that co-incubation of these compounds greatly inhibited the uptake function of OATP1B1, with WFG (IC50 = 3.63 ± 0.61 μM) and WFR (IC50 = 3.91 ± 0.30 μM) showing higher inhibitory potency than TPL (IC50 = 184 ± 36 μM) and CL (IC50 = 448 ± 81 μM). Kinetic analysis revealed that co-incubation of WFG or WFR led to the reduction of both Km and Vmax of the DCF uptake. On the other hand, pre-incubation of WFG or WFR increased Km value of OATP1B1; while CL affected both Km and Vmax. In conclusion, co- and pre-incubation of the tested TWHF components inhibited OATP1B1 activity in different manners. Although co-incubation of WFG and WFR did not seem to directly compete with the substrates, pre-incubation of these alkaloids may alter the substrate-transporter interaction.
Collapse
Affiliation(s)
- Jieru Chen
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yuanping Xue
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xiaoyu Shuai
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Chunxu Ni
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zihui Fang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Ling Ye
- Guangdong Provincial Key Laboratory of New Drug Screening and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
14
|
Isono T, Hira D, Morikochi A, Fukami T, Ueshima S, Nozaki K, Terada T, Morita S. Urine volume to hydration volume ratio is associated with pharmacokinetics of high-dose methotrexate in patients with primary central nervous system lymphoma. Pharmacol Res Perspect 2021; 9:e00883. [PMID: 34664791 PMCID: PMC8525095 DOI: 10.1002/prp2.883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/30/2021] [Indexed: 11/24/2022] Open
Abstract
High-dose methotrexate (HD-MTX)-based chemotherapy is the first-line treatment for primary central nervous system lymphoma (PCNSL), but is associated with severe adverse effects, including myelosuppression and renal impairment. MTX is primarily excreted by the kidneys. Renal function calculated using serum creatinine (Scr) derived from muscle may be overestimated in elderly PCNSL patients. Therefore, we aimed to construct a population pharmacokinetic model in PCNSL patients and explore the factors associated with MTX clearance. Sixteen PCNSL patients (median age, 66 years) treated with HD-MTX were included, and serum MTX concentrations were measured at 193 points in 49 courses. A population pharmacokinetic analysis was performed using NONMEM. A Monte Carlo simulation was conducted, in which serum MTX concentrations were stratified into three groups of creatine clearance (Ccr) (50, 75, and 100 ml/min) with three groups of the urine volume to hydration volume (UV/HV) ratio (<1, 1-2, and >2). The final model was constructed as follows: MTX clearance = 4.90·(Ccr/94.5)0.456 ·(UV/HV)0.458 . In the Monte Carlo simulation, serum MTX concentrations were below the standard values (10, 1, and 0.1 µM at 24, 48, and 72 h, respectively, after the start of the MTX administration) in most patients with UV/HV >2, even with Ccr of 50 ml/min. Conversely, half of the patients with UV/HV <1 and Ccr of 50 ml/min failed to achieve the standard values. The present results demonstrated that the UV/HV ratio was useful for describing the pharmacokinetics of MTX in PCNSL patients.
Collapse
Affiliation(s)
- Tetsuichiro Isono
- Department of PharmacyShiga University of Medical Science HospitalOtsuShigaJapan
| | - Daiki Hira
- Department of PharmacyShiga University of Medical Science HospitalOtsuShigaJapan
- College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuShigaJapan
- Present address:
Department of Clinical Pharmacology and TherapeuticsKyoto University HospitalKyotoJapan
| | - Aya Morikochi
- Department of PharmacyShiga University of Medical Science HospitalOtsuShigaJapan
| | - Tadateru Fukami
- Department of NeurosurgeryShiga University of Medical ScienceOtsuShigaJapan
| | - Satoshi Ueshima
- College of Pharmaceutical SciencesRitsumeikan UniversityKusatsuShigaJapan
| | - Kazuhiko Nozaki
- Department of NeurosurgeryShiga University of Medical ScienceOtsuShigaJapan
| | - Tomohiro Terada
- Department of PharmacyShiga University of Medical Science HospitalOtsuShigaJapan
- Present address:
Department of Clinical Pharmacology and TherapeuticsKyoto University HospitalKyotoJapan
| | - Shin‐ya Morita
- Department of PharmacyShiga University of Medical Science HospitalOtsuShigaJapan
| |
Collapse
|
15
|
Sato R, Akiyoshi T, Morita T, Katayama K, Yajima K, Kataoka H, Imaoka A, Ohtani H. Dual kinetics of OATP2B1: Inhibitory potency and pH-dependence of OATP2B1 inhibitors. Drug Metab Pharmacokinet 2021; 41:100416. [PMID: 34619547 DOI: 10.1016/j.dmpk.2021.100416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/17/2021] [Accepted: 07/28/2021] [Indexed: 11/18/2022]
Abstract
Organic anion transporting polypeptide (OATP) 2B1 is expressed in the intestine and liver, and OATP2B1-mediated transport of estrone 3-sulfate is pH-dependent and consists of: the high-affinity component (Hc) and low-affinity component (Lc). This study aimed to evaluate the influence of pH on the transport kinetics of each component, along with the inhibitory nature of ten OATP2B1 inhibitors. The Michaelis constants (Km) were 4-fold and 1.5-fold lower at pH 6.3 than at pH 7.4, for Hc and Lc respectively. The inhibitory potencies of diclofenac, indomethacin, and ibuprofen towards Hc were 1.5-4.3 fold lower at pH 6.3 than at pH 7.4. Contrastingly, inhibitory potencies towards Lc were 9.0-52 fold lower at pH 7.4. Similarly, the inhibitory effect of naproxen was stronger towards Hc at pH 6.3 and towards Lc at pH 7.4. On the other hand, celecoxib selectively inhibited Lc transport at pH 7.4. Rifampicin inhibited both components at pH 6.3 and 7.4 to a similar extent, while bromosulphophthalein, naringin, and gefitinib selectively inhibited Hc irrespective of pH. Fexofenadine inhibited neither component. In conclusion, the transport affinities of both Hc and Lc were enhanced under acidic conditions. The influence of pH on the inhibitory potency towards each component varied among the inhibitors.
Collapse
Affiliation(s)
- Ryo Sato
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Takeshi Akiyoshi
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Tokio Morita
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kazuhiro Katayama
- School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi, Chiba, 274-8555, Japan.
| | - Kodai Yajima
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Hiroki Kataoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Ayuko Imaoka
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Hisakazu Ohtani
- Graduate School of Pharmaceutical Sciences, Keio University, 1-5-30, Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| |
Collapse
|
16
|
Schmidt A, Schmidt A, Markert UR. The road (not) taken - Placental transfer and interspecies differences. Placenta 2021; 115:70-77. [PMID: 34562829 DOI: 10.1016/j.placenta.2021.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/31/2022]
Abstract
Species differences are among the main reasons for the high failure rate of preclinical studies. A better awareness and understanding of these differences might help to improve the outcome of preclinical research. In reproduction, the placenta is the central organ regulating fetal exposure to a substance circulating in the maternal organism. Exact information about placental transfer can help to better estimate the toxic potential of a substance. From an evolutionary point of view, the chorioallantoic placenta is the organ with the highest anatomical diversity among species. Moreover, frequently used animal models in reproduction belong to rodents and lagomorphs, two groups that are characterized by the generation of an additional type of placenta, which is crucial for fetal development, but absent from humans: the inverted yolk sac placenta. Taken together, the translatability of placental transfer studies from laboratory animals to humans is challenging, which is supported by the fact that numerous species-dependent toxic effects are described in literature. Thus, reliable human-relevant data are frequently lacking and the toxic potential of chemicals and pharmaceuticals for humans can hardly be estimated, often resulting in recommendations that medical treatments or exposure to chemicals should be avoided for safety reasons. Although species differences of placental anatomy have been described frequently and the need for human-relevant research models has been emphasized, analyses of substances with species-dependent placental transfer have been performed only sporadically. Here, we present examples for species-specific placental transfer, including that of nanoparticles and pharmaceuticals, and discuss potential underlying mechanisms. With respect to the COVID 19-pandemic it might be of interest that some antiviral drugs are reported to feature species-specific placental transfer. Further, differences in placental structure and antibody transfer may affect placental transfer of ZIKA virus.
