1
|
An Inventory of Good Management Practices for Nutrient Reduction, Recycling and Recovery from Agricultural Runoff in Europe’s Northern Periphery and Arctic Region. WATER 2022. [DOI: 10.3390/w14132132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The excess loading of nutrients generated by agricultural activities is a leading cause of water quality impairment across the globe. Various management practices have been developed and widely implemented as conservation management strategies to combat water pollution originating from agricultural activities. In the last ten years, there has also been a widespread recognition of the need for nutrient harvesting from wastewaters and resource recovery. In Europe’s Northern Periphery and Arctic (NPA) areas, the expertise in water and runoff management is sporadic and needs to be improved. Therefore, the objective of this research was to perform a comprehensive review of the state of the art of Good Agricultural Practices (GAPs) for the NPA region. A set of questionnaires was distributed to project partners combined with a comprehensive literature review of GAPs focusing on those relevant and/or implemented in the NPA region. Twenty-four GAPs were included in the inventory. This review reveals that there is a large level of uncertainty, inconsistency, and a gap in the knowledge regarding the effectiveness of GAPs in nutrient reduction (NRE), their potential for nutrient recycling and recovery (NRR), and their operation and maintenance requirements (OMR) and costs. Although the contribution of GAPs to water quality improvement could not be quantified, this inventory provides a comprehensive and first-of-its-kind guide on available measures and practices to assist regional and local authorities and communities in the NAP region. A recommendation for incorporating and retrofitting phosphorus retaining media (PRMs) in some of the GAPs, and/or the implementation of passive filtration systems and trenches filled with PRMs to intercept surface and subsurface farm flows, would result in the enhancement of both NRE and NRR.
Collapse
|
2
|
Effect of Using Aluminum Sulfate (Alum) as a Surface Amendment in Beef Cattle Feedlots on Ammonia and Sulfide Emissions. SUSTAINABILITY 2022. [DOI: 10.3390/su14041984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The objective of this study was to measure NH3 from feedlot surface material (FSM) containing aluminum sulfate (alum). A 33-day lab-scale study was conducted using pans containing FSM and either 0, 2.5, 5, or 10% alum. The pH of the FSM was significantly lower (p < 0.01) when treated with 2.5, 5, and 10% alum as opposed to the 0% alum treatment. No NH3 volatilization occurred below a pH of 6.5. A second study determined that small, weekly doses of 5% alum did not lower NH3 emissions further than a single dose of 5% alum. Two studies on the feedlot surface demonstrated a significant decrease (p < 0.01) in pH in the areas of the pens where alum was added compared to those that did not receive alum. Ammonia concentrations were lower (p < 0.05) for the areas that received alum compared to those that did not receive alum for 7 days when 5% alum was applied and 14 days when 10% alum was applied. In all the studies, sulfide emissions increased when alum was added to the FSM. We concluded 10% alum may reduce NH3 emissions from beef feedlots temporarily, but higher sulfide emissions offset this benefit.
Collapse
|
3
|
Comparison of Alum and Sulfuric Acid to Retain and Increase the Ammonium Content of Digestate Solids during Thermal Drying. NITROGEN 2021. [DOI: 10.3390/nitrogen2020019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aluminum sulphate (alum, Al2(SO4)3·nH2O) has successfully been used to reduce ammonia loss from poultry litter, cattle feedlots and manure composting, but has not yet been utilized in the thermal drying process of digestate solids. The objectives of the present study were to evaluate the effects of alum addition on ammonium nitrogen (NH4+-N) content and phosphorus (P) solubility in dried digestate solids in comparison to the addition of concentrated sulfuric acid (H2SO4). Manure-based (MDS) and sewage sludge-based (SDS) digestate solids were chosen to conduct a drying experiment at four pH levels (original pH, 8.0, 7.5 and 6.5) and using two acidifying agents (alum, concentrated H2SO4). Alum addition increased the final NH4+-N content significantly from 1.4 mg g−1 in the non-acidified control up to 18 mg g−1 and 10.8 mg g−1 in dried MDS and SDS, respectively, which were higher levels than obtained with the addition of concentrated H2SO4. Moreover, alum considerably lowered the water extractable phosphorus (WEP) in raw and dried SDS by 37–83% and 48–72%, respectively, compared with the non-treated control. In contrast, concentrated H2SO4 notably increased WEP in raw and dried MDS by 18–103% and 29–225%, respectively. The comparison between the two acidifying agents indicated that alum had the potential to be an efficient and easy-handling alternative to concentrated sulfuric acid, resulting in higher NH4+-N content and lower P solubility.
Collapse
|
4
|
Anderson KR, Moore PA, Pilon C, Martin JW, Pote DH, Owens PR, Ashworth AJ, Miller DM, DeLaune PB. Long-term effects of grazing management and buffer strips on phosphorus runoff from pastures fertilized with poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:85-96. [PMID: 33016357 DOI: 10.1002/jeq2.20010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/15/2019] [Indexed: 06/11/2023]
Abstract
Phosphorus (P) runoff from pastures can cause accelerated eutrophication of surface waters. However, few long-term studies have been conducted on the effects of best management practices, such as rotational grazing and/or buffer strips on P losses from pastures. The objective of this study was to evaluate the long-term effects of grazing management and buffer strips on P runoff from pastures receiving annual (5.6 Mg ha-1 ) poultry litter applications. A 14-yr study was conducted on 15 small watersheds (0.14 ha) with five treatments: hayed (H), continuously grazed (CG), rotationally grazed (R), rotationally grazed with an unfertilized buffer strip (RB), and rotationally grazed with an unfertilized fenced riparian buffer (RBR). Runoff samples were collected using automatic samplers during runoff events. Average annual runoff volumes from H (40 mm yr-1 ) and RBR (48 mm yr-1 ) were lower than CG and RB, which were both 65 mm yr-1 , and from R (67 mm yr-1 ). Rotational grazing alone did not reduce P loads compared with continuous grazing (1.88 and 1.71 kg P ha-1 for R and CG, respectively). However, compared with CG, total P losses from RB pastures were reduced 36% with unfertilized buffer strips (1.21 kg P ha-1 ), 60% in RBR watersheds with unfertilized fenced riparian buffer strips (0.74 kg P ha-1 ), and 49% by converting pastures to hayfields (0.97 kg P ha-1 ). Hence, the use of unfertilized buffer strips, unfertilized fenced riparian buffer strips, or converting pastures to hayfields are effective best management practices for reducing P runoff in U.S. pasture systems.
Collapse
Affiliation(s)
- Kelsey R Anderson
- Crop, Soil and Environmental Sciences, Plant Sciences 115, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| | - Philip A Moore
- USDA-ARS, Plant Sciences 115, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| | - Cristiane Pilon
- Crop and Soil Sciences, Univ. of Georgia, 2360 Rainwater Rd., Tifton, GA, 31793, USA
| | - Jerry W Martin
- USDA-ARS, Plant Sciences 115, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| | - Dan H Pote
- USDA-ARS, 6883 South Highway 23, Booneville, AR, 72927, USA
| | | | - Amanda J Ashworth
- USDA-ARS, Plant Sciences 115, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| | - David M Miller
- Crop, Soil and Environmental Sciences, Plant Sciences 115, Univ. of Arkansas, Fayetteville, AR, 72701, USA
| | - Paul B DeLaune
- Texas A&M AgriLife Research, 11708 Highway 70 South, Vernon, TX, 76384, USA
| |
Collapse
|
5
|
Ali W, Nadeem M, Ashiq W, Zaeem M, Gilani SSM, Rajabi-Khamseh S, Pham TH, Kavanagh V, Thomas R, Cheema M. The effects of organic and inorganic phosphorus amendments on the biochemical attributes and active microbial population of agriculture podzols following silage corn cultivation in boreal climate. Sci Rep 2019; 9:17297. [PMID: 31754161 PMCID: PMC6872752 DOI: 10.1038/s41598-019-53906-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/30/2019] [Indexed: 01/01/2023] Open
Abstract
Phosphorus (P) is the second most important macronutrient that limits the plant growth, development and productivity. Inorganic P fertilization in podzol soils predominantly bound with aluminum and iron, thereby reducing its availability to crop plants. Dairy manure (DM) amendment to agricultural soils can improve physiochemical properties, nutrient cycling through enhanced enzyme and soil microbial activities leading to improved P bioavailability to crops. We hypothesized that DM amendment in podzol soil will improve biochemical attributes and microbial community and abundance in silage corn cropping system under boreal climate. We evaluated the effects of organic and inorganic P amendments on soil biochemical attributes and abundance in podzol soil under boreal climate. Additionally, biochemical attributes and microbial population and abundance under short-term silage corn monocropping system was also investigated. Experimental treatments were [P0 (control); P1: DM with high P2O5; P2: DM with low P2O5; P3: inorganic P and five silage-corn genotypes (Fusion RR, Yukon R, A4177G3RIB, DKC 23-17RIB and DKC 26-28RIB) were laid out in a randomized complete block design in factorial settings with three replications. Results showed that P1 treatment increased acid phosphatase (AP-ase) activity (29% and 44%), and soil available P (SAP) (60% and 39%) compared to control treatment, during 2016 and 2017, respectively. Additionally, P1 treatments significantly increased total bacterial phospholipids fatty acids (ΣB-PLFA), total phospholipids fatty acids (ΣPLFA), fungi, and eukaryotes compared to control and inorganic P. Yukon R and DKC 26-28RIB genotypes exhibited higher total bacterial PLFA, fungi, and total PLFA in their rhizospheres compared to the other genotypes. Redundancy analyses showed promising association between P1 and P2 amendment, biochemical attributes and active microbial population and Yukon R and DKC 26-28RIB genotypes. Pearson correlation also demonstrated significant and positive correlation between AP-ase, SAP and gram negative bacteria (G-), fungi, ΣB-PLFA, and total PLFA. Study results demonstrated that P1 treatment enhanced biochemical attributes, active microbial community composition and abundance and forage production of silage corn. Results further demonstrated higher active microbial population and abundance in rhizosphere of Yukon R and DKC 26-28RIB genotypes. Therefore, we argue that dairy manure amendment with high P2O5 in podzol soils could be a sustainable nutrient source to enhance soil quality, health and forage production of silage corn. Yukon R and DKC 26-28RIB genotypes showed superior agronomic performance, therefore, could be good fit under boreal climatic conditions.
Collapse
Affiliation(s)
- Waqas Ali
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Muhammad Nadeem
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Waqar Ashiq
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Muhammad Zaeem
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Syed Shah Mohioudin Gilani
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Sanaz Rajabi-Khamseh
- Shahrekord University, Rahbr Blvd, Shahrekord Chaharmahal and Bakhtiari, Shahrekord, Iran
| | - Thu Huong Pham
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Vanessa Kavanagh
- Department of Fisheries and Land Resources, Government of Newfoundland and Labrador, Pasadena, A0L 1K0, Canada
| | - Raymond Thomas
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada
| | - Mumtaz Cheema
- School of Science and the Environment, Grenfell Campus Memorial University of Newfoundland, Corner Brook, Newfoundland and Labrador, A2H 5G4, Canada.
| |
Collapse
|
6
|
Ammonia, Hydrogen Sulfide, and Greenhouse Gas Emissions from Lab-Scaled Manure Bedpacks with and without Aluminum Sulfate Additions. ENVIRONMENTS 2019. [DOI: 10.3390/environments6100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The poultry industry has successfully used aluminum sulfate (alum) as a litter amendment to reduce NH3 emissions from poultry barns, but alum has not been evaluated for similar uses in cattle facilities. A study was conducted to measure ammonia (NH3), greenhouse gases (GHG), and hydrogen sulfide (H2S) emissions from lab-scaled bedded manure packs over a 42-day period. Two frequencies of application (once or weekly) and four concentrations of alum (0, 2.5, 5, and 10% by mass) were evaluated. Frequency of alum application was either the entire treatment of alum applied on Day 0 (once) or 16.6% of the total alum mass applied each week for six weeks. Ammonia emissions were reduced when 10% alum was used, but H2S emissions increased as the concentration of alum increased in the bedded packs. Nitrous oxide emissions were not affected by alum treatment. Methane emissions increased as the concentration of alum increased in the bedded packs. Carbon dioxide emissions were highest when 5% alum was applied and lowest when 0% alum was used. Results of this study indicate that 10% alum is needed to effectively reduce NH3 emissions, but H2S and methane emissions may increase when this concentration of alum is used.
Collapse
|
7
|
Netthisinghe AMP, Cook KL, Gilfillen RA, Woosley PB, Kingery T, Sistani KR. Managing Beef Backgrounding Residual Soil Contaminants by Alum and Biochar Amendments. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:1275-1283. [PMID: 30272780 DOI: 10.2134/jeq2018.02.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heavy manure-derived contamination of soils can make animal congregating areas nonpoint sources for environmental pollution. In situ soil stabilization is a cost-effective management strategy with a focus on lowering contaminant availability and limiting release to the environment. Soil stabilizing amendments can help mitigate the negative environmental impacts of contaminated soils. In this 2-yr study, we examined the effects of adding no amendment (control) or treating with alum [Al (SO)⋅18HO] or biochar as soil amendments on Mehlich-3 extractable soil P, Cu, and Zn contents, antimicrobial monensin concentrations, total bacteria (16S ribosomal RNA [rRNA] gene), antibiotic resistance genes (1 and B), and Class 1 integrons (1) in an abandoned beef backgrounding setting. The alum reduced soil P (1374 to 1060 mg kg), Cu (7.7 to 3.2 mg kg), and Zn (52.4 to 19.6 mg kg) contents. Both alum and biochar reduced monesin concentrations (1.8 to 0.7 and 2.1 to 1.1 ng g, respectively). All the treatments harbored consistent 16 rRNA concentrations (10 copies g) throughout. The B gene concentration (10 copies g) was lower than either the 1 or the 1 genes (10 copies g), regardless of treatments. However, concentrations of all genes in the soils of animal congregation areas were higher than those in background soils with the least animal impact. In contrast with the effect on other contaminants, the effect of soil amendments on bacteria with antibiotic resistance genes was not biologically significant. Future research should be directed toward evaluating effective alternative methods to mitigate these bacterial populations.
Collapse
|
8
|
Naseem S, King AJ. Ammonia production in poultry houses can affect health of humans, birds, and the environment-techniques for its reduction during poultry production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15269-15293. [PMID: 29705898 DOI: 10.1007/s11356-018-2018-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 04/11/2018] [Indexed: 05/17/2023]
Abstract
Due to greater consumption of poultry products and an increase in exports, more poultry houses will be needed. Therefore, it is important to investigate ways that poultry facilities can coexist in close proximity to residential areas without odors and environmental challenges. Ammonia (NH3) is the greatest concern for environmental pollution from poultry production. When birds consume protein, they produce uric acid, ultimately converted to NH3 under favorable conditions. Factors that increase production include pH, temperature, moisture content, litter type, bird age, manure age, relative humidity, and ventilation rate (VR). NH3 concentration and emissions in poultry houses depend on VR; seasons also have effects on NH3 production. Modern ventilation systems can minimize NH3 in enclosed production spaces quickly but increase its emissions to the environment. NH3 adversely affects the ecosystem, environment, and health of birds and people. Less than 10 ppm is the ideal limit for exposure, but up to 25 ppm is also not harmful. NH3 can be minimized by housing type, aerobic and anaerobic conditions, manure handling practices, litter amendment, and diet manipulation without affecting performance and production. Antibiotics can minimize NH3, but consumers have concerns about health effects. Administration of probiotics seems to be a useful replacement for antibiotics. More studies have been conducted on broilers, necessitating the need to evaluate the effect of probiotics on NH3 production in conjunction with laying hen performance and egg quality. This comprehensive review focuses on research from 1950 to 2018.
Collapse
Affiliation(s)
- Sadia Naseem
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA.
| | - Annie J King
- Department of Animal Science, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
9
|
Abdala DB, Moore PA, Rodrigues M, Herrera WF, Pavinato PS. Long-term effects of alum-treated litter, untreated litter and NH 4NO 3 application on phosphorus speciation, distribution and reactivity in soils using K-edge XANES and chemical fractionation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 213:206-216. [PMID: 29500994 DOI: 10.1016/j.jenvman.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/24/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Whereas soil test information on the fertility and chemistry of soils has been important to elaborate safe and sound agricultural practices, micro-scale information can give a whole extra dimension to understand the chemical processes occurring in soils. The objective of this study was to evaluate the effects that the consecutive application of untreated poultry litter, alum-treated litter or ammonium nitrate (NH4NO3) had on P solubility in soils over 20 years. For this, we used soil test data, sequential chemical fractionation (SCF) of P, and P K-edge XANES and μ-fluorescence spectroscopies. Water extractable P data indicated that application of alum to poultry litter was a very effective treatment for reducing P solubility. On the basis of our SCF of P data, P was primarily found within the 0.1 M NaOH pool across the applied rates and regardless of the treatment, where application of alum-treated litter accounted for as much as 59 ± 2% of the total, followed by NH4NO3, 49 ± 4%, and untreated litter, 40 ± 2%. It was also shown that in soils where alum-treated litter was applied, the Resin pool accounted for 10 ± 1% of the total, followed by NH4NO3, 13 ± 4%, and untreated litter, 18 ± 2%, indicating that P was less readily available in soils where alum-treated litter was applied. Phosphorus XANES indicated that P was predominantly associated to Fe > Al > Ca > organic molecules, regardless of the treatment or applied rates, though the formation of PoAl complexes was only found in soils that received application of alum-treated litter and was positively related to the applied rates. The combination of P-XANES with SCF or μ-fluorescence data was shown to provide valuable information about P reactivity and distribution in soils and should thus be used to address the fate of applied P amendments in soils.
Collapse
Affiliation(s)
- D B Abdala
- Brazilian Synchrotron Light Laboratory, Campinas, São Paulo, 13083-100, Brazil.
| | - P A Moore
- USDA/ARS, Poultry Production and Product Safety Research Unit, Plant Sciences 115, University of Arkansas, Fayetteville, Arkansas, 72701, USA
| | - M Rodrigues
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - W F Herrera
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - P S Pavinato
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| |
Collapse
|
10
|
Anderson KR, Moore PA, Miller DM, DeLaune PB, Edwards DR, Kleinman PJA, Cade-Menun BJ. Phosphorus Leaching from Soil Cores from a Twenty-Year Study Evaluating Alum Treatment of Poultry Litter. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:530-537. [PMID: 29864173 DOI: 10.2134/jeq2017.11.0447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adding alum to poultry litter is a best management practice used to stabilize P in less soluble forms, reducing nonpoint-source P runoff. However, little research has been conducted on how alum additions to litter affect subsequent leaching of P from soil. The objective of this study was to evaluate the effects of alum-treated versus untreated poultry litter on P leaching from soil cores receiving long-term poultry litter applications. Two intact soil cores were taken from each of 52 plots in a long-term study with 13 treatments: a control, four rates each of untreated and alum-treated litter (2.24, 4.49, 6.72, and 8.96 Mg ha), and four rates of ammonium nitrate (65, 130, 195, and 260 kg N ha). One core from each plot received the same fertilizer as for the previous 20 yr, whereas the other was unfertilized in the study year, resulting in a total of 25 treatments. Cores were exposed to natural rainfall, and P leaching was measured for 1 yr. The average soluble reactive P concentrations in the leachate varied from 0.16 to 0.44 mg P L in fertilized alum-treated cores, whereas leachate from cores fertilized with untreated litter ranged from 0.40 to 2.64 mg P L. At the highest litter rate (8.96 Mg ha), alum reduced total dissolved P and total P concentrations in leachate by 83 and 80%, respectively, compared with untreated litter. These results indicate that alum additions to poultry litter significantly reduced soluble and total P fractions in leachate.
Collapse
|
11
|
Huang L, Yang J, Xu Y, Lei J, Luo X, Cade-Menun BJ. The Contrasting Effects of Alum-Treated Chicken Manures and KH2PO4 on Phosphorus Behavior in Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:345-352. [PMID: 29634791 DOI: 10.2134/jeq2017.08.0314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alum [KAl(SO)⋅12HO] is often added to chicken manure to limit P solubility after land application. This is generally ascribed to the formation of Al-PO complexes. However, Al-PO complex formation could be affected by the matrix of chicken manure, which varies with animal diet. Alum was added to KHPO (as a reference material) and two manures from typical chicken farms in China, one from an intensive farm (CMIF) and another from free-ranging chickens (CMFR). These were subsequently incubated with soils for 100 d to investigate P transformations. Alum reduced water-soluble colorimetrically reactive phosphorus (RP) from soils amended with manure more effectively than in soils amended with KHPO. Alum addition lowered Mehlich-3 RP in soils with CMFR but had no influence on Mehlich-3 RP in CMIF- or KHPO-amended soils. A comparison of P in digested Mehlich-3 extracts with RP in undigested samples showed significantly increased P in digests of alum-treated CMFR only. Fractionation data indicated that alum treatment increased P in the NHF-RP (Al-P) fraction only in soils with KHPO, but not in soils with manure treatments. Furthermore, NaOH-extracted nonreactive P was markedly higher in soil with alum-treated CMFR relative to normal CMFR. The CMFR manure was assumed to contain higher concentrations of organic P because these chickens were fed grains only. These results suggest that the formation of alum-organic P complexes may reduce P solubility. By comparing alum-treated KHPO and manures, it appears that organic matter in manure could interfere with the formation of Al-PO complexes.
Collapse
|
12
|
Cade-Menun BJ, Elkin KR, Liu CW, Bryant RB, Kleinman PJA, Moore PA. Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. GEOCHEMICAL TRANSACTIONS 2018; 19:7. [PMID: 29468334 PMCID: PMC5821619 DOI: 10.1186/s12932-018-0052-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 02/12/2018] [Indexed: 05/31/2023]
Abstract
Phosphorus (P) can limit crop production in many soils, and soil testing is used to guide fertilizer recommendations. The Mehlich III (M3) soil test is widely used in North America, followed by colorimetric analysis for P, or by inductively coupled plasma-based spectrometry (ICP) for P and cations. However, differences have been observed in M3 P concentrations measured by these methods. Using 31P nuclear magnetic resonance (P-NMR) and mass spectrometry (MS), we characterized P forms in M3 extracts. In addition to the orthophosphate that would be detected during colorimetric analysis, several organic P forms were present in M3 extracts that would be unreactive colorimetrically but measured by ICP (molybdate unreactive P, MUP). Extraction of these P forms by M3 was confirmed by P-NMR and MS in NaOH-ethylenediaminetetraacetic acid extracts of whole soils and residues after M3 extraction. The most abundant P form in M3 extracts was myo-inositol hexaphosphate (myo-IHP, phytate), a compound that may not contribute to plant-available P if tightly sorbed in soil. Concentrations of myo-IHP and other organic P forms varied among soils, and even among treatment plots on the same soil. Extraction of myo-IHP in M3 appeared to be linked to cations, with substantially more myo-IHP extracted from soils fertilized with alum-treated poultry litter than untreated litter. These results suggest that ICP analysis may substantially over-estimate plant-available P in samples with high MUP concentrations, but there is no way at present to determine MUP concentrations without analysis by both colorimetry and ICP. This study also tested procedures that will improve future soil P-NMR studies, such as treatment of acid extracts, and demonstrated that techniques such as P-NMR and MS are complimentary, each yielding additional information that analysis by a single technique may not provide.
Collapse
Affiliation(s)
- Barbara J. Cade-Menun
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Box 1030, Gate 4, Airport Drive, Swift Current, SK S9H 3X2 Canada
| | - Kyle R. Elkin
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Corey W. Liu
- Stanford Magnetic Resonance Laboratory, Stanford University School of Medicine & ChEM-H–Stanford University, Stanford, CA USA
| | - Ray B. Bryant
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Peter J. A. Kleinman
- Pasture Systems and Watershed Management Research Unit, USDA-ARS, University Park, PA 16802 USA
| | - Philip A. Moore
- Poultry Production and Product Safety Research Unit, Plant Science 115, USDA-ARS, University of Arkansas, Fayetteville, AR 72701 USA
| |
Collapse
|
13
|
Kennedy CD, Kleinman PJA, DeMoranville CJ, Elkin KR, Bryant RB, Buda AR. Managing Surface Water Inputs to Reduce Phosphorus Loss from Cranberry Farms. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1472-1479. [PMID: 29293836 DOI: 10.2134/jeq2017.04.0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Cranberry ( Ait.) production in Massachusetts represents one-fourth of the US cranberry supply, but water quality concerns, water use, and wetland protection laws challenge the future viability of the state's cranberry industry. Pond water used for harvest and winter flooding accounts for up to two-thirds of phosphorus (P) losses in drainage waters. Consequently, use of P sorbing salts to treat pond water holds promise in the mitigation of P losses from cranberry farms. Laboratory evaluation of aluminum (Al)-, iron (Fe)-, and calcium (Ca)-based salts was conducted to determine the application rate required for reducing P in shallow (0.4 m) and deep (3.2 m) water ponds used for cranberry production. Limited P removal (<22%) with calcium carbonate and calcium sulfate was consistent with their relatively low solubility in water. Calcium hydroxide reduced total P up to 49%, but increases in pond water pH (>8) could be detrimental to cranberry production. Ferric sulfate and aluminum sulfate applications of 15 mg L (ppm) resulted in near-complete removal of total P, which decreased from 49 ± 3 to <10 μg P L (ppb). However, ferric sulfate application lowered pH below the recommend range for cranberry soils. Field testing of aluminum sulfate demonstrated that at a dose of 15 mg L (∼1.4 Al mg L), total P in pond water was reduced by 78 to 94%. Laboratory and field experiments support the recommendation of aluminum sulfate as a cost-effective remedial strategy for reducing elevated P in surface water used for cranberry production.
Collapse
|
14
|
Moore PA. Development of a New Manure Amendment for Reducing Ammonia Volatilization and Phosphorus Runoff from Poultry Litter. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1421-1429. [PMID: 27380093 DOI: 10.2134/jeq2015.09.0483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Treating poultry litter with alum is a best management practice that reduces phosphorus (P) runoff and ammonia (NH) emissions. However, alum prices have increased substantially during the past decade. The goal of this research was to develop inexpensive manure amendments that are as effective as alum in reducing NH volatilization and P runoff. Sixteen amendments were developed using mixtures of alum mud, bauxite ore, sulfuric acid, liquid alum, and water. Alum mud is the residual left over from alum manufacture when produced by reacting bauxite with sulfuric acid. A laboratory NH volatilization study was conducted using 11 treatments: untreated poultry litter, poultry litter treated with liquid or dry alum, or eight new mixtures. All of the litter amendments tested resulted in significantly lower NH volatilization than untreated litter. Dry and liquid alum reduced NH losses by 86 and 75%, respectively. The eight new litter amendments reduced NH losses from 62 to 73% compared with untreated litter, which was not significantly different from liquid alum; the three most effective mixtures were not significantly different from dry alum. Water-extractable P (WEP) was significantly reduced by all of the amendments, three of which resulted in significantly lower WEP than dry alum. The most promising new amendments were mixtures of alum mud, bauxite, and sulfuric acid. The potential impact of these amendments could be enormous because they could be produced for less than half the price of alum while being as effective in reducing NH emissions and P runoff.
Collapse
|
15
|
Huang L, Moore PA, Kleinman PJA, Elkin KR, Savin MC, Pote DH, Edwards DR. Reducing Phosphorus Runoff and Leaching from Poultry Litter with Alum: Twenty-Year Small Plot and Paired-Watershed Studies. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:1413-1420. [PMID: 27380092 DOI: 10.2134/jeq2015.09.0482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Treating poultry litter with alum has been shown to lower ammonia (NH) emissions and phosphorus (P) runoff losses. Two long-term studies were conducted to assess the effects of alum-treated poultry litter on P availability, leaching, and runoff under pasture conditions. From 1995 to 2015, litter was applied annually in a paired watershed study comparing alum-treated and untreated litter and in a small plot study comparing 13 treatments (an unfertilized control, four rates of alum-treated litter, four rates of untreated litter, and four rates of NHNO). In the paired watershed study, total P loads in runoff were 231% higher from pasture receiving untreated litter (1.96 kg P ha) than from that receiving alum-treated litter (0.85 kg P ha). In both studies, alum-treated litter resulted in significantly higher Mehlich III P (M3-P) and lower water-extractable P at the soil surface, reflecting greater retention of applied P and lesser availability of that P to runoff or leaching. In soils fertilized with alum-treated litter, M3-P was much higher when analyzed by inductively coupled argon plasma emission spectrometry than by colorimetry, possibly due to the formation of aluminum phytate. Indeed, alum-treated poultry litter leached less P over the 20-yr study: M3-P at 10 to 50 cm was 266% greater in plots fertilized with untreated litter (331 kg M3-P ha) than with alum-treated litter (124 kg M3-P ha). This research provides compelling evidence that treating poultry litter with alum provides short-term and long-term benefits to P conservation and water quality.
Collapse
|
16
|
Murnane JG, Brennan RB, Healy MG, Fenton O. Use of Zeolite with Alum and Polyaluminum Chloride Amendments to Mitigate Runoff Losses of Phosphorus, Nitrogen, and Suspended Solids from Agricultural Wastes Applied to Grassed Soils. JOURNAL OF ENVIRONMENTAL QUALITY 2015; 44:1674-1683. [PMID: 26436284 DOI: 10.2134/jeq2014.07.0319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Diffuse pollutant losses containing phosphorus (P), nitrogen (N), and suspended solids (SS) can occur when agricultural wastes are applied to soil. This study aimed to mitigate P, N, and SS losses in runoff from grassed soils, onto which three types of agricultural wastes (dairy slurry, pig slurry, and dairy-soiled water [DSW]), were applied by combining amendments of either zeolite and polyaluminum chloride (PAC) with dairy and pig slurries or zeolite and alum with DSW. Four treatments were investigated in rainfall simulation studies: (i) control soil, (ii) agricultural wastes, (iii) dairy and pig slurries amended with PAC and DSW amended with alum, and (iv) dairy and pig slurries amended with zeolite and PAC and DSW amended with zeolite and alum. Our data showed that combined amendments of zeolite and PAC applied to dairy and pig slurries reduced total P (TP) in runoff by 87 and 81%, respectively, compared with unamended slurries. A combined amendment of zeolite and alum applied to DSW reduced TP in runoff by 50% compared with unamended DSW. The corresponding reductions in total N (TN) were 56% for dairy slurry and 45% for both pig slurry and DSW. Use of combined amendments reduced SS in runoff by 73 and 44% for dairy and pig slurries and 25% for DSW compared with unamended controls, but these results were not significantly different from those using chemical amendments only. The findings of this study are that combined amendments of zeolite and either PAC or alum reduce TP and TN losses in runoff to a greater extent than the use of single PAC or alum amendments and are most effective when used with dairy slurry and pig slurry but less effective when used with DSW.
Collapse
|
17
|
McDowell RW, Norris M. The use of alum to decrease phosphorus losses in runoff from grassland soils. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1635-1643. [PMID: 25603249 DOI: 10.2134/jeq2013.12.0479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phosphorus (P) loss from land can impair surface water quality. Aluminum sulfate (alum)-treated, compared with untreated, manure or slurry decreases P loss when applied to land; our hypothesis was that alum may also decrease P loss when directly applied to grassland grazed by dairy cows. A rainfall simulation showed that alum decreased mean concentrations of filterable reactive P (FRP) by 25 to 70% and total P (TP) by 20 to 40%, depending on soil P, Al, and Fe concentration and alum application rate. Using these factors, we predicted that FRP losses would be significantly less from alum-treated grasslands than from untreated grasslands for 70 to 96 d. A 14-mo field trial compared runoff P losses from plots that received 0, 25, and 50 kg Al ha applied within a week of grazing by dairy cattle in spring. Runoff-weighted concentrations (and loads) of FRP and TP decreased in alum-treated plots by 47 to 52% and 25 to 34%, respectively. At US$157 to US$944 kg P mitigated, cost-effectiveness was estimated as medium to low compared with existing strategies for mitigating P loss in dairy farms but could be improved if applied to critical source areas of P loss. However, additional work, such as determining the need for repeat applications, is required before alum can be recommended to decrease P losses from grazed grassland.
Collapse
|
18
|
DeLaune PB, Moore PA. Factors affecting arsenic and copper runoff from fields fertilized with poultry litter. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:1417-1423. [PMID: 25603088 DOI: 10.2134/jeq2013.12.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Arsenic (As) and copper (Cu) runoff from fields fertilized with poultry litter has received increasing attention in recent years, although it is not known if heavy metal runoff from poultry litter poses a significant threat to the environment. The objective of this study was to determine the main factors affecting As and Cu concentrations in runoff water from pastures receiving poultry litter applications. Rainfall simulation studies were conducted to determine the effects of the following treatments on metal runoff: (i) aluminum sulfate (alum) additions, (ii) diet modification using phytase or high available phosphorus corn, (iii) fertilizer type, (iv) poultry litter application rate, and (v) time until the first runoff event occurs after poultry litter application. Results showed that alum additions to poultry litter significantly decreased As and Cu concentrations in runoff water. Copper concentrations were highest in runoff from poultry litter from birds fed phytase diets compared with other diets; however, this effect may have been a result of wet storage conditions rather than diet. Triple superphosphate applications resulted in the lowest heavy metal concentrations in runoff water among all fertilizer treatments, while normal poultry litter resulted in the highest concentrations. Arsenic and Cu concentrations increased in runoff water as poultry litter application rates increased and decreased with increasing time until the first runoff event. These data indicate that adding alum to poultry litter, a cost-effective best management practice, which also results in lower P runoff and ammonia emissions, may also be an effective tool in reducing metal runoff.
Collapse
|
19
|
Metcalf J, Jr PM, Donoghue A, Arsi K, Woo-Ming A, Blore P, Hanning I, Ricke S, Donoghue D. Bacterial Content in Runoff from Simulated Rainfall Applied to Plots Amended with Poultry Litter. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.133.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Seshadri B, Bolan N, Choppala G, Naidu R. Differential effect of coal combustion products on the bioavailability of phosphorus between inorganic and organic nutrient sources. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:817-825. [PMID: 23755844 DOI: 10.1016/j.jhazmat.2013.04.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 04/16/2013] [Accepted: 04/21/2013] [Indexed: 06/02/2023]
Abstract
In farming systems, all the applied phosphorus (P) is not available to plants because they are either adsorbed in soil or lost to the environment through leaching or runoff. The effect of coal combustion products (CCPs) for enhancing the bioavailability of applied phosphorus (P) in soil was examined separately for inorganic (KH2PO4 - PP) and organic (poultry manure - PM) P treatments, where fluidised bed combustion (FBC) ash emerged as the most effective amendment. Greenhouse study was conducted by growing mustard plants on FBC amended soils under leaching and non-leaching setups. The FBC increased the biomass yield for organic P treatments in the first crop and increased for both inorganic and organic P in the second cropping. The increase in cumulative yield was highest in leached PP and unleached PM treatments. Field experiment assessed the effectiveness of FBC on inorganic (single super phosphate - SSP) and organic P (biosolids - BS) uptake by mustard and sunflower plants. In the first cropping, the yield was higher in crops treated with SSP alone. In the second crop, yields were higher in the presence than absence of FBC, as reflected by the high relative agronomic effectiveness (RAE) exhibited by BS+FBC (462%) combination. Overall, FBC used in these experiments enhanced bioavailability of P in soil through adsorption and mineralisation of inorganic and organic P, respectively as evident from phosphatase activity and Olsen P relationship. Hence the differential effect of CCPs has not only decreased the loss of applied P (from inorganic and organic sources) to the environment, but also enhanced the P bioavailability in the soil. Among the three CCPs used in the preliminary experiments, FBC proved to perform better than the other two and hence can be recommended for agricultural and environmental applications targeting P issues.
Collapse
Affiliation(s)
- Balaji Seshadri
- Centre for Environmental Risk Assessment and Remediation, Building-X, University of South Australia, Mawson Lakes, South Australia 5095, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, PO Box 486, Salisbury, South Australia 5106, Australia.
| | | | | | | |
Collapse
|
21
|
Rigby H, Pritchard D, Collins D, Walton K, Penney N. The use of alum sludge to improve cereal production on a nutrient-deficient soil. ENVIRONMENTAL TECHNOLOGY 2013; 34:1359-1368. [PMID: 24191468 DOI: 10.1080/09593330.2012.747037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alum sludge from wastewater treatment was applied at five rates on a phosphorus-deficient sand, and the effects on cereal growth and nutrition were investigated over 2 years. An inorganic fertilizer treatment, reapplied in the second year, was also included. The grain yield for inorganic fertilizer was 44% higher than the control in year 1 and 58% higher in year 2. Alum sludge was an adequate source of nitrogen for crop growth, and supplied sufficient residual nitrogen to meet crop requirements in year 2. However, grain yield in the alum sludge treatment applied at an equivalent available nitrogen rate to the inorganic fertilizer was 62% (year 1) and 69% (year 2) of the yield achieved by the inorganic fertilizer, though greater than the control. No toxic forms of aluminium were detected in the soil at any rate of alum sludge application. Plant shoot tissue analysis indicated that wheat sown in alum sludge-amended soil and the control were phosphorus deficient, whereas phosphorus was adequate in the inorganic fertilizer treatment. There was no evidence of any other nutrient deficiency. Alum sludge amendment resulted in an increase in soil phosphorus; however, further soil analysis indicated that forms of phosphorus present in alum sludge-amended soil may not be available for crop uptake; this is consistent with phosphorus deficiency observed in plant tissue in alum sludge-treated soil. It is suggested that on this nutrient-poor sand, the ability of alum sludge to provide sufficient phosphorus for plant production was limited in the 2 years after application.
Collapse
Affiliation(s)
- Hannah Rigby
- Department of Environment and Agriculture, Curtin University, Perth, Australia.
| | | | | | | | | |
Collapse
|
22
|
Delaune PB, Moore PA. 17β-estradiol in runoff as affected by various poultry litter application strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 444:26-31. [PMID: 23262322 DOI: 10.1016/j.scitotenv.2012.11.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 11/08/2012] [Accepted: 11/13/2012] [Indexed: 06/01/2023]
Abstract
Steroidal hormones, which are excreted by all mammalian species, have received increasing attention in recent years due to potential environmental implications. The objective of this study was to evaluate 17β-estradiol concentrations in runoff water from plots receiving poultry litter applications using various management strategies. Treatments included the effects of 1) aluminum sulfate (alum) application rates to poultry litter; 2) time until the first runoff event occurs after poultry litter application; 3) poultry litter application rate; 4) fertilizer type; and 5) litter from birds fed modified diets. Rainfall simulators were used to cause continuous runoff from fertilized plots. Runoff samples were collected and analyzed for 17β-estradiol concentrations. Results showed that increasing alum additions to poultry litter decreased 17β-estradiol concentrations in runoff water. A significant exponential decline in 17β-estradiol runoff was also observed with increasing time until the first runoff event after litter application. Concentrations of 17β-estradiol in runoff water increased with increasing litter application rate and remained above background concentrations after three runoff events at higher application rates. Management practices such as diet modification and selection of fertilizer type were also shown to affect 17β-estradiol concentrations in runoff water. Although results from these experiments typically represented a worst case scenario since runoff events generally occurred immediately after litter application, the contaminant loss from pastures fertilized with poultry litter can be expected to be much lower than continual estradiol loadings observed from waste water treatment plants. Management practices such as alum amendment and application timing can significantly reduce the risk of 17β-estradiol losses in the environment.
Collapse
Affiliation(s)
- P B Delaune
- Texas A&M AgriLife Research, P.O. Box 1658, Vernon, TX 76385, USA.
| | | |
Collapse
|
23
|
Effect of aluminum sulfate on litter composition and ammonia emission in a single flock of broilers up to 42 days of age. Animal 2013; 6:1322-9. [PMID: 23217236 DOI: 10.1017/s1751731112000158] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
New alternatives are necessary if the environmental impact linked to intensive poultry production is to be reduced, and different litter handling methods should be explored. Among these, acidifying amendments added to poultry litters has been suggested as a management practice to help reduce the potential environmental effect involved in multiple flock cycles. There have been several studies on the use of aluminum sulfate (alum) and its benefits, but almost no data are available under farm conditions in Europe. An experiment with Ross 308 broilers from 1 to 42 days of age was conducted to evaluate the effect of alum on litter composition, the solubility of some mineral elements and NH3 emission during a single flock-rearing period in commercial houses located in southeast Spain. Broilers were placed on clean wood shavings in four commercial houses, containing 20 000 broilers each. Before filling, alum was applied at a rate of 0.25 kg/m2 to the wood shavings of two poultry houses, whereas the remaining two were used as control. Litter from each poultry house was sampled every 3 to 5 days. Ammonia emissions from the poultry houses were monitored from 37 to 42 days of age. In comparison with the control group, alum treatment significantly reduced the pH level of the litter (P < 0.001) with an average difference of 1.32 ± 0.24 units. Alum-treated litter showed, on average, a higher electrical conductivity than the control litter (5.52 v. 3.63 dS/m). The dry matter (DM) and total N and P contents did not show differences between the treatments (P > 0.05). Regarding the NH4 +-N content, alum-treated litter showed a higher value than the untreated litter, with an average difference of 0.16 ± 0.07% (on a DM basis). On average, alum-treated litter had lower water-soluble P, Zn and Cu contents than the untreated litter. Alum noticeably reduced the in-house ammonia concentration (P < 0.001), with an average of 4.8 ppm at 42 days of age (62.9% lower than the control), and ammonia emissions from 37 to 42 days of age were significantly reduced by the alum treatment (P < 0.001), representing a reduction of 73.3%. The lower pH values might have reduced ammonia volatilization from the litter, with a corresponding positive effect on the building environment and poultry health. For these reasons, litter amendment with alum could be recommended as a way of reducing the pollution potential of European broiler facilities during a single flock cycle.
Collapse
|
24
|
Brennan RB, Healy MG, Grant J, Ibrahim TG, Fenton O. Incidental phosphorus and nitrogen loss from grassland plots receiving chemically amended dairy cattle slurry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:132-140. [PMID: 23137978 DOI: 10.1016/j.scitotenv.2012.09.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 09/28/2012] [Accepted: 09/30/2012] [Indexed: 06/01/2023]
Abstract
Chemical amendment of dairy cattle slurry has been shown to effectively reduce incidental phosphorus (P) losses in runoff; however, the effects of amendments on incidental nitrogen (N) losses are not as well documented. This study examined P and N losses in runoff during three simulated rainfall events 2, 10 and 28 days after a single application of unamended/chemically amended dairy cattle slurry. Twenty-five hydraulically isolated plots, each measuring 0.9 m by 0.4 m and instrumented with runoff collection channels, were randomly assigned the following treatments: (i) grass-only, (ii) slurry-only (the study-control), (iii) slurry amended with industrial grade liquid alum comprising 8% Al₂O₃, (iv) slurry amended with industrial grade liquid poly-aluminum chloride (PAC) comprising 10% Al₂O₃, and (v) slurry amended with lime. During the first rainfall event, lime was ineffective but alum and PAC effectively reduced dissolved reactive P (DRP) (by 95 and 98%, respectively) and total P (TP) flow-weighted-mean-concentrations (by 82 and 93%, respectively) in runoff compared to the study-control. However, flow-weighted-mean-concentrations of ammonium-N (NH₄--N) in runoff were increased with alum- (81%) and lime-treated (11%) slurry compared to the study-control whereas PAC reduced the NH₄--N by 82%. Amendments were not observed to have a significant effect on NO₃--N losses during this study. Slurry amendments reduced P losses for the duration of the study, whereas the effect of amendments on N losses was not significant following the first event. Antecedent volumetric water content of the soil or slope of the plots did not appear to affect runoff volume. However, runoff volumes (and consequently loads of P and N) were observed to increase for the chemically amended plots compared to the control and soil-only plots. This work highlights the importance of considering both P and N losses when implementing a specific nutrient mitigation measure.
Collapse
Affiliation(s)
- R B Brennan
- Civil Engineering, National University of Ireland, Galway, Co. Galway, Ireland.
| | | | | | | | | |
Collapse
|
25
|
Vadas PA, Joern BC, Moore PA. Simulating soil phosphorus dynamics for a phosphorus loss quantification tool. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1750-1757. [PMID: 23128732 DOI: 10.2134/jeq2012.0003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pollution of fresh waters by agricultural phosphorus (P) is a water quality concern. Because soils can contribute significantly to P loss in runoff, it is important to assess how management affects soil P status over time, which is often done with models. Our objective was to describe and validate soil P dynamics in the Annual P Loss Estimator (APLE) model. APLE is a user-friendly spreadsheet model that simulates P loss in runoff and soil P dynamics over 10 yr for a given set of runoff, erosion, and management conditions. For soil P dynamics, APLE simulates two layers in the topsoil, each with three inorganic P pools and one organic P pool. It simulates P additions to soil from manure and fertilizer, distribution among pools, mixing between layers due to tillage and bioturbation, leaching between and out of layers, crop P removal, and loss by surface runoff and erosion. We used soil P data from 25 published studies to validate APLE's soil P processes. Our results show that APLE reliably simulated soil P dynamics for a wide range of soil properties, soil depths, P application sources and rates, durations, soil P contents, and management practices. We validated APLE specifically for situations where soil P was increasing from excessive P inputs, where soil P was decreasing due to greater outputs than inputs, and where soil P stratification occurred in no-till and pasture soils. Successful simulations demonstrate APLE's potential to be applied to major management scenarios related to soil P loss in runoff and erosion.
Collapse
|
26
|
Chiang LC, Chaubey I, Hong NM, Lin YP, Huang T. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012. [PMID: 23202767 PMCID: PMC3506419 DOI: 10.3390/ijerph9103654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring litter application, optimum grazing management and filter strip with a VFS ratio of 42 could be a promising alternative for use in mitigating future climate change.
Collapse
Affiliation(s)
- Li-Chi Chiang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan; (L.-C.C.); (T.H.)
| | - Indrajeet Chaubey
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street West Lafayette, IN 47907, USA;
| | - Nien-Ming Hong
- Environment and Energy Management Center, Overseas Chinese University, No. 100, Chiao Kwang Road, Taichung 407, Taiwan;
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan; (L.-C.C.); (T.H.)
- Author to whom correspondence should be addressed; ; Tel./Fax: +886-2-336-634-67
| | - Tao Huang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, 1, Section 4, Roosevelt Road, Da-an District, Taipei City 106, Taiwan; (L.-C.C.); (T.H.)
| |
Collapse
|
27
|
Sen S, Srivastava P, Vadas PA, Kalin L. Watershed-level comparison of predictability and sensitivity of two phosphorus models. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1642-1652. [PMID: 23099956 DOI: 10.2134/jeq2011.0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Buildup of phosphorus (P) in agricultural soils and transport of P to nearby surface waters due to excessive, long-term application of poultry litter is an environmental concern in many poultry-producing states. Watershed models are often used to quantify soil and water quality impacts of poultry litter applications. However, depending on how P transport is simulated in watershed models, the anticipated impact could be quite different. The objective of this study was to determine the predictability and sensitivity of the Soil and Water Assessment Tool (SWAT) P model and a newly developed, state-of-the-art manure P model called SurPhos in a poultry litter-applied pasture watershed. A small, predominantly agricultural watershed in Randolph County, Alabama was used for this study. The SWAT model, calibrated for surface runoff and total stream flows (Nash-Sutcliffe coefficient of 0.70 for both), was used to provide runoff inputs to the SurPhos model. Total dissolved P (TDP) exports simulated by the SWAT P and SurPhos models from the hay hydrological response units of the watershed were compared for different poultry litter application rates and different initial soil Solution P levels. Both models showed sensitivity to poultry litter application rates, with SWAT simulating linear and SurPhos simulating nonlinear increases in TDP exports with increase in poultry litter application rates. SWAT showed greater sensitivity to initial soil Solution P levels, which can lead to overestimation of TDP exports, especially at low poultry litter application rates. As opposed to the SurPhos model simulations and contrary to recent studies, SWAT simulated excessive accumulation of Solution P in the top 10 mm of soil. Because SurPhos appears to simulate P transport and build-up processes from manure-applied areas more accurately, this study suggests that SWAT be replaced by SurPhos to more accurately determine watershed-level effectiveness of P management measures.
Collapse
Affiliation(s)
- Sumit Sen
- Department of Hdrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | | | | | | |
Collapse
|
28
|
McDowell RW, Nash D. A review of the cost-effectiveness and suitability of mitigation strategies to prevent phosphorus loss from dairy farms in New Zealand and Australia. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:680-693. [PMID: 22565250 DOI: 10.2134/jeq2011.0041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The loss of phosphorus (P) from land to water is detrimental to surface water quality in many parts of New Zealand and Australia. Farming, especially pasture-based dairying, can be a source of P loss, but preventing it requires a range of fully costed strategies because little or no subsidies are available and the effectiveness of mitigation strategies varies with different farm management systems, topography, stream density, and climate. This paper reviews the cost-effectiveness of mitigation strategies for New Zealand and Australian dairy farms, grouping strategies into (i) management (e.g., decreasing soil test P, fencing streams off from stock, or applying low-water-soluble P fertilizers), (ii) amendments (e.g., alum or red mud [Bauxite residue]), and (iii) edge-of-field mitigations (e.g., natural or constructed wetlands). In general, on-farm management strategies were the most cost-effective way of mitigating P exports (cost range, $0 to $200 per kg P conserved). Amendments, added to tile drains or directly to surface soil, were often constrained by supply or were labor intensive. Of the amendments examined, red mud was cost effective where cost was offset by improved soil physical properties. Edge-of-field strategies, which remove P from runoff (i.e., wetlands) or prevent runoff (i.e., irrigation runoff recycling systems), were generally the least cost effective, but their benefits in terms of improved overall resource efficiency, especially in times of drought, or their effect on other contaminants like N need to be considered. By presenting a wide range of fully costed strategies, and understanding their mechanisms, a farmer or farm advisor is able to choose those that suit their farm and maintain profitability. Further work should examine the potential for targeting strategies to areas that lose the most P in time and space to maximize the cost-effectiveness of mitigation strategies, quantify the benefits of multiple strategies, and identify changes to land use that optimize overall dairy production, but minimize catchment scale, as versus farm scale, nutrient exports.
Collapse
|
29
|
McLaughlin MR, Brooks JP, Adeli A, Tewolde H. Nutrients and bacteria in common contiguous Mississippi soils with and without broiler litter fertilization. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1322-1331. [PMID: 21712602 DOI: 10.2134/jeq2010.0402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In Mississippi, spent poultry litter is used as fertilizer. Nutrient and bacterial levels in litter and nutrient levels in litter-fertilized (L+) soil are known, but less is known of bacterial levels in L+ soil. This study compared contiguous L+ and non-litter-fertilized (L-) soils comprising 15 soil types on five farms in April through May 2009. Levels of pH; NO-N; and Mehlich-3-extractable (M3) and water-extractable (WE) P, Ca, K, and Cu were higher in L+ than in L- soil. Total C; total N; NH-N; and M3 and WE Na, Fe, and Zn did not differ in L+ and L- soil. Bacterial levels were higher in 0- to 5-cm than in 5- to 10-cm cores. Levels were higher in L+ than in L- soil for culturally determined heterotrophic plate counts and staphylococci and were lower for total bacteria estimated by quantitative polymerase chain reaction (qPCR) of 16S rRNA, but cultural levels of thermotolerant coliforms, , , and enterococci were not different. Cultural presence/absence (CPA) tests and qPCR for spp., spp., and spp. detected only spp., which did not differ in L+ (CPA = 77% positive samples; mean qPCR = 0.65 log genomic units [gu] g) and L- (CPA = 70% positive samples; mean qPCR = 0 log gu g) soils. Litter applications were associated with higher levels of pH, P, Cu, heterotrophic plate counts, and staphylococci. Fecal indicator and enteric pathogen levels were not affected. We conclude that, although some litter-derived nutrients and bacteria persisted between growing seasons in L+ soils, enteric pathogens did not.
Collapse
|
30
|
ZHANG HF, JIAO HC, SONG ZG, LIN H. Effect of Alum-Amended Litter and Stocking Density on Ammonia Release and Footpad and Hock Dermatitis of Broilers. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60062-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Xin H, Gates R, Green A, Mitloehner F, Moore P, Wathes C. Environmental impacts and sustainability of egg production systems. Poult Sci 2011; 90:263-77. [DOI: 10.3382/ps.2010-00877] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Makris KC, Sarkar D, Salazar J, Punamiya P, Datta R. Alternative amendment for soluble phosphorus removal from poultry litter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:195-202. [PMID: 19340471 DOI: 10.1007/s11356-009-0132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants. MATERIALS AND METHODS We set up batch and incubation experiments to determine: (1) the effect of WTR amendment rates on PL water-extractable P (WEP) concentrations and (2) the effects of incubation time, pH, and temperature on WEP concentrations of WTR-amended PL. RESULTS Removal of PL-soluble P by the WTR was biphasic, showing an initial fast reaction (60% removal within 10 min) followed by a slower reaction that was completed within 12 days (90% removal). Phosphorus removal by the WTR was unaffected by pH changes in the range of 3-8. Incubation experiments showed that all WTR rates (2.5-15 wt.%) significantly (p < 0.001) lowered WEP concentrations in PL to approximately 40% of the unamended PL (no WTR) at 23 degrees C. DISCUSSION Minimal reduction (20% of the unamended PL) in WEP concentrations for all WTR rates were observed up to 18 days, possibly due to P diffusion limitations. Increasing the temperature to 35 degrees C resulted in overcoming such diffusion limitations by increasing P removal rate of reaction. CONCLUSIONS Assuming year-round availability of adequate quantities in nearby drinking-water treatment plants, WTR may be a cost-effective treatment to reduce P availability in poultry litter. RECOMMENDATIONS AND PERSPECTIVES Field experiments are greatly needed in order to demonstrate the excellent performance of WTR in this laboratory-based study to remove soluble P concentrations in animal waste.
Collapse
Affiliation(s)
- Konstantinos C Makris
- International Institute for the Environment and Public Health in association with Harvard School of Public Health, Nicosia, 1105, Cyprus.
| | | | | | | | | |
Collapse
|
33
|
Guo M, Song W. Nutrient value of alum-treated poultry litter for land application. Poult Sci 2009; 88:1782-92. [DOI: 10.3382/ps.2008-00404] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Vadas PA, Good LW, Moore PA, Widman N. Estimating phosphorus loss in runoff from manure and fertilizer for a phosphorus loss quantification tool. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:1645-1653. [PMID: 19549941 DOI: 10.2134/jeq2008.0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nonpoint-source pollution of fresh waters by P is a concern because it contributes to accelerated eutrophication. Given the state of the science concerning agricultural P transport, a simple tool to quantify annual, field-scale P loss is a realistic goal. We developed new methods to predict annual dissolved P loss in runoff from surface-applied manures and fertilizers and validated the methods with data from 21 published field studies. We incorporated these manure and fertilizer P runoff loss methods into an annual, field-scale P loss quantification tool that estimates dissolved and particulate P loss in runoff from soil, manure, fertilizer, and eroded sediment. We validated the P loss tool using independent data from 28 studies that monitored P loss in runoff from a variety of agricultural land uses for at least 1 yr. Results demonstrated (i) that our new methods to estimate P loss from surface manure and fertilizer are an improvement over methods used in existing Indexes, and (ii) that it was possible to reliably quantify annual dissolved, sediment, and total P loss in runoff using relatively simple methods and readily available inputs. Thus, a P loss quantification tool that does not require greater degrees of complexity or input data than existing P Indexes could accurately predict P loss across a variety of management and fertilization practices, soil types, climates, and geographic locations. However, estimates of runoff and erosion are still needed that are accurate to a level appropriate for the intended use of the quantification tool.
Collapse
Affiliation(s)
- P A Vadas
- USDA-ARS, U.S. Dairy Forage Research Center, 1925 Linden Dr. West, Madison, WI 53706. USA.
| | | | | | | |
Collapse
|
35
|
Effect of Alum and Liquid Alum on pH, EC, Moisture, Ammonium and Soluble Phosphorus Contents in Poultry Litter During Short Term: a Laboratory Experiment. J Poult Sci 2009. [DOI: 10.2141/jpsa.46.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Warren JG, Penn CJ, McGrath JM, Sistani K. The impact of alum addition on organic P transformations in poultry litter and litter-amended soil. JOURNAL OF ENVIRONMENTAL QUALITY 2008; 37:469-476. [PMID: 18268310 DOI: 10.2134/jeq2007.0239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation. However, recent studies suggest that alum additions to poultry litter may influence organic P mineralization. Therefore, alum-treated and untreated litters were incubated for 93 d to assess organic P transformations during simulated storage. A 62-d soil incubation was also conducted to determine the fate of incorporated litter organic P, which included alum-treated litter, untreated litter, KH(2)PO(4) applied at 60 mg P kg(-1) of soil, and an unamended control. Liquid-state (31)P nuclear magnetic resonance indicated that phytic acid was the only organic P compound present, accounting for 50 and 45% of the total P in untreated and alum-treated litters, respectively, before incubation and declined to 9 and 37% after 93 d of storage-simulating incubation. Sequential fractionation of litters showed that alum addition to litter transformed 30% of the organic P from the 1.0 mol L(-1) HCl to the 0.1 mol L(-1) NaOH extractable fraction and that both organic P fractions were more persistent in alum-treated litter compared with untreated litter. The soil incubation revealed that 0.1 mol L(-1) NaOH-extractable organic P was more recalcitrant after mixing than was the 1.0 mol L(-1) HCl-extractable organic P. Thus, adding alum to litter inhibits organic P mineralization during storage and promotes the formation of alkaline extractable organic P that sustains lower P solubility in the soil environment.
Collapse
Affiliation(s)
- Jason G Warren
- Animal Waste Management Research Unit, USDA-ARS, Bowling Green, KY 42104, USA.
| | | | | | | |
Collapse
|