1
|
Retter A, Griebler C, Nilsson RH, Haas J, Birk S, Breyer E, Baltar F, Karwautz C. Metabarcoding reveals ecologically distinct fungal assemblages in river and groundwater along an Austrian alpine to lowland gradient. FEMS Microbiol Ecol 2024; 100:fiae139. [PMID: 39390678 PMCID: PMC11523079 DOI: 10.1093/femsec/fiae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/04/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024] Open
Abstract
Biodiversity, the source of origin, and ecological roles of fungi in groundwater are to this day a largely neglected field in fungal and freshwater ecology. We used DNA-based Illumina high-throughput sequence analysis of both fungal gene markers 5.8S and internal transcribed spacers region 2 (ITS2), improving taxonomic classification. This study focused on the groundwater and river mycobiome along an altitudinal and longitudinal transect of a pre-alpine valley in Austria in two seasons. Using Bayesian network modeling approaches, we identified patterns in fungal community assemblages that were mostly shaped by differences in landscape (climatic, topological, and geological) and environmental conditions. While river fungi were comparatively more diverse, unique fungal assemblages could be recovered from groundwater, including typical aquatic lineages such as Rozellomycota and Olpidiomycota. The most specious assemblages in groundwater were not linked to the input of organic material from the surface, and as such, seem to be sustained by characteristic groundwater conditions. Based on what is known from closely related fungi, our results suggest that the present fungal communities potentially contribute to mineral weathering, carbon cycling, and denitrification in groundwater. Furthermore, we were able to observe the effects of varying land cover due to agricultural practices on fungal biodiversity in groundwater ecosystems. This study contributes to improving our understanding of fungi in the subsurface aquatic biogeosphere.
Collapse
Affiliation(s)
- Alice Retter
- Leibniz Institute for Freshwater Ecology and Inland Fisheries, IGB, Zur alten Fischerhuette 2, 16775 Neuglobsow, Germany
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - R Henrik Nilsson
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 40530 Göteborg, Sweden
| | - Johannes Haas
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Steffen Birk
- Department of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Eva Breyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- College of Oceanography and Ecological Science, Shanghai Ocean University, 1104 Pingliang Rd, Yangpu District, 200082 Shanghai, China
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
2
|
Knüsel M, Alther R, Altermatt F. Terrestrial land use signals on groundwater fauna beyond current protection buffers. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024:e3040. [PMID: 39424409 DOI: 10.1002/eap.3040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/10/2024] [Indexed: 10/21/2024]
Abstract
Terrestrial and aquatic ecosystems are tightly linked, with direct implications for applied resource management and conservation. It is well known that human land use change and intensification of terrestrial systems can have large impacts on surface freshwater ecosystems. Contrastingly, the study and understanding of such land use impacts on groundwater communities is lagging behind. Both the impact strength of land use on groundwater communities and the spatial extents at which such interlinkages are operating are largely unknown, despite our reliance on groundwater for drinking water extraction as a key ecosystem service. Here, we analyzed groundwater amphipod occurrence from several hundred shallow groundwater aquifers used for drinking water extraction across a region of varying agricultural intensity and human population density in Switzerland. Despite drinking water extraction sites being generally built at locations with expected minimal aboveground impacts on water quality, we found a direct correlation between land use type and intensity within the surrounding catchment area and the locally measured nitrate concentrations, which is a direct proxy for drinking water quality. Furthermore, groundwater amphipods were more likely to be found at sites with higher forest coverage than at sites with higher crop and intensive pasture coverages, clearly indicating a tight connection between aboveground land use and groundwater biodiversity. Our results indicate that land use type effects on groundwater communities are most relevant and pronounced to spatial scales of about 400-1000 m around the groundwater sampling site. Importantly, the here identified spatial scale is 1.2- to 3-fold exceeding the average extent of currently defined groundwater protection zones. We postulate that incorporating an ecosystem perspective into groundwater management strategies is needed for effective protection of groundwater quality and biodiversity.