Collapse
Affiliation(s)
- André Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Astrid Schmidt
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
17
|
Cheng Y, Liang X, Hao J, Niu C, Lai Y. Application of a PBPK model to elucidate the changes of systemic and liver exposures for rosuvastatin, carotegrast, and bromfenac followed by OATP inhibition in monkeys. Clin Transl Sci 2021; 14:1924-1934. [PMID: 34058067 PMCID: PMC8504809 DOI: 10.1111/cts.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of organic anion‐transporting polypeptide (OATP) inhibition on systemic and liver exposures of three OATP substrates was investigated in cynomolgus monkeys. A monkey physiologically‐based pharmacokinetic (PBPK) model was constructed to describe the exposure changes followed by OATP functional attenuation. Rosuvastatin, bromfenac, and carotegrast were administered as a single intravenous cassette dose (0.5 mg/kg each) in monkeys with and without predosing with rifampin (RIF; 20 mg/kg) orally. The plasma exposure of rosuvastatin, bromfenac, carotegrast, and OATP biomarkers, coproporphyrin I (CP‐I) and CP‐III were increased 2.3, 2.1, 9.1, 5.4, and 8.8‐fold, respectively, when compared to the vehicle group. The liver to plasma ratios of rosuvastatin and bromfenac were reduced but the liver concentration of the drugs remained unchanged by RIF treatment. The liver concentrations of carotegrast, CP‐I, and CP‐III were unchanged at 1 h but increased at 6 h in the RIF‐treated group. The passive permeability, active uptake, and biliary excretion were characterized in suspended and sandwich‐cultured monkey hepatocytes and then incorporated into the monkey PBPK model. As demonstrated by the PBPK model, the plasma exposure is increased through OATP inhibition while liver exposure is maintained by passive permeability driven from an elevated plasma level. Liver exposure is sensitive to the changes of metabolism and biliary clearances. The model further suggested the involvement of additional mechanisms for hepatic uptakes of rosuvastatin and bromfenac, and of the inhibition of biliary excretion for carotegrast, CP‐I, and CP‐III by RIF. Collectively, impaired OATP function would not reduce the liver exposure of its substrates in monkeys.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Jia Hao
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
18
|
Ma D, Wang H, Ugo T, Mustafa D, Zhou W, Cali JJ. Luminogenic D-Luciferin Derivatives as OATP1B1 and 1B3 Substrates in No-wash Assays †. Photochem Photobiol 2021; 97:1407-1416. [PMID: 33948961 DOI: 10.1111/php.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/29/2022]
Abstract
The human hepatic organic ion transporting polypeptides OATP1B1 and -1B3 are uptake transporters that influence the disposition of several small molecule drugs and perpetrate certain adverse drug-drug interactions. To predict these in vivo effects, in vitro systems are used to screen new drug entities as potential transporter substrates or inhibitors. To simplify such studies, we synthesized luminogenic derivatives of the OATP1B1 and -1B3 substrate D-luciferin to test as probe substrates in a rapid, no-wash optical approach for substrate and inhibitor identification and characterization. Each derivative is a pro-luciferin containing a self-immolating trimethyl lock quinone linker that is sensitive to intracellular reducing environments that cause the release of free luciferin in proportion to the amount of probe taken up by the transporter. A subsequent luciferin-limited luciferase reaction produces light in proportion to transporter activity. We tested the derivatives in HEK293 cells that overexpress OATP1B1 or OATP1B3 by transient transfection or viral transduction. Derivatives were identified that showed OATP-dependent uptake that was time and concentration dependent, saturable and sensitive to inhibition by known OATP1B1 and -1B3 substrates and inhibitors. These luminogenic transporter probes enabled an add-only multi-well plate protocol suitable for automation and high throughput screening.
Collapse
Affiliation(s)
| | - Hui Wang
- Promega Biosciences LLC, San Luis Obispo, CA
| | - Tim Ugo
- Promega Biosciences LLC, San Luis Obispo, CA
| | | | - Wenhui Zhou
- Promega Biosciences LLC, San Luis Obispo, CA
| | | |
Collapse
|
19
|
Tajiri A, Hirota T, Kawano S, Yonamine A, Ieiri I. Regulation of Organic Anion Transporting Polypeptide 2B1 Expression by MicroRNA in the Human Liver. Mol Pharm 2020; 17:2821-2830. [PMID: 32602343 DOI: 10.1021/acs.molpharmaceut.0c00193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Organic anion transporting polypeptide 2B1 (OATP2B1, SLCO2B1) is an uptake transporter expressed in several tissues, including the liver, intestine, brain, kidney, and skeletal muscle. Hepatocyte nuclear factor 4 alpha (HNF4α) is known as an important transcriptional factor of OATP2B1 in the liver. It has been reported that there are large interindividual differences in OATP2B1 mRNA and protein expressions in human livers. The mechanism causing the interindividual differences in OATP2B1 expression is still unclear. MicroRNAs (miRNAs) control gene expression by leading translational repression and/or degradation of the target mRNA. There is no significant correlation between OATP2B1 mRNA and protein expression, suggesting that post-transcriptional regulating mechanisms, such as miRNAs, play an important role in the interindividual differences in OATP2B1 expression. In this study, we hypothesized that certain miRNAs cause the interindividual differences in OATP2B1 expression in the human liver. In silico analysis showed that miR-24 was a candidate miRNA regulating OATP2B1 expression. It has been reported that miR-24 degrades HNF4α mRNA expression. We revealed that the miR-24 expression level was negatively correlated with OATP2B1 mRNA, protein, and HNF4α mRNA expression levels in human livers. Transfection by the miR-24 precursor decreased the luciferase activity in the transfected cells with the vector containing the OATP2B1 3' untranslated region (3'UTR) or SLCO2B1 promoter region. In HepaRG cells, miR-24 decreased the OATP2B1 and HNF4α expression levels. These results suggest that miR-24 represses not only the translation of OATP2B1 but also the transcription of OATP2B1 by HNF4α mRNA degradation.
Collapse
Affiliation(s)
- Ayaka Tajiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takeshi Hirota
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Sasagu Kawano
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Akira Yonamine
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
20
|
Inhibitory Effects of Quercetin and Its Main Methyl, Sulfate, and Glucuronic Acid Conjugates on Cytochrome P450 Enzymes, and on OATP, BCRP and MRP2 Transporters. Nutrients 2020; 12:nu12082306. [PMID: 32751996 PMCID: PMC7468908 DOI: 10.3390/nu12082306] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022] Open
Abstract
Quercetin is a flavonoid, its glycosides and aglycone are found in significant amounts in several plants and dietary supplements. Because of the high presystemic biotransformation of quercetin, mainly its conjugates appear in circulation. As has been reported in previous studies, quercetin can interact with several proteins of pharmacokinetic importance. However, the interactions of its metabolites with biotransformation enzymes and drug transporters have barely been examined. In this study, the inhibitory effects of quercetin and its most relevant methyl, sulfate, and glucuronide metabolites were tested on cytochrome P450 (CYP) (2C19, 3A4, and 2D6) enzymes as well as on organic anion-transporting polypeptides (OATPs) (OATP1A2, OATP1B1, OATP1B3, and OATP2B1) and ATP (adenosine triphosphate) Binding Cassette (ABC) (BCRP and MRP2) transporters. Quercetin and its metabolites (quercetin-3'-sulfate, quercetin-3-glucuronide, isorhamnetin, and isorhamnetin-3-glucuronide) showed weak inhibitory effects on CYP2C19 and 3A4, while they did not affect CYP2D6 activity. Some of the flavonoids caused weak inhibition of OATP1A2 and MRP2. However, most of the compounds tested proved to be strong inhibitors of OATP1B1, OATP1B3, OATP2B1, and BCRP. Our data demonstrate that not only quercetin but some of its conjugates, can also interact with CYP enzymes and drug transporters. Therefore, high intake of quercetin may interfere with the pharmacokinetics of drugs.
Collapse
|
21
|
Mohos V, Fliszár-Nyúl E, Ungvári O, Bakos É, Kuffa K, Bencsik T, Zsidó BZ, Hetényi C, Telbisz Á, Özvegy-Laczka C, Poór M. Effects of Chrysin and Its Major Conjugated Metabolites Chrysin-7-Sulfate and Chrysin-7-Glucuronide on Cytochrome P450 Enzymes and on OATP, P-gp, BCRP, and MRP2 Transporters. Drug Metab Dispos 2020; 48:1064-1073. [PMID: 32661014 DOI: 10.1124/dmd.120.000085] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/01/2020] [Indexed: 12/22/2022] Open
Abstract
Chrysin is an abundant flavonoid in nature, and it is also contained by several dietary supplements. Chrysin is highly biotransformed in the body, during which conjugated metabolites chrysin-7-sulfate and chrysin-7-glucuronide are formed. These conjugates appear at considerably higher concentrations in the circulation than the parent compound. Based on previous studies, chrysin can interact with biotransformation enzymes and transporters; however, the interactions of its metabolites have been barely examined. In this in vitro study, the effects of chrysin, chrysin-7-sulfate, and chrysin-7-glucuronide on cytochrome P450 enzymes (2C9, 2C19, 3A4, and 2D6) as well as on organic anion-transporting polypeptides (OATPs; 1A2, 1B1, 1B3, and 2B1) and ATP binding cassette [P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance protein (BCRP)] transporters were investigated. Our observations revealed that chrysin conjugates are strong inhibitors of certain biotransformation enzymes (e.g., CYP2C9) and transporters (e.g., OATP1B1, OATP1B3, OATP2B1, and BCRP) examined. Therefore, the simultaneous administration of chrysin-containing dietary supplements with medications needs to be carefully considered due to the possible development of pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Chrysin-7-sulfate and chrysin-7-glucuronide are the major metabolites of flavonoid chrysin. In this study, we examined the effects of chrysin and its conjugates on cytochrome P450 enzymes and on organic anion-transporting polypeptides and ATP binding cassette transporters (P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2). Our results demonstrate that chrysin and/or its conjugates can significantly inhibit some of these proteins. Since chrysin is also contained by dietary supplements, high intake of chrysin may interrupt the transport and/or the biotransformation of drugs.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eszter Fliszár-Nyúl
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Orsolya Ungvári
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Bakos
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Katalin Kuffa
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tímea Bencsik
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csaba Hetényi
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Ágnes Telbisz
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Csilla Özvegy-Laczka
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Miklós Poór
- Department of Pharmacology, Faculty of Pharmacy (V.M., E.F.-N., M.P.), János Szentágothai Research Centre (V.M., E.F.-N., M.P.), Department of Pharmacognosy, Faculty of Pharmacy (T.B.), and Department of Pharmacology and Pharmacotherapy, Medical School (B.Z.Z., C.H.), University of Pécs, Pécs, Hungary; and Membrane Protein Research Group (O.U., É.B., C.Ö.-L.) and Biomembrane Research Group (K.K., Á.T.), Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
22
|
Wada S, Matsunaga N, Tamai I. Mathematical modeling analysis of hepatic uric acid disposition using human sandwich-cultured hepatocytes. Drug Metab Pharmacokinet 2020; 35:432-440. [PMID: 32807664 DOI: 10.1016/j.dmpk.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/24/2020] [Accepted: 06/15/2020] [Indexed: 12/14/2022]
Abstract
Uric acid is biosynthesized from purine by xanthine oxidase (XO) mainly in the liver and is excreted into urine and feces. Although several transporters responsible for renal and intestinal handling of uric acid have been reported, information on hepatic transporters is limited. In the present study, we studied quantitative contribution of transporters for hepatic handling of uric acid by mathematical modeling analysis in human sandwich-cultured hepatocytes (hSCH). Stable isotope-labeled hypoxanthine, hypoxanthine-13C2,15N (HX), was incubated with hSCH and formed 13C2,15N-labeled xanthine (XA) and uric acid (UA) were measured by LC-MS/MS time dependently. Rate constants for metabolism and efflux and uptake transport across sinusoidal and bile canalicular membranes of HX, XA and UA were estimated in the presence of inhibitors of XO and uric acid transporters. An XO inhibitor allopurinol significantly decreased metabolisms of HX and XA. Efflux into bile canalicular lumen was negligible and sinusoidal efflux was considered main efflux pathway of formed UA. Transporter inhibition study highlighted that GLUT9 strongly and MRP4 intermediately contribute to the sinusoidal efflux of UA with minor contribution of NPT1/4. Modeling analysis developed in the present study should be useful for quantitative prediction of uric acid disposition in liver.
Collapse
Affiliation(s)
- Sho Wada
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan
| | - Norikazu Matsunaga
- Pharmacokinetic Research Laboratories, Ono Pharmaceutical Co., Ltd., Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Japan.
| |
Collapse
|
23
|
Laczkó-Rigó R, Jójárt R, Mernyák E, Bakos É, Tuerkova A, Zdrazil B, Özvegy-Laczka C. Structural dissection of 13-epiestrones based on the interaction with human Organic anion-transporting polypeptide, OATP2B1. J Steroid Biochem Mol Biol 2020; 200:105652. [PMID: 32147459 DOI: 10.1016/j.jsbmb.2020.105652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Human OATP2B1 encoded by the SLCO2B1 gene is a multispecific transporter mediating the cellular uptake of large, organic molecules, including hormones, prostaglandins and bile acids. OATP2B1 is ubiquitously expressed in the human body, with highest expression levels in pharmacologically relevant barriers, like enterocytes, hepatocytes and endothelial cells of the blood-brain-barrier. In addition to its endogenous substrates, OATP2B1 also recognizes clinically applied drugs, such as statins, antivirals, antihistamines and chemotherapeutic agents and influences their pharmacokinetics. On the other hand, OATP2B1 is also overexpressed in various tumors. Considering that elevated hormone uptake by OATP2B1 results in increased cell proliferation of hormone dependent tumors (e.g. breast or prostate), inhibition of OATP2B1 can be a good strategy to inhibit the growth of these tumors. 13-epiestrones represent a potential novel strategy in the treatment of hormone dependent cancers by the suppression of local estrogen production due to the inhibition of the key enzyme of estrone metabolism, 17ß-hydroxysteroid-dehydrogenase type 1 (HSD17ß1). Recently, we have demonstrated that various phosphonated 13-epiestrones are dual inhibitors also suppressing OATP2B1 function. In order to gain better insights into the molecular determinants of OATP2B1 13-epiestrone interaction we investigated the effect of C-2 and C-4 halogen or phenylalkynyl modified epiestrones on OATP2B1 transport function. Potent inhibitors (with EC50 values in the low micromolar range) as well as non-inhibitors of OATP2B1 function were identified. Based on the structure-activity relationship (SAR) of the various 13-epiestrone derivatives we could define structural elements important for OATP2B1 inhibition. Our results may help to understand the drug/inhibitor interaction profile of OATP2B1, and also may be a useful strategy to block steroid hormone entry into tumors.
Collapse
Affiliation(s)
- Réka Laczkó-Rigó
- Membrane Protein Research Group, Institute of Enzymology, RCNS, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Rebeka Jójárt
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Erzsébet Mernyák
- Department of Organic Chemistry, University of Szeged, Dóm tér 8, H-6720, Szeged, Hungary
| | - Éva Bakos
- Membrane Protein Research Group, Institute of Enzymology, RCNS, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Alzbeta Tuerkova
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Althanstraße 14, A-1090, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Membrane Protein Research Group, Institute of Enzymology, RCNS, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.
| |
Collapse
|
24
|
Taniguchi T, Zanetti-Yabur A, Wang P, Usyk M, Burk RD, Wolkoff AW. Interindividual Diversity in Expression of Organic Anion Uptake Transporters in Normal and Cirrhotic Human Liver. Hepatol Commun 2020; 4:739-752. [PMID: 32363323 PMCID: PMC7193130 DOI: 10.1002/hep4.1489] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
The liver plays an essential role in removing endogenous and exogenous compounds from the circulation. This function is mediated by specific transporters, including members of the family of organic anion transport proteins (OATPs) and the Na+-taurocholate transporting polypeptide (NTCP). In the present study, transporter protein expression was determined in liver samples from patients with cirrhosis or controls without liver disease. Five transporters (OATP1A2, OATP1B1, OATP1B3, OATP2B1, and NTCP) were studied. Transporter content in homogenates of human liver was quantified on western blots probed with transporter-specific antibodies in which a calibrated green fluorescent protein-tagged transporter standard was included. Liver samples from 21 patients with cirrhosis (hepatitis C in 17 and alcohol abuse in 4) and 17 controls without liver disease were analyzed. Expression of each of the transporters had a large spread, varying by an order of magnitude in cirrhotic and control livers. OATP1B1 was the most abundant transporter in controls (P < 0.01) but was significantly lower in cirrhotic livers as was NTCP expression (P < 0.01). There was little difference in transporter expression with respect to age or sex. Despite the large variability in transporter expression within a group, analysis in individuals showed that those with high or low expression of one transporter had a similar magnitude in expression of the others. Conclusion: Differences in transporter expression could explain unanticipated heterogeneity of drug transport and metabolism in individuals with and without liver disease.
Collapse
Affiliation(s)
- Tatsuya Taniguchi
- Marion Bessin Liver Research Center Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Division of Hepatology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| | - Alana Zanetti-Yabur
- Marion Bessin Liver Research Center Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Division of Hepatology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| | - Pijun Wang
- Marion Bessin Liver Research Center Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Division of Hepatology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| | - Mykhaylo Usyk
- Department of Pediatrics Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| | - Robert D Burk
- Department of Pediatrics Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Department of Epidemiology and Population Health Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Department of Microbiology and Immunology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| | - Allan W Wolkoff
- Marion Bessin Liver Research Center Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Division of Hepatology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY.,Department of Anatomy and Structural Biology Albert Einstein College of Medicine and Montefiore Medical Center Bronx NY
| |
Collapse
|
25
|
Chiba S, Ro A, Ikawa T, Oide Y, Mukai T. Interactions of human organic anion transporters 1-4 and human organic cation transporters 1-3 with the stimulant drug methamphetamine and amphetamine. Leg Med (Tokyo) 2020; 44:101689. [PMID: 32109742 DOI: 10.1016/j.legalmed.2020.101689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 01/11/2023]
Abstract
Drug membrane transport system proteins, namely, drug transporters, are expressed in the kidney and liver and play a crucial role in the excretion process. This study aimed to elucidate the interactions of the drug transporters human organic anion transporters 1, 2, 3, 4 (hOAT1, 2, 3, 4) and human organic cation transporters 1, 2, 3 (hOCT1, 2, 3), which are expressed primarily in human kidney, liver, and brain, with the stimulants methamphetamine (METH) and amphetamine (AMP). The results of an inhibition study using representative substrates of hOATs and hOCTs showed that METH and AMP significantly inhibited (by >50%) uptake of the hOCT1 and hOCT3 representative substrate 1-methy1-4-phenylpyridinium ion (MPP+) and hOCT2 representative substrate tetraethyl ammonium (TEA). However, METH and AMP did not inhibit uptake of the representative substrates of hOAT1, hOAT2, hOAT3, and hOAT4, (i.e., p-aminohippuric (PAH) acid, prostaglandin F2α (PGF2α), estron sulfate (ES), and ES respectively). Kinetic analyses revealed that METH competitively inhibited hOCT1-mediated MPP+ and hOCT2-mediated TEA uptake (Ki, 16.9 and 78.6 µM, respectively). Similarly, AMP exhibited competitive inhibition, with Ki values of 78.6 and 42.8 µM, respectively. In contrast, hOCT3 exhibited mixed inhibition of representative substrate uptake; hence, calculating Ki values was not possible. Herein, we reveal that hOCTs mediate the inhibition of METH and AMP. The results of this uptake study suggest that METH and AMP bind specifically to hOCT1 and hOCT2 without passing through the cell membrane, with subsequent passage of METH and AMP via hOCT3.
Collapse
Affiliation(s)
- Shoetsu Chiba
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan.
| | - Ayako Ro
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toru Ikawa
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Yukino Oide
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| | - Toshiji Mukai
- Department of Legal Medicine, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ward, Kawasaki, Kanagawa 216-8511, Japan
| |
Collapse
|
26
|
Li TT, An JX, Xu JY, Tuo BG. Overview of organic anion transporters and organic anion transporter polypeptides and their roles in the liver. World J Clin Cases 2019; 7:3915-3933. [PMID: 31832394 PMCID: PMC6906560 DOI: 10.12998/wjcc.v7.i23.3915] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/20/2019] [Accepted: 11/26/2019] [Indexed: 02/05/2023] Open
Abstract
Organic anion transporters (OATs) and organic anion transporter polypeptides (OATPs) are classified within two SLC superfamilies, namely, the SLC22A superfamily and the SLCO superfamily (formerly the SLC21A family), respectively. They are expressed in many tissues, such as the liver and kidney, and mediate the absorption and excretion of many endogenous and exogenous substances, including various drugs. Most are composed of 12 transmembrane polypeptide chains with the C-terminus and the N-terminus located in the cell cytoplasm. OATs and OATPs are abundantly expressed in the liver, where they mainly promote the uptake of various endogenous substrates such as bile acids and various exogenous drugs such as antifibrotic and anticancer drugs. However, differences in the locations of glycosylation sites, phosphorylation sites, and amino acids in the OAT and OATP structures lead to different substrates being transported to the liver, which ultimately results in their different roles in the liver. To date, few articles have addressed these aspects of OAT and OATP structures, and we study further the similarities and differences in their structures, tissue distribution, substrates, and roles in liver diseases.
Collapse
Affiliation(s)
- Ting-Ting Li
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jia-Xing An
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| | - Bi-Guang Tuo
- Department of Gastroenterology, Affiliated Hospital, Zunyi Medical University, Zunyi 563100, Guizhou Province, China
| |
Collapse
|
27
|
Li R, Barton HA. Explaining Ethnic Variability of Transporter Substrate Pharmacokinetics in Healthy Asian and Caucasian Subjects with Allele Frequencies of OATP1B1 and BCRP: A Mechanistic Modeling Analysis. Clin Pharmacokinet 2019; 57:491-503. [PMID: 28653144 PMCID: PMC5856892 DOI: 10.1007/s40262-017-0568-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Background Ethnic variability in the pharmacokinetics of organic anion transporting polypeptide (OATP) 1B1 substrates has been observed, but its basis is unclear. A previous study hypothesizes that, without applying an intrinsic ethnic variability in transporter activity, allele frequencies of transporters cannot explain observed ethnic variability in pharmacokinetics. However, this hypothesis contradicts the data collected from compounds that are OATP1B1 substrates but not breast cancer resistance protein (BCRP) substrates. Objective The objective of this study is to evaluate a hypothesis that is physiologically reasonable and more consistent with clinical observations. Methods We evaluated if allele frequencies of two transporters (OATP1B1 and BCRP) are key contributors to ethnic variability. In this hypothesis, the same genotype leads to the same activity independent of ethnicity, in contrast to the previous hypothesis of intrinsic ethnic variability in OATP1B1 activity. As a validation, we perform mechanistic pharmacokinetic modeling for SLCO1B1 (encoding OATP1B1) and ABCG2 (encoding BCRP) genotyped pharmacokinetic data from 18 clinical studies with healthy Caucasian and/or Asian subjects. Results Simulations based on the current hypothesis reasonably describe SLCO1B1 and ABCG2 genotyped pharmacokinetic time course data for five transporter substrates (atorvastatin, pitavastatin, pravastatin, repaglinide, and rosuvastatin) in Caucasian and Asian populations. Conclusion This hypothesis covers the observations that can (e.g., ethnic differences in rosuvastatin pharmacokinetics) or cannot (e.g., lack of differences for pitavastatin pharmacokinetics) be explained by the previous hypothesis. It helps to characterize sources of ethnic variability and provides a foundation for predicting ethnic variability in transporter substrate pharmacokinetics. Electronic supplementary material The online version of this article (doi:10.1007/s40262-017-0568-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui Li
- Systems Modeling and Simulation, Medicine Design, World Wide Research and Development, Pfizer Inc., Cambridge, MA, USA.
| | - Hugh A Barton
- Translational Modeling and Simulation, Biomedicine Design, World Wide Research and Development, Pfizer Inc., Groton, CT, USA
| |
Collapse
|
28
|
Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunol 2019; 12:851-861. [PMID: 30952999 DOI: 10.1038/s41385-019-0162-4] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/14/2019] [Accepted: 03/17/2019] [Indexed: 02/06/2023]
Abstract
Bile acids are cholesterol-derived surfactants that circulate actively between the liver and ileum and that are classically recognized for emulsifying dietary lipids to facilitate absorption. More recent studies, however, have revealed new functions of bile acids; as pleotropic signaling metabolites that regulate diverse metabolic and inflammatory pathways in multiple cell types and tissues through dynamic interactions with both germline-encoded host receptors and the microbiota. Accordingly, perturbed bile acid circulation and/or metabolism is now implicated in the pathogenesis of cholestatic liver diseases, metabolic syndrome, colon cancer, and inflammatory bowel diseases (IBDs). Here, we discuss the three-dimensional interplay between bile acids, the microbiota, and the mucosal immune system, focusing on the mechanisms that regulate intestinal homeostasis and inflammation. Although the functions of bile acids in mucosal immune regulation are only beginning to be appreciated, targeting bile acids and their cellular receptors has already proven an important area of new drug discovery.
Collapse
|
29
|
Amino-terminal region of human organic anion transporting polypeptide 1B1 dictates transporter stability and substrate interaction. Toxicol Appl Pharmacol 2019; 378:114642. [PMID: 31254566 DOI: 10.1016/j.taap.2019.114642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023]
Abstract
Organic anion transporting polypeptides (OATPs) are key players of drug absorption, distribution and excretion due to their broad substrate specificity, wide tissue distribution and the involvement in drug-drug interaction. OATP1B1 is specifically localized at the basolateral membrane of human hepatocytes and serves a crucial role in the drug clearance from the body. Previous studies have shown that transmembrane domains (TMs) are essential for proper functions of OATPs. In the present study, site-directed mutagenesis was performed to study the TM1 and amino-terminus of OATP1B1. Two positively charged residues, K41 and K49, as well as a hydrophobic residue I46, in TM1 were identified to be important for the proper function of the transporter. K41A and K49A exhibited altered Km value at the high and low affinity binding sites of estrone-3- sulfate (ES), respectively; while alanine substitution of I46 showed altered Km and Vmax values for both binding components of ES. Additional replacement of K41 revealed that the positively charged property at this position is important for maintaining OATP1B1 protein level and function; while the specific side-group structure of lysine at position 49 is irreplaceable for the transporter activity. Conservative replacement of I46 with leucine also recovered the function of the transporter. In addition, studies of the amino-terminus of OATP1B1 revealed that residues ranging from 19 to 27 are essential for protein stability and substrate interaction. Therefore, the amino-terminal region, which includes TM1 and the amino-terminus of OATP1B1, is important for proper function of the membrane protein.
Collapse
|
30
|
Wang X, Liang Y, Fang Z, Huang J, Hong M. The intracellular NPxY motif is critical in maintaining the function and expression of human organic anion transporting polypeptide 1B1. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:1189-1196. [PMID: 30970235 DOI: 10.1016/j.bbamem.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 10/27/2022]
Abstract
Organic anion transporting polypeptides (OATPs, gene symbol SLCO) mediate sodium-independent transport of endogenous compounds such as bile salts, hormones and their conjugates as well as toxins and drugs. OATP1B1 is the major OATP specifically expressed at the basolateral membrane of human hepatocytes and many clinically important drugs have been shown to be substrates of the transporter. According to the computer-based hydropathy analysis, a large intracellular loop 3 (IL3) is situated between transmembrane domain 6 and 7 of OATPs, in which a conserved NPxY motif is found. In the current study, HEK293 cells expressing the HA-tagged OATP1B1 was utilized to investigate the role of the NPxY motif for the function and expression of the transporter. Alanine replacement of N335 or P336 retained substantial uptake function; while simultaneous mutation of these residues resulted in a double mutant that lost almost all the transport activity. On the other hand, Y338A showed >80% reduction for estrone-3-sulfate uptake. Plasma membrane protein analysis revealed that N335/P336A completely lost its cell surface protein expression; while that of Y338A is dramatically reduced. Further investigation with pharmacological inhibitors and immunocytochemistry demonstrated that N335/336A is detained in the Golgi apparatus and Y338A exhibited accelerated protein degradation rate compared to that of the wild-type. Conservative replacement of Y338 with phenylalanine fully recovered uptake and expression of the transporter. In summary, a new role was observed for the NPxY motif located in the IL3 of OATP1B1, which may affect processing and stability of the transporter.
Collapse
Affiliation(s)
- Xuyang Wang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yushuang Liang
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zihui Fang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| | - Jiujiu Huang
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
31
|
Organic anion transporting polypeptide 2B1 – More than a glass-full of drug interactions. Pharmacol Ther 2019; 196:204-215. [DOI: 10.1016/j.pharmthera.2018.12.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Windt T, Tóth S, Patik I, Sessler J, Kucsma N, Szepesi Á, Zdrazil B, Özvegy-Laczka C, Szakács G. Identification of anticancer OATP2B1 substrates by an in vitro triple-fluorescence-based cytotoxicity screen. Arch Toxicol 2019; 93:953-964. [PMID: 30863990 PMCID: PMC6510822 DOI: 10.1007/s00204-019-02417-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/13/2018] [Indexed: 12/21/2022]
Abstract
Membrane transporters play an important role in the absorption, distribution, metabolism and excretion of drugs. The cellular accumulation of many drugs is the result of the net function of efflux and influx transporters. Efflux transporters such as P-glycoprotein/ABCB1 have been shown to confer multidrug resistance in cancer. Although expression of uptake transporters has been confirmed in cancer cells, their role in chemotherapy response has not been systematically investigated. In the present study we have adapted a fluorescence-based cytotoxic assay to characterize the influence of key drug-transporters on the toxicity of approved anticancer drugs. Co-cultures of fluorescently labeled parental and transporter-expressing cells (expressing ABCB1, ABCG2 or OATP2B1) were screened against 101 FDA-approved anticancer drugs, using a novel, automated, triple fluorescence-based cytotoxicity assay. By measuring the survival of parental and transporter-expressing cells in co-cultures, we identify those FDA-approved anticancer drugs, whose toxicity is influenced by ABCB1, ABCG2 or OATP2B1. In addition to confirming known substrates of ABCB1 and ABCG2, the fluorescence-based cytotoxicity assays identified anticancer agents whose toxicity was increased in OATP2B1 expressing cells. Interaction of these compounds with OATP2B1 was verified in dedicated transport assays using cell-impermeant fluorescent substrates. Understanding drug-transporter interactions is needed to increase the efficacy of chemotherapeutic agents. Our results highlight the potential of the fluorescence-based HT screening system for identifying transporter substrates, opening the way for the design of therapeutic approaches based on the inhibition or even the exploitation of transporters in cancer cells.
Collapse
Affiliation(s)
- Tímea Windt
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Szilárd Tóth
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
| | - Izabel Patik
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Judit Sessler
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Nóra Kucsma
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Áron Szepesi
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Barbara Zdrazil
- Department of Pharmaceutical Chemistry, Division of Drug Design and Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary
| | - Gergely Szakács
- Institute of Enzymology, Research Centre for National Sciences, HAS, Budapest, 1117, Hungary.
- Institute of Cancer Research, Medical University Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Oswald S. Organic Anion Transporting Polypeptide (OATP) transporter expression, localization and function in the human intestine. Pharmacol Ther 2019; 195:39-53. [DOI: 10.1016/j.pharmthera.2018.10.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Fang Z, Huang J, Chen J, Xu S, Xiang Z, Hong M. Transmembrane Domain 1 of Human Organic Anion Transporting Polypeptide 2B1 Is Essential for Transporter Function and Stability. Mol Pharmacol 2018; 94:842-849. [PMID: 29871943 DOI: 10.1124/mol.118.111914] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 05/24/2018] [Indexed: 01/09/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs, gene symbol SLCO) are important membrane transporter proteins that mediate the uptake of wide ranges of endogenous and exogenous compounds. OATP2B1 has been found in multiple organs and tissues, including the liver, small intestine, kidney, brain, placenta, heart, skin, as well as skeletal muscle, and is proposed to be involved in the uptake of orally administered drugs. Quite a few reports have demonstrated that transmembrane domains (TMs) are crucial for proper functions of OATP family members. Comparative modeling proposed that TM1, along with TM2, 4, and 5 of the N-terminal half of OATP2B1, may be localized within the substrate interaction pocket and are important for uptake function of the transporter. Alanine scanning of the putative transmembrane domain 1 of OATP2B1 revealed that substitution of L58 with alanine dramatically altered the Km value, and mutation of V52, H55, Q59, and L69 resulted in significantly reduced substrate turnover number, whereas A61V, Q62A, and S66A exhibited significant change in both Km and Vmax values. In addition, phenylalanine at position 51 seems to play an important role in maintaining proper folding of OATP2B1 because alanine replacement of F51 caused accelerated degradation of the transporter protein. Although proteasome and lysosome inhibitors could partially recover protein level, the mutant transporter remained nonfunctional. Taken together, the identification of nine essential amino acid residues within TM1 of OATP2B1 suggested that the transmembrane domain is important for maintaining proper function of the transporter.
Collapse
Affiliation(s)
- Zihui Fang
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| | - Jiujiu Huang
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| | - Jie Chen
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| | - Shaopeng Xu
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| | - Zhaojian Xiang
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| | - Mei Hong
- College of Life Sciences (Z.F., J.H., J.C., S.X., Z.X., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (J.H., M.H.), South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Shen H, Christopher L, Lai Y, Gong J, Kandoussi H, Garonzik S, Perera V, Garimella T, Humphreys WG. Further Studies to Support the Use of Coproporphyrin I and III as Novel Clinical Biomarkers for Evaluating the Potential for Organic Anion Transporting Polypeptide 1B1 and OATP1B3 Inhibition. Drug Metab Dispos 2018; 46:1075-1082. [PMID: 29777022 DOI: 10.1124/dmd.118.081125] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/16/2018] [Indexed: 12/14/2022] Open
Abstract
In a recent study, limited to South Asian Indian subjects (n = 12), coproporphyrin (CP) I and CPIII demonstrated properties appropriate for an organic anion-transporting polypeptide (OATP) 1B endogenous probe. The current studies were conducted in healthy volunteers of mixed ethnicities, including black, white, and Hispanic subjects, to better understand the utility of these biomarkers in broader populations. After oral administration with 600 mg rifampin, AUC(0-24h) values were 2.8-, 3.7-, and 3.6-fold higher than predose levels for CPI and 2.6-, 3.1-, and 2.4-fold higher for CPIII, for the three populations, respectively. These changes in response to rifampin were consistent with previous results. The sensitivity toward OATP1B inhibition was also investigated by evaluating changes of plasma CP levels in the presence of diltiazem and itraconazole [administered as part of an unrelated drug-drug interaction (DDI) investigation], two compounds that were predicted to have minimal inhibitory effect on OATP1B. Administration of diltiazem and itraconazole did not increase plasma CPI and CPIII concentrations relative to prestudy levels, in agreement with predictions from in vitro parameters. Additionally, the basal CP concentrations in subjects with SLCO1B1 c.521TT genotype were comparable to those with SLCO1B1 c.521TC genotype, similar to studies with probe substrates. However, subjects with SLCO1B1 c.388AG and c.388GG genotypes (i.e., increased OATP1B1 transport activity for certain substrates) had lower concentrations of CPI than those with SLCO1B1 c.388AA. Collectively, these findings provide further evidence supporting the translational value of CPI and CPIII as suitable endogenous clinical probes to gauge OATP1B activity and potential for OATP1B-mediated DDIs.
Collapse
Affiliation(s)
- Hong Shen
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Lisa Christopher
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Jiachang Gong
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Hamza Kandoussi
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Samira Garonzik
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Vidya Perera
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tushar Garimella
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| | - W Griffith Humphreys
- Metabolism and Pharmacokinetics (H.S., L.C., Y.L., J.G., W.G.H.), Bioanalytical Sciences (H.K.), and Clinical Pharmacology and Pharmacometrics (S.G., V.P., T.G.), Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
36
|
Hiratsuka M, Hirasawa N, Oshima Y, Kodama S, Miyata T, Dan T, Takatoku H, Kuribayashi H, Nakamura R, Saito Y. Points-to-consider documents: Scientific information on the evaluation of genetic polymorphisms during non-clinical studies and phase I clinical trials in the Japanese population. Drug Metab Pharmacokinet 2018; 33:141-149. [PMID: 29703433 DOI: 10.1016/j.dmpk.2018.01.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 12/05/2017] [Accepted: 01/15/2018] [Indexed: 01/11/2023]
Abstract
Pharmacotherapy shows striking individual differences in pharmacokinetics and pharmacodynamics, involving drug efficacy and adverse reactions. Recent genetic research has revealed that genetic polymorphisms are important intrinsic factors for these inter-individual differences. This pharmacogenomic information could help develop safer and more effective precision pharmacotherapies and thus, regulatory guidance/guidelines were developed in this area, especially in the EU and US. The Project for the Promotion of Progressive Medicine, Medical Devices, and Regenerative Medicine by the Ministry of Health, Labour and Welfare, performed by Tohoku University, reported scientific information on the evaluation of genetic polymorphisms, mainly on drug metabolizing enzymes and transporters, during non-clinical studies and phase I clinical trials in Japanese subjects/patients. We anticipate that this paper will be helpful in drug development for the regulatory usage of pharmacogenomic information, most notably pharmacokinetics.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Noriyasu Hirasawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshiteru Oshima
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Susumu Kodama
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan; Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshio Miyata
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takashi Dan
- Graduate School of Medicine, Tohoku University, Sendai, Japan
| | | | | | - Ryosuke Nakamura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| | - Yoshiro Saito
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; National Institute of Health Sciences (NIHS), Tokyo, Japan
| |
Collapse
|
37
|
Xiang Z, Li W, Wang L, Yi J, Chen K, Hong M. Identification of a NF κB Inhibition Site on the Proximal Promoter Region of Human Organic Anion Transporting Polypeptide 1A2 Coding Gene SLCO1A2. Drug Metab Dispos 2018; 46:643-651. [PMID: 29549185 DOI: 10.1124/dmd.117.078832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/12/2018] [Indexed: 01/21/2023] Open
Abstract
Organic anion transporting polypeptides (OATPs; gene symbol SLCO) are membrane transporters that mediate the transport of wide ranges of compounds. The expression of different OATP members has been reported in the kidney, liver, placenta, brain, and intestine. Because of their broad substrate spectra and wide distribution within the human body, these transporters have been proposed to play key roles in the influx transport of many oral drugs. Inflammation is known to regulate the expression and functions of many drug-metabolizing enzymes and drug transporters. As a proinflammatory cytokine, tumor necrosis factor-α (TNFα) has been shown to affect the expression of different drug transporters, including OATP family members. In the present study, a putative nuclear factor-κB (NFκB) binding site ranging from -1845 to -1836 was identified at the proximal promoter region of OATP1A2 coding gene SLCO1A2 Electrophoretic mobility shift assays and chromatin immunoprecipitation showed that nuclear extracts from both breast cancer cell MCF7 and liver cancer cell HepG2 interacted with an oligonucleotide probe containing the putative NFκB binding site and that the DNA-protein complexes contained both p65 and p50 subunits of NFκB. Further study revealed that the binding site may be responsible in part for the suppression effect of TNFα toward SLCO1A2 expression because the treatment of TNFα significantly increased. Treatment of TNFα significantly increased formation of the DNA-protein complexes and mutations at essential bases of the putative NFκB binding site abolished responsiveness to the TNFα neutralizing antibody, suggesting that the binding site may be responsible in part for the suppression effect of TNFα towars SLCO1A2 expression.
Collapse
Affiliation(s)
- Zhaojian Xiang
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Weike Li
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Lixue Wang
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Jicai Yi
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Kaiwen Chen
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| | - Mei Hong
- College of Life Sciences (Z.X., W.L., L.W., J.Y., K.C., M.H.) and Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms (M.H.), South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
38
|
Alam K, Crowe A, Wang X, Zhang P, Ding K, Li L, Yue W. Regulation of Organic Anion Transporting Polypeptides (OATP) 1B1- and OATP1B3-Mediated Transport: An Updated Review in the Context of OATP-Mediated Drug-Drug Interactions. Int J Mol Sci 2018. [PMID: 29538325 PMCID: PMC5877716 DOI: 10.3390/ijms19030855] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Organic anion transporting polypeptides (OATP) 1B1 and OATP1B3 are important hepatic transporters that mediate the uptake of many clinically important drugs, including statins from the blood into the liver. Reduced transport function of OATP1B1 and OATP1B3 can lead to clinically relevant drug-drug interactions (DDIs). Considering the importance of OATP1B1 and OATP1B3 in hepatic drug disposition, substantial efforts have been given on evaluating OATP1B1/1B3-mediated DDIs in order to avoid unwanted adverse effects of drugs that are OATP substrates due to their altered pharmacokinetics. Growing evidences suggest that the transport function of OATP1B1 and OATP1B3 can be regulated at various levels such as genetic variation, transcriptional and post-translational regulation. The present review summarizes the up to date information on the regulation of OATP1B1 and OATP1B3 transport function at different levels with a focus on potential impact on OATP-mediated DDIs.
Collapse
Affiliation(s)
- Khondoker Alam
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Alexandra Crowe
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| | - Xueying Wang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Pengyue Zhang
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Kai Ding
- Department of Biostatistics and Epidemiology, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73126, USA.
| | - Lang Li
- Center for Computational Biology and Bioinformatics, Indiana Institute of Personalized Medicine, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA.
| | - Wei Yue
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA.
| |
Collapse
|
39
|
Cai LL, Huang WQ, Su ZY, Ye HM, Wang LS, Wu Y, Zhang ZY, Zhang W, Tzeng CM. Identification of two novel genes SLC15A2 and SLCO1B3 associated with maintenance dose variability of warfarin in a Chinese population. Sci Rep 2017; 7:17379. [PMID: 29234073 PMCID: PMC5727167 DOI: 10.1038/s41598-017-17731-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/29/2017] [Indexed: 01/12/2023] Open
Abstract
Warfarin is a commonly prescribed and effective oral anticoagulant. Genetic polymorphisms associated with warfarin metabolism and sensitivity have been implicated in the wide inter-individual dose variation that is observed. Several algorithms integrating patients’ clinical characteristics and genetic polymorphism information have been explored to predict warfarin dose. However, most of these algorithms could explain only over half of the variation in a warfarin maintenance dose, suggesting that additional genetic factors may exist and need to be identified. Here, a drug absorption, distribution, metabolism and excretion (ADME) Core Panel Kit-based pharmacogenetic study was performed to screen for warfarin dose-associated SNP sites in Han-Chinese population patients taking warfarin therapy, and the screen was followed by pyrosequencing-based validation. Finally, we confirmed that the common variant rs9923231 in VKORC1 and two novel genes, SLC15A2 (rs1143671 and rs1143672) and SLCO1B3 (rs4149117 and rs7311358), are associated with the warfarin maintenance dose. As has been shown for those carriers with the variant rs9923231 in VKORC1, it was suggested that those subjects with homozygous minor alleles in those four SNPs should take a lower warfarin dose than those carrying the wild type alleles. Together with the established predictor rs9923231 in VKORC1, those four novel variants on SLC15A2 and SLCO1B3 should be considered as useful biomarkers for warfarin dose adjustment in clinical practice in Han-Chinese populations.
Collapse
Affiliation(s)
- Liang-Liang Cai
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China
| | - Wen-Qing Huang
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China
| | - Zhi-Ying Su
- Clinical Research Laboratory, Xiamen's Maternal and Child Health Hospital, Teaching Hospital of Xiamen University, Xiamen, Fujian Sheng, China
| | - Hui-Ming Ye
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China.,Clinical Research Laboratory, Xiamen's Maternal and Child Health Hospital, Teaching Hospital of Xiamen University, Xiamen, Fujian Sheng, China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan Sheng, China
| | - Yuan Wu
- Department of cardiac surgery, Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Sheng, China
| | - Zhong-Ying Zhang
- Department of Clinical laboratory, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Sheng, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Institute of Clinical Pharmacology, Central South University, Changsha, Hunan Sheng, China.
| | - Chi-Meng Tzeng
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Sheng, China.
| |
Collapse
|
40
|
Different Involvement of OAT in Renal Disposition of Oral Anticoagulants Rivaroxaban, Dabigatran, and Apixaban. J Pharm Sci 2017; 106:2524-2534. [DOI: 10.1016/j.xphs.2017.04.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/14/2022]
|
41
|
Khuri N, Zur AA, Wittwer MB, Lin L, Yee SW, Sali A, Giacomini KM. Computational Discovery and Experimental Validation of Inhibitors of the Human Intestinal Transporter OATP2B1. J Chem Inf Model 2017; 57:1402-1413. [PMID: 28562037 DOI: 10.1021/acs.jcim.6b00720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human organic anion transporters (OATPs) are vital for the uptake and efflux of drugs and endogenous compounds. Current identification of inhibitors of these transporters is based on experimental screening. Virtual screening remains a challenge due to a lack of experimental three-dimensional protein structures. Here, we describe a workflow to identify inhibitors of the OATP2B1 transporter in the DrugBank library of over 5,000 drugs and druglike molecules. OATP member 2B1 transporter is highly expressed in the intestine, where it participates in oral absorption of drugs. Predictions from a Random forest classifier, prioritized by docking against multiple comparative protein structure models of OATP2B1, indicated that 33 of the 5,000 compounds were putative inhibitors of OATP2B1. Ten predicted inhibitors that are prescription drugs were tested experimentally in cells overexpressing the OATP2B1 transporter. Three of these ten were validated as potent inhibitors of estrone-3-sulfate uptake (defined as more than 50% inhibition at 20 μM) and tested in multiple concentrations to determine exact IC50. The IC50 values of bicalutamide, ticagrelor, and meloxicam suggest that they might inhibit intestinal OATP2B1 at clinically relevant concentrations and therefore modulate the absorption of other concomitantly administered drugs.
Collapse
Affiliation(s)
- Natalia Khuri
- Bioengineering Department, Stanford University , Stanford, California 94305, United States
| | | | | | | | | | - Andrej Sali
- Department of Pharmaceutical Chemistry and California Institute of Quantitative Biosciences (QB3), University of California San Francisco , San Francisco, California 94158, United States
| | | |
Collapse
|
42
|
Allegra S, Fatiguso G, Calcagno A, Baietto L, Motta I, Favata F, Cusato J, Bonora S, Di Perri G, D'Avolio A. Role of vitamin D pathway gene polymorphisms on rifampicin plasma and intracellular pharmacokinetics. Pharmacogenomics 2017; 18:865-880. [PMID: 28594304 DOI: 10.2217/pgs-2017-0176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIM We retrospectively evaluate the pharmacogenetic role of single nucleotide polymorphisms involved in rifampicin transport (SLCO1B1, MDR1 and PXR genes) and vitamin D (VDR, CYP24A1 and CYP27B1 genes) metabolism and activity on drug plasma and intracellular concentrations. PATIENTS & METHODS Rifampicin Cmax and Ctrough were measured at weeks 2 and 4 using Ultra-Performance Liquid Chromatography-tandem mass spectroscopy methods. Allelic discrimination was performed by real-time polymerase chain reaction. RESULTS Twenty-four patients were enrolled. At week 2, OATP1B1 521TT and CYP27B1 +2838CC/CT considering plasma and BsmIAA for intraperipheral blood mononuclear cells Cmax, remained in regression analysis. Concerning week 4, TaqITC/CC and CYP24A1 22776CT/TT were retained in plasma Cmax regression model. CONCLUSION This study confirms the role of SLCO1B1 and it suggests the involvement of vitamin D pathway gene polymorphisms in rifampicin pharmacokinetics.
Collapse
Affiliation(s)
- Sarah Allegra
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Giovanna Fatiguso
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Andrea Calcagno
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Lorena Baietto
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Ilaria Motta
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Fabio Favata
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Stefano Bonora
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Giovanni Di Perri
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| | - Antonio D'Avolio
- Laboratory of Clinical Pharmacology & Pharmacogenetics, Department of Medical Sciences, Unit of Infectious Diseases, University of Turin, Amedeo di Savoia Hospital, Corso Svizzera 164, 10149 Turin, Italy
| |
Collapse
|
43
|
Mostaghel EA, Cho E, Zhang A, Alyamani M, Kaipainen A, Green S, Marck BT, Sharifi N, Wright JL, Gulati R, True LD, Loda M, Matsumoto AM, Tamae D, Penning TN, Balk SP, Kantoff PW, Nelson PS, Taplin ME, Montgomery RB. Association of Tissue Abiraterone Levels and SLCO Genotype with Intraprostatic Steroids and Pathologic Response in Men with High-Risk Localized Prostate Cancer. Clin Cancer Res 2017; 23:4592-4601. [PMID: 28389510 DOI: 10.1158/1078-0432.ccr-16-2245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/10/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022]
Abstract
Purpose: Germline variation in solute carrier organic anion (SLCO) genes influences cellular steroid uptake and is associated with prostate cancer outcomes. We hypothesized that, due to its steroidal structure, the CYP17A inhibitor abiraterone may undergo transport by SLCO-encoded transporters and that SLCO gene variation may influence intracellular abiraterone levels and outcomes.Experimental Design: Steroid and abiraterone levels were measured in serum and tissue from 58 men with localized prostate cancer in a clinical trial of LHRH agonist plus abiraterone acetate plus prednisone for 24 weeks prior to prostatectomy. Germline DNA was genotyped for 13 SNPs in six SLCO genes.Results: Abiraterone levels spanned a broad range (serum median 28 ng/mL, 108 nmol/L; tissue median 77 ng/mL, 271 nmol/L) and were correlated (r = 0.355, P = 0.001). Levels correlated positively with steroids upstream of CYP17A (pregnenolone, progesterone), and inversely with steroids downstream of CYP17A (DHEA, AED, testosterone). Serum PSA and tumor volumes were higher in men with undetectable versus detectable tissue abiraterone at prostatectomy (median 0.10 vs. 0.03 ng/dL, P = 0.02; 1.28 vs. 0.44 cc, P = 0.09, respectively). SNPs in SLCO2B1 associated with significant differences in tissue abiraterone (rs1789693, P = 0.0008; rs12422149, P = 0.03) and higher rates of minimal residual disease (tumor volume < 0.5 cc; rs1789693, 67% vs. 27%, P = 0.009; rs1077858, 46% vs. 0%, P = 0.03). LNCaP cells expressing SLCO2B1 showed two- to fourfold higher abiraterone levels compared with vector controls (P < 0.05).Conclusions: Intraprostatic abiraterone levels and genetic variation in SLCO genes are associated with pathologic responses in high-risk localized prostate cancer. Variation in SLCO genes may serve as predictors of response to abiraterone treatment. Clin Cancer Res; 23(16); 4592-601. ©2017 AACR.
Collapse
Affiliation(s)
| | - Eunpi Cho
- Palo Alto Medical Foundation, Palo Alto, California
| | - Ailin Zhang
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mohammad Alyamani
- Lerner Research Institute, Glickman Urological and Kidney Institute, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Arja Kaipainen
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Sean Green
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Brett T Marck
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Nima Sharifi
- Lerner Research Institute, Glickman Urological and Kidney Institute, and Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | | | - Roman Gulati
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | - Massimo Loda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Alvin M Matsumoto
- Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, Washington
| | - Daniel Tamae
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Trevor N Penning
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven P Balk
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | - Peter S Nelson
- Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Mary-Ellen Taplin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
44
|
Heerspink HJL, Makino H, Andress D, Brennan JJ, Correa-Rotter R, Coll B, Davis JW, Idler K, Kohan DE, Liu M, Perkovic V, Remuzzi G, Tobe SW, Toto R, Parving HH, de Zeeuw D. Comparison of exposure response relationship of atrasentan between North American and Asian populations. Diabetes Obes Metab 2017; 19:545-552. [PMID: 27981738 DOI: 10.1111/dom.12851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/25/2022]
Abstract
AIMS The selective endothelin (ET) A receptor antagonist atrasentan has been shown to lower albuminuria in North American and Asian patients with type 2 diabetes and nephropathy. As drug responses to many drugs may differ between North American and Asian populations, we assessed the influence of geographical region on the albuminuria and fluid retention response to atrasentan. MATERIALS AND METHODS Two 12-week double-blind randomised controlled trials were performed with atrasentan 0.75 or 1.25 mg/d vs placebo in patients with type 2 diabetes and nephropathy. The efficacy endpoint was the percentage change in albuminuria. Bodyweight change, a proxy of fluid retention, was used as a safety endpoint. Pharmacodynamics were determined in Asians (N = 77) and North Americans (N = 134). Atrasentan plasma concentration was measured in 161 atrasentan-treated patients. RESULTS Mean albuminuria reduction in Asian, compared to North American, patients was, respectively, -34.4% vs -26.3% for 0.75 mg/d ( P = .44) and -48.0% vs -28.9% for 1.25 mg/d ( P = .035). Bodyweight gain did not differ between North American and Asian populations. Atrasentan plasma concentrations were higher in Asians compared to North Americans and correlated with albuminuria response (7.2% albuminuria reduction per doubling atrasentan concentration; P = .024). Body surface area (β = -1.09 per m2 ; P < .001) and bilirubin, as a marker of hepatic organic anion transporter activity, (β = 0.69 per mg/dL increment; P = .010) were independent determinants of atrasentan plasma concentration; correction by body surface area and bilirubin left no significant difference in plasma concentration between Asian and North American populations. CONCLUSION The higher exposure and albuminuria reduction of atrasentan in Asian patients is not associated with more fluid retention, suggesting that Asian patients are less sensitive to atrasentan-induced sodium retention.
Collapse
Affiliation(s)
- Hiddo J L Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hirofumi Makino
- Okayama University Graduate School of Medicine, Okayama City, Okayama, Japan
| | | | | | - Ricardo Correa-Rotter
- Department of Nephrology and Mineral Metabolism, National Medical Science and Nutrition Institute Salvador Zubirán, Mexico City, Mexico
| | - Blai Coll
- Renal Clinical Development, AbbVie, Chicago, Illinois
| | | | - Ken Idler
- Renal Clinical Development, AbbVie, Chicago, Illinois
| | - Donald E Kohan
- Division of Nephrology, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Mohan Liu
- Renal Clinical Development, AbbVie, Chicago, Illinois
| | - Vlado Perkovic
- George Institute for Global Health, University of Sydney, Sydney, Australia
| | - Giuseppe Remuzzi
- Azienda Ospedaliera Papa Giovanni XXIII and IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Sheldon W Tobe
- Department of Hypertension and Nephrology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Robert Toto
- Department of Clinical Science, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hans-Henrik Parving
- Department of Medical Endocrinology, Rigshospitalet University Hospital of Copenhagen, Copenhagen, Denmark
| | - Dick de Zeeuw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
45
|
Ni C, Yu X, Fang Z, Huang J, Hong M. Oligomerization Study of Human Organic Anion Transporting Polypeptide 1B1. Mol Pharm 2017; 14:359-367. [DOI: 10.1021/acs.molpharmaceut.6b00649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Chunxu Ni
- College of Life
Sciences, South China Agricultural University, Guangzhou 541642, China
| | - Xuan Yu
- College of Life
Sciences, South China Agricultural University, Guangzhou 541642, China
| | - Zihui Fang
- College of Life
Sciences, South China Agricultural University, Guangzhou 541642, China
| | - Jiujiu Huang
- College of Life
Sciences, South China Agricultural University, Guangzhou 541642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, China
| | - Mei Hong
- College of Life
Sciences, South China Agricultural University, Guangzhou 541642, China
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, Guangzhou 541642, China
| |
Collapse
|
46
|
Aklillu E, Habtewold A, Ngaimisi E, Yimer G, Mugusi S, Amogne W, Reuter T, Meid A, Hoffmann MM, Weiss J. SLCO1B1 Gene Variations Among Tanzanians, Ethiopians, and Europeans: Relevance for African and Worldwide Precision Medicine. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2016; 20:538-45. [DOI: 10.1089/omi.2016.0119] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eleni Aklillu
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge C-168, Karolinska Institute, Stockholm, Sweden
| | - Abiy Habtewold
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge C-168, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eliford Ngaimisi
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge C-168, Karolinska Institute, Stockholm, Sweden
- Unit of Pharmacology and Therapeutics, School of Pharmacy, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Getnet Yimer
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital-Huddinge C-168, Karolinska Institute, Stockholm, Sweden
- Department of Pharmacology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Sabina Mugusi
- Department of Clinical Pharmacology, Muhimbili University of Health and Allied sciences, Dar es Salaam, Tanzania
| | - Wondwossen Amogne
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tasmin Reuter
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Andreas Meid
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| | - Michael Marcus Hoffmann
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Johanna Weiss
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
47
|
McLean C, Wilson A, Kim RB. Impact of Transporter Polymorphisms on Drug Development: Is It Clinically Significant? J Clin Pharmacol 2016; 56 Suppl 7:S40-58. [DOI: 10.1002/jcph.691] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 12/02/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Cheynne McLean
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
| | - Aze Wilson
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
- Department of Medicine; Western University; London, Ontario Canada
| | - Richard B. Kim
- Department of Physiology and Pharmacology; Western University; London, Ontario Canada
- Department of Medicine; Western University; London, Ontario Canada
| |
Collapse
|
48
|
Durmus S, van Hoppe S, Schinkel AH. The impact of Organic Anion-Transporting Polypeptides (OATPs) on disposition and toxicity of antitumor drugs: Insights from knockout and humanized mice. Drug Resist Updat 2016; 27:72-88. [PMID: 27449599 DOI: 10.1016/j.drup.2016.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 05/07/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
It is now widely accepted that organic anion-transporting polypeptides (OATPs), especially members of the OATP1A/1B family, can have a major impact on the disposition and elimination of a variety of endogenous molecules and drugs. Owing to their prominent expression in the sinusoidal plasma membrane of hepatocytes, OATP1B1 and OATP1B3 play key roles in the hepatic uptake and plasma clearance of a multitude of structurally diverse anti-cancer and other drugs. Here, we present a thorough assessment of the currently available OATP1A and OATP1B knockout and transgenic mouse models as key tools to study OATP functions in vivo. We discuss recent studies using these models demonstrating the importance of OATPs, primarily in the plasma and hepatic clearance of anticancer drugs such as taxanes, irinotecan/SN-38, methotrexate, doxorubicin, and platinum compounds. We further discuss recent work on OATP-mediated drug-drug interactions in these mouse models, as well as on the role of OATP1A/1B proteins in the phenomenon of hepatocyte hopping, an efficient and flexible way of liver detoxification for both endogenous and exogenous substrates. Interestingly, glucuronide conjugates of both the heme breakdown product bilirubin and the protein tyrosine kinase-targeted anticancer drug sorafenib are strongly affected by this process. The clinical relevance of variation in OATP1A/1B activity in patients has been previously revealed by the effects of polymorphic variants and drug-drug interactions on drug toxicity. The development of in vivo tools to study OATP1A/1B functions has greatly advanced our mechanistic understanding of their functional role in drug pharmacokinetics, and their implications for therapeutic efficacy and toxic side effects of anticancer and other drug treatments.
Collapse
Affiliation(s)
- Selvi Durmus
- Bilkent University, Department of Molecular Biology and Genetics, 06800 Bilkent, Ankara, Turkey
| | - Stéphanie van Hoppe
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Alfred H Schinkel
- The Netherlands Cancer Institute, Division of Molecular Oncology, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Mustafa D, Ma D, Zhou W, Meisenheimer P, Cali JJ. Novel No-Wash Luminogenic Probes for the Detection of Transporter Uptake Activity. Bioconjug Chem 2016; 27:87-101. [DOI: 10.1021/acs.bioconjchem.5b00495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dana Mustafa
- Promega Biosciences LLC, 277
Granada Drive, San Luis Obispo, California 93401, United States
| | - Dongping Ma
- Promega Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711-5399, United States
| | - Wenhui Zhou
- Promega Biosciences LLC, 277
Granada Drive, San Luis Obispo, California 93401, United States
| | - Poncho Meisenheimer
- Promega Biosciences LLC, 277
Granada Drive, San Luis Obispo, California 93401, United States
| | - James J. Cali
- Promega Corporation, 2800 Woods
Hollow Road, Madison, Wisconsin 53711-5399, United States
| |
Collapse
|
50
|
Hoshino Y, Fujita D, Nakanishi T, Tamai I. Molecular localization and characterization of multiple binding sites of organic anion transporting polypeptide 2B1 (OATP2B1) as the mechanism for substrate and modulator dependent drug–drug interaction. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00235h] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic model of the relationship and locations of putative binding sites of substrates and modulators in OATP2B1. Drug–drug interaction and drug–food interaction on OATP2B1 can be predicted by clarification of multiple binding sites.
Collapse
Affiliation(s)
- Yusuke Hoshino
- Faculty of Pharmaceutical Sciences
- Institute of Medical, Pharmaceutical and Health Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Daichi Fujita
- Faculty of Pharmaceutical Sciences
- Institute of Medical, Pharmaceutical and Health Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences
- Institute of Medical, Pharmaceutical and Health Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences
- Institute of Medical, Pharmaceutical and Health Sciences
- Kanazawa University
- Kanazawa 920-1192
- Japan
| |
Collapse
|