Collapse
Affiliation(s)
- Mara Knüsel
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Roman Alther
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Korbel KL, Hose GC. Monitoring Groundwater Health Using Citizen Scientists in Semi-Arid Regional Australia. GROUND WATER 2024. [PMID: 38572675 DOI: 10.1111/gwat.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/02/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
Citizen science (CS) around the world is undergoing a resurgence, potentially due to the utilization of new technologies and methods to capture information, such as data and photo entry via mobile phone apps. CS has been used in aquatic ecology for several decades, however the use of volunteers to collect data in groundwaters has rarely occurred. Groundwater research, particularly groundwater ecosystems, is unevenly distributed across the world, limiting our knowledge of these ecosystems and their functions. Here, we engaged six volunteer farmers in semi-arid region of north-western New South Wales, Australia to participate in an assessment of groundwater health using privately owned wells. Volunteers were supplied with sampling kits and instructions on sampling methods. Data retrieved indicated the health of the groundwater ecosystems, simultaneously providing information on water quality and groundwater biota present within the farm aquifers. Diverse stygofauna were collected from the trial, which reflected historical records of stygofauna within the same catchment indicating the viability of using citizen scientist for data collection. The citizen science project not only aided the collection of data and assessment of groundwater health, but also provided a tool for education, attracting media attention which furthered the education to a national audience. The amount of data still required to understand groundwater ecosystems, combined with the urgency to manage these environments, suggests that citizen scientists may complement the efforts of scientists around the globe to establish the impacts and consequences of human activities on this resource.
Collapse
Affiliation(s)
- Kathryn L Korbel
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Grant C Hose
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Watson SJ, Arisdakessian C, Petelo M, Keliipuleole K, Tachera DK, Okuhata BK, Dulai H, Frank KL. Geology and land use shape nitrogen and sulfur cycling groundwater microbial communities in Pacific Island aquifers. ISME COMMUNICATIONS 2023; 3:58. [PMID: 37286627 PMCID: PMC10247779 DOI: 10.1038/s43705-023-00261-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Resource-constrained island populations have thrived in Hawai'i for over a millennium, but now face aggressive new challenges to fundamental resources, including the security and sustainability of water resources. Characterizing the microbial community in groundwater ecosystems is a powerful approach to infer changes from human impacts due to land management in hydrogeological complex aquifers. In this study, we investigate how geology and land management influence geochemistry, microbial diversity and metabolic functions. We sampled a total of 19 wells over 2-years across the Hualālai watershed of Kona, Hawai'i analyzing geochemistry, and microbial communities by 16S rRNA amplicon sequencing. Geochemical analysis revealed significantly higher sulfate along the northwest volcanic rift zone, and high nitrogen (N) correlated with high on-site sewage disposal systems (OSDS) density. A total of 12,973 Amplicon Sequence Variants (ASV) were identified in 220 samples, including 865 ASVs classified as putative N and sulfur (S) cyclers. The N and S cyclers were dominated by a putative S-oxidizer coupled to complete denitrification (Acinetobacter), significantly enriched up to 4-times comparatively amongst samples grouped by geochemistry. The significant presence of Acinetobacter infers the bioremediation potential of volcanic groundwater for microbial-driven coupled S-oxidation and denitrification providing an ecosystem service for island populations dependent upon groundwater aquifers.
Collapse
Affiliation(s)
- Sheree J Watson
- University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA
| | - Cédric Arisdakessian
- University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA
- University of Hawai'i at Mānoa, Department of Information and Computer Sciences, Honolulu, HI, USA
| | - Maria Petelo
- University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA
| | - Kekuʻiapōiula Keliipuleole
- University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA
- University of Hawai'i at Mānoa, Marine Biology Graduate Program, Honolulu, HI, USA
| | - Diamond K Tachera
- University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA
| | - Brytne K Okuhata
- University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA
| | - Henrietta Dulai
- University of Hawai'i at Mānoa, Department of Earth Sciences, Honolulu, HI, USA
| | - Kiana L Frank
- University of Hawai'i at Mānoa, Pacific Biosciences Research Center, Honolulu, HI, USA.
| |
Collapse
|
5
|
Couton M, Hürlemann S, Studer A, Alther R, Altermatt F. Groundwater environmental DNA metabarcoding reveals hidden diversity and reflects land-use and geology. Mol Ecol 2023. [PMID: 37067032 DOI: 10.1111/mec.16955] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/18/2023]
Abstract
Despite being the most important source of liquid freshwater on the planet, groundwater is severely threatened by climate change, agriculture, or industrial mining. It is thus extensively monitored for pollutants and declines in quantity. The organisms living in groundwater, however, are rarely the target of surveillance programmes and little is known about the fauna inhabiting underground habitats. The difficulties accessing groundwater, the lack of expertise, and the apparent scarcity of these organisms challenge sampling and prohibit adequate knowledge on groundwater fauna. Environmental DNA (eDNA) metabarcoding provides an approach to overcome these limitations but is largely unexplored. Here, we sampled water in 20 communal spring catchment boxes used for drinking water provisioning in Switzerland, with a high level of replication at both filtration and amplification steps. We sequenced a portion of the COI mitochondrial gene, which resulted in 4917 ASVs, yet only 3% of the reads could be assigned to a species, genus, or family with more than 90% identity. Careful evaluation of the unassigned reads corroborated that these sequences were true COI sequences belonging mostly to diverse eukaryotic groups, not present in the reference databases. Principal component analyses showed a strong correlation of the community composition with the surface land-use (agriculture vs. forest) and geology (fissured rock vs. unconsolidated sediment). While incomplete reference databases limit the assignment of taxa in groundwater eDNA metabarcoding, we showed that taxonomy-free approaches can reveal large hidden diversity and couple it with major land-use drivers, revealing their imprint on chemical and biological properties of groundwater.
Collapse
Affiliation(s)
- Marjorie Couton
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Samuel Hürlemann
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Angela Studer
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Roman Alther
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Florian Altermatt
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Retter A, Haas JC, Birk S, Stumpp C, Hausmann B, Griebler C, Karwautz C. From the Mountain to the Valley: Drivers of Groundwater Prokaryotic Communities along an Alpine River Corridor. Microorganisms 2023; 11:microorganisms11030779. [PMID: 36985351 PMCID: PMC10055094 DOI: 10.3390/microorganisms11030779] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Rivers are the “tip of the iceberg”, with the underlying groundwater being the unseen freshwater majority. Microbial community composition and the dynamics of shallow groundwater ecosystems are thus crucial, due to their potential impact on ecosystem processes and functioning. In early summer and late autumn, samples of river water from 14 stations and groundwater from 45 wells were analyzed along a 300 km transect of the Mur River valley, from the Austrian alps to the flats at the Slovenian border. The active and total prokaryotic communities were characterized using high-throughput gene amplicon sequencing. Key physico-chemical parameters and stress indicators were recorded. The dataset was used to challenge ecological concepts and assembly processes in shallow aquifers. The groundwater microbiome is analyzed regarding its composition, change with land use, and difference to the river. Community composition and species turnover differed significantly. At high altitudes, dispersal limitation was the main driver of groundwater community assembly, whereas in the lowland, homogeneous selection explained the larger share. Land use was a key determinant of the groundwater microbiome composition. The alpine region was more diverse and richer in prokaryotic taxa, with some early diverging archaeal lineages being highly abundant. This dataset shows a longitudinal change in prokaryotic communities that is dependent on regional differences affected by geomorphology and land use.
Collapse
Affiliation(s)
- Alice Retter
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Wien, Austria
| | | | - Steffen Birk
- Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, 8010 Graz, Austria
| | - Christine Stumpp
- Institute of Soil Physics and Rural Water Management, University of Natural Resources and Life Sciences (BOKU), 1180 Wien, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1030 Wien, Austria
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Wien, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Wien, Austria
| | - Clemens Karwautz
- Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Wien, Austria
- Correspondence:
| |
Collapse
|
7
|
Lithology and disturbance drive cavefish and cave crayfish occurrence in the Ozark Highlands ecoregion. Sci Rep 2022; 12:19559. [PMID: 36379975 PMCID: PMC9666451 DOI: 10.1038/s41598-022-21791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Diverse communities of groundwater-dwelling organisms (i.e., stygobionts) are important for human wellbeing; however, we lack an understanding of the factors driving their distributions, making it difficult to protect many at-risk species. Therefore, our study objective was to determine the landscape factors related to the occurrence of cavefishes and cave crayfishes in the Ozark Highlands ecoregion, USA. We sampled cavefishes and cave crayfishes at 61 sampling units using both visual and environmental DNA surveys. We then modeled occurrence probability in relation to lithology and human disturbance while accounting for imperfect detection. Our results indicated that occurrence probability of cave crayfishes was negatively associated with human disturbance, whereas there was a weak positive relationship between cavefish occurrence and disturbance. Both cavefishes and cave crayfishes were more likely to occur in limestone rather than dolostone lithology. Our results indicate structuring factors are related to the distribution of these taxa, but with human disturbance as a prevalent modifier of distributions for cave crayfishes. Limiting human alteration near karst features may be warranted to promote the persistence of some stygobionts. Moreover, our results indicate current sampling efforts are inadequate to detect cryptic species; therefore, expanding sampling may be needed to develop effective conservation actions.
Collapse
|
8
|
Korbel KL, Greenfield P, Hose GC. Agricultural practices linked to shifts in groundwater microbial structure and denitrifying bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150870. [PMID: 34627912 DOI: 10.1016/j.scitotenv.2021.150870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Irrigation enhances the connectivity between the surface and groundwater by facilitating the transport of energy sources and oxygen. When combined with fertilisers, the impact on groundwater microbial communities and their interactions with nitrogen cycling in aquifers is poorly understood. This study examines the impact of different landuses (irrigated and non-irrigated) on groundwater microbial communities. A total of 38 wells accessing shallow aquifers in three sub-catchments of the Murray Darling Basin, Australia, were sampled for water chemistry and microbial community structure using environmental DNA (eDNA) techniques. All sub-catchments showed evidence of intense irrigation and groundwater contamination with total nitrogen, nitrates and phosphorus concentrations often well above background, with total nitrogen concentrations up to 70 mg/L and nitrate concentration up to 18 mg/L. Across sub-catchments there was high microbial diversity, with differences in community structure and function between catchments and landuses. Of the 1100 operational taxonomic units (OTUs) recorded, 47 OTUs were common across catchments with species from Woesearchaeota, Nitrospirales, Nitrosopumilales and Acidobacter taxonomic groups contributing greatly to groundwater microbial communities. Within non-irrigated sites, groundwaters contained similar proportions of nitrifying and denitrifying capable taxa, whereas irrigated sites had significantly higher abundances of microbes with nitrifying rather than denitrifying capabilities. Microbial diversity was lower in irrigated sites in the Macquarie catchment. These results indicate that irrigated landuses impact microbial community structure and diversity within groundwaters and suggest that the ratios of denitrifying to nitrifying capable microbes as well as specific orders (e.g., Nitrososphaerales) may be useful to indicate long-term nitrogen contamination of groundwaters. Such research is important for understanding the biogeochemical processes that are key predictors of redox state and contamination of groundwater by N species and other compounds. This will help to predict human impacts on groundwater microbial structure, diversity, and ecosystem functions, aiding the long-term management groundwater resources.
Collapse
Affiliation(s)
- K L Korbel
- Department of Biological Sciences, Macquarie University, Australia.
| | | | - G C Hose
- Department of Biological Sciences, Macquarie University, Australia
| |
Collapse
|
9
|
Lehosmaa K, Muotka T, Pirttilä AM, Jaakola I, Rossi PM, Jyväsjärvi J. Bacterial communities at a groundwater-surface water ecotone: gradual change or abrupt transition points along a contamination gradient? Environ Microbiol 2021; 23:6694-6706. [PMID: 34382316 DOI: 10.1111/1462-2920.15708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/04/2023]
Abstract
Microbial communities contribute greatly to groundwater quality, but the impacts of land-use practices on bacteria in groundwaters and groundwater-dependent ecosystems remain poorly known. With 16S rRNA gene amplicon sequencing, we assessed bacterial community composition at the groundwater-surface water ecotone of boreal springs impacted by urbanization and agriculture, using spring water nitrate-N as a surrogate of contamination. We also measured the rate of a key ecosystem process, organic matter decomposition. We documented a recurrent pattern across all major bacterial phyla where diversity started to decrease at unexpectedly low nitrate-N concentrations (100-300 μg L-1 ). At 400 NO3 - -N μg L-1 , 25 bacterial exact sequence variants showed a negative response, resulting in a distinct threshold in bacterial community composition. Chthonomonas, Acetobacterales and Hyphomicrobium were the most sensitive taxa, while only three taxa (Duganella, Undibacterium and Thermoanaerobaculaceae) were enriched due to increased contamination. Decomposition rate responded unimodally to increasing nitrate-N concentration, with a peak rate at ~400 NO3 - -N μg L-1 , parallelly with a major shift in bacterial community composition. Our results emphasize the utility of bacterial communities in the assessment of groundwater-dependent ecosystems. They also call for a careful reconsideration of threshold nitrate values for defining groundwater ecosystem health and protecting their microbial biodiversity.
Collapse
Affiliation(s)
- Kaisa Lehosmaa
- Ecology and Genetics Research Unit, University of Oulu, Oulu, FI-90014, Finland
| | - Timo Muotka
- Ecology and Genetics Research Unit, University of Oulu, Oulu, FI-90014, Finland
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Oulu, FI-90014, Finland
| | - Iikka Jaakola
- Ecology and Genetics Research Unit, University of Oulu, Oulu, FI-90014, Finland
| | - Pekka M Rossi
- Water, Energy and Environmental Engineering Research Group, University of Oulu, Oulu, FI-90014, Finland
| | - Jussi Jyväsjärvi
- Ecology and Genetics Research Unit, University of Oulu, Oulu, FI-90014, Finland
| |
Collapse
|
10
|
Di Lorenzo T, Fiasca B, Di Cicco M, Galassi DMP. The impact of nitrate on the groundwater assemblages of European unconsolidated aquifers is likely less severe than expected. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11518-11527. [PMID: 33128152 DOI: 10.1007/s11356-020-11408-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this study, we analyzed the structure of the stygobiotic copepod assemblages of an unconsolidated European aquifer (VO), in southern Italy, that has been subject to persistent nitrate contamination for over 15 years. To this end, we monitored 25 bores where groundwater was contaminated only by nitrate, and no other chemical pollutants were reported as being above detection limits from 2009 to 2014. We monitored these bores three times, namely in autumn 2014 and in spring and autumn 2015. We expected that the chronic exposure to high nitrate concentrations had a significant and evident impact on the stygobiotic copepod assemblages. Unexpectedly, the assemblages were highly diversified. The stygobiotic species richness (SSR) accounted 17 species, a value that exceeded the European mean value (SSR = 12 species). However, the species density was only 0.6 species/km2, lower than the European mean value (= 1.6 species/km2). Moreover, the juvenile copepods were numerically less abundant than the adults and the biomass-abundance model showed signs of alteration of the structure of the copepod assemblages. This study highlighted that (i) nitrates, even at high concentrations, probably have a less severe impact on groundwater assemblages of unconsolidated aquifers than expected and (ii) the analysis of population traits and biomasses can detect signs of alteration of these assemblages that would, otherwise, not be visible from the analysis of the sole species richness and abundances.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Research Institute on Terrestrial Ecosystems of the Italian National Research Council (IRET-CNR), Via Madonna del Piano 10, 50019, Florence, Sesto Fiorentino, Italy.
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Mattia Di Cicco
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio 1, Coppito, 67100, L'Aquila, Italy
| |
Collapse
|
11
|
Inferences of environmental and biotic effects on patterns of eukaryotic alpha and beta diversity for the spring systems of Ash Meadows, Nevada. Oecologia 2019; 191:931-944. [PMID: 31628545 DOI: 10.1007/s00442-019-04526-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Freshwater springs are important ecosystems. In the arid regions of North America, groundwater extraction has caused the desiccation of springs and the extinction of taxa. To better describe the biodiversity of freshwater springs in the hope of establishing a sensitive approach for monitoring the predicted change in spring systems, we used high-resolution genetic methods to estimate the alpha and beta diversity of 19 springs and two reservoirs within the Ash Meadows National Wildlife Refuge in southwestern Nevada. We discovered a large number of distinct taxa based on eukaryote ribosomal gene sequences and show water temperature, spring size, and the presence or absence of non-native predators predicts alpha diversity, and temperature predicts beta diversity. Our study highlights how DNA data support inferences of environmental factors influencing community diversity and demonstrates the method may be an important tool for monitoring ecological communities.
Collapse
|
12
|
Matthews EF, Abrams KM, Cooper SJB, Huey JA, Hillyer MJ, Humphreys WF, Austin AD, Guzik MT. Scratching the surface of subterranean biodiversity: Molecular analysis reveals a diverse and previously unknown fauna of Parabathynellidae (Crustacea: Bathynellacea) from the Pilbara, Western Australia. Mol Phylogenet Evol 2019; 142:106643. [PMID: 31622741 DOI: 10.1016/j.ympev.2019.106643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 11/24/2022]
Abstract
Like other crustacean families, the Parabathynellidae is a poorly studied subterranean and aquatic (stygobiontic) group in Australia, with many regions of available habitat having not yet been surveyed. Here we used a combined approach of molecular species delimitation methods, applied to mitochondrial and nuclear genetic data, to identify putative new species from material obtained from remote subterranean habitats in the Pilbara region of Western Australia. Based on collections from these new localities, we delineated a minimum of eight and up to 24 putative new species using a consensus from a range of molecular delineation methods and additional evidence. When we placed our new putative species into the broader phylogenetic framework of Australian Parabathynellidae, they grouped with two known genera and also within one new and distinct Pilbara-only clade. These new species significantly expand the known diversity of Parabathynellidae in that they represent a 22% increase to the 109 currently recognised species globally. Our investigations showed that sampling at new localities can yield extraordinary levels of new species diversity, with the majority of species showing likely restricted endemic geographical ranges. These findings represent only a small sample from a region comprising less than 2.5% of the Australian continent.
Collapse
Affiliation(s)
- Emma F Matthews
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| | - Kym M Abrams
- Terrestrial Zoology and Molecular Systematics Unit, Western Australian Museum, Welshpool, WA 6111, Australia; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia.
| | - Steven J B Cooper
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, SA 5005, Australia; Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.
| | - Joel A Huey
- Terrestrial Zoology and Molecular Systematics Unit, Western Australian Museum, Welshpool, WA 6111, Australia; School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia; School of Natural Sciences, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - Mia J Hillyer
- Terrestrial Zoology and Molecular Systematics Unit, Western Australian Museum, Welshpool, WA 6111, Australia.
| | - William F Humphreys
- School of Biological Science, University of Western Australia, Crawley, WA 6009, Australia; Western Australian Museum, Welshpool DC, Western Australia, 6986, Australia
| | - Andrew D Austin
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| | - Michelle T Guzik
- Australian Centre for Evolutionary Biology and Biodiversity, School of Biological Sciences, The University of Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
The Study of Hydrogeochemical Environments and Microbial Communities along a Groundwater Salinity Gradient in the Pearl River Delta, China. WATER 2019. [DOI: 10.3390/w11040804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The salinization of groundwater is an issue in coastal areas because it causes the deterioration of freshwater resources, significantly impacting human livelihoods and ecosystems. This study integrated isotopic geochemical measurements with high-throughput sequencing of 16S rRNA gene amplicons to evaluate the source of groundwater salinity and the influence of hydrogeochemical variations on microbial communities under different salinity gradients in the Pearl River Delta of China. Results showed that the groundwater salinity in this area varied from fresh water in the inland area to brackish water, and then to saline water close to the southeast shoreline. The major ions (Na+, K+, Ca2+, Mg2+, Cl−, NO3−, SO42−, and HCO3−) and isotope analyses (2H, 3H, 18O, and 14C) indicated that the groundwater in the confined aquifer was recharged by local precipitation and seawater. A further 14C analysis showed that the salinity of the groundwater was likely attributed to the Holocene transgression. Analysis of the microbial community showed that γ-proteobacteria were frequently observed in all the groundwater samples, while the other main microbial community at class level varied greatly, from β-proteobacteria in the freshwater wells to ε-proteobacteria in the brackish wells and to Bacilli in the saline wells. Exiguobacterium and Acinetobacter were dominant in saline water and the brackish water sample of Q144, while Sulfuricurvum dominated in the brackish water sample of Q143. Aeromonas, no rank Gallionellaceae, no rank Methylophilaceae, Acidovorax, and Comamonas unevenly thrived in the freshwater samples collected from different locations. Therefore, the distribution of microbial communities reflected the salinity and hydrogeochemical characteristics of a groundwater aquifer, and can be regarded as a potential environmental indicator in the groundwater.
Collapse
|
14
|
Reiss J, Perkins DM, Fussmann KE, Krause S, Canhoto C, Romeijn P, Robertson AL. Groundwater flooding: Ecosystem structure following an extreme recharge event. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:1252-1260. [PMID: 30586811 DOI: 10.1016/j.scitotenv.2018.10.216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/04/2018] [Accepted: 10/15/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Julia Reiss
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom.
| | - Daniel M Perkins
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Katarina E Fussmann
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Cristina Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Paul Romeijn
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Anne L Robertson
- Department of Life Sciences, Whitelands College, Roehampton University, London SW15 4JD, United Kingdom
| |
Collapse
|
15
|
Diversity and predictive metabolic pathways of the prokaryotic microbial community along a groundwater salinity gradient of the Pearl River Delta, China. Sci Rep 2018; 8:17317. [PMID: 30470770 PMCID: PMC6251883 DOI: 10.1038/s41598-018-35350-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/26/2018] [Indexed: 01/22/2023] Open
Abstract
Almost half of the groundwater in the Pearl River Delta (PRD) contains salt water originally derived from paleo-seawater due to the Holocene transgression, which then generates intense physicochemical gradients in the mixing zone between freshwater and saltwater. Although some studies have been conducted on the hydrological and geochemical characteristics of groundwater in the PRD to monitor the intrusion of seawater, little attention has been paid to the microbial community of this particular region. In this study, we implemented a high-throughput sequencing analysis to characterize the microbial communities along a salinity gradient in the PRD aquifer, China. Our results indicated that the microbial community composition varied significantly depending on the salinity of the aquifer. The presence of abundant anaerobic microorganisms of the genera Desulfovibrio and Methanococcus in certain saltwater samples may be responsible for the gas generation of H2S and CH4 in the stratum. In saline water samples (TDS > 10 g/L), the linear discriminant analysis effect size (LEfSe) analysis found two biomarkers that usually live in marine environments, and the aquifers of the PRD still contained large quantity of saltwater, indicating that the impact of the paleo-seawater has lasted to this day. The predictive metagenomic analysis revealed that the metabolic pathways present in the groundwater samples studied, included the degradation of pesticides and refractory organics (dichlorodiphenyltrichloroethane (DDT), atrazine and polycyclic aromatic hydrocarbons), matter cycling (methane, nitrogen and sulfur), and inorganic ion and mineral metabolites. This study can help enhance our understanding of the composition of the microbial assemblages and its implications as an environmental indicator in an aquifer affected by saltwater intrusion.
Collapse
|
16
|
Lehosmaa K, Jyväsjärvi J, Ilmonen J, Rossi PM, Paasivirta L, Muotka T. Groundwater contamination and land drainage induce divergent responses in boreal spring ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 639:100-109. [PMID: 29778675 DOI: 10.1016/j.scitotenv.2018.05.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
Degradation of freshwater ecosystems has engendered legislative mandates for the protection and management of surface waters while groundwater-dependent ecosystems (GDEs) have received much less attention. This is so despite biodiversity and functioning of GDEs are currently threatened by several anthropogenic stressors, particularly intensified land use and groundwater contamination. We assessed the impacts of land drainage (increased input of dissolved organic carbon, DOC, from peatland drainage) and impaired groundwater chemical quality (NO3--N enrichment from agricultural or urban land use) on biodiversity and ecosystem functioning in 20 southern Finnish cold-water springs using several taxonomic and functional measures. Groundwater contamination decreased macroinvertebrate and bacterial diversity and altered their community composition. Changes in macroinvertebrate and bacterial communities along the gradient of water-quality impairment were caused by the replacement of native with new taxa rather than by mere disappearance of some of the original taxa. Also species richness of habitat specialist (but not headwater generalist) bryophytes decreased due to impaired groundwater quality. Periphyton accrual rate showed a subsidy-stress response to elevated nitrate concentrations, with peak values at around 2500 μg L-1, while drainage-induced spring water brownification (increased DOC) reduced both periphyton accrual and leaf decomposition rates already at very low concentrations. Our results highlight the underutilized potential of ecosystem-level functional measures in GDE bioassessment as they seem to respond to the first signs of spring ecosystem impairment, at least for the anthropogenic stressors studied by us.
Collapse
Affiliation(s)
- Kaisa Lehosmaa
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014 Oulu, Finland.
| | - Jussi Jyväsjärvi
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Jari Ilmonen
- Metsähallitus, P.O. Box 94, FI-01301 Vantaa, Finland
| | - Pekka M Rossi
- Water Resources and Environmental Engineering Research Group, University of Oulu, P.O. Box 3000, FI-90014, Finland
| | | | - Timo Muotka
- University of Oulu, Department of Ecology and Genetics, P.O. Box 3000, FI-90014 Oulu, Finland; Finnish Environment Institute, Natural Environment Centre, FI-90014 Oulu, Finland
| |
Collapse
|
17
|
Smith RJ, Paterson JS, Wallis I, Launer E, Banks EW, Bresciani E, Cranswick RH, Tobe SS, Marri S, Goonan P, Mitchell JG. Southern South Australian groundwater microbe diversity. FEMS Microbiol Ecol 2018; 94:5069389. [DOI: 10.1093/femsec/fiy158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/09/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Renee J Smith
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5001, Australia
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - James S Paterson
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Ilka Wallis
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Elise Launer
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Eddie W Banks
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Etienne Bresciani
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Korea Institute of Science and Technology, Seoul, Republic of Korea, 02792, South Korea
| | - Roger H Cranswick
- Department of Environment, Water and Natural Resources, Adelaide, SA, 5000, Australia
| | - Shanan S Tobe
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
- Department of Chemistry and Physics, Arcadia University, Glenside, Philadelphia, 19038, USA
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter Goonan
- South Australian Environment Protection Authority, 211 Victoria SquareParsons Brinckerhoff Australia Pty Limited, Adelaide, SA 5001, Australia
| | - James G Mitchell
- College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| |
Collapse
|
18
|
|
19
|
Korbel K, Chariton A, Stephenson S, Greenfield P, Hose GC. Wells provide a distorted view of life in the aquifer: implications for sampling, monitoring and assessment of groundwater ecosystems. Sci Rep 2017; 7:40702. [PMID: 28102290 PMCID: PMC5244371 DOI: 10.1038/srep40702] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022] Open
Abstract
When compared to surface ecosystems, groundwater sampling has unique constraints, including limited access to ecosystems through wells. In order to monitor groundwater, a detailed understanding of groundwater biota and what biological sampling of wells truly reflects, is paramount. This study aims to address this uncertainty, comparing the composition of biota in groundwater wells prior to and after purging, with samples collected prior to purging reflecting a potentially artificial environment and samples collected after purging representing the surrounding aquifer. This study uses DNA community profiling (metabarcoding) of 16S rDNA and 18S rDNA, combined with traditional stygofauna sampling methods, to characterise groundwater biota from four catchments within eastern Australia. Aquifer waters were dominated by Archaea and bacteria (e.g. Nitrosopumilales) that are often associated with nitrification processes, and contained a greater proportion of bacteria (e.g. Anaerolineales) associated with fermenting processes compared to well waters. In contrast, unpurged wells contained greater proportions of pathogenic bacteria and bacteria often associated with denitrification processes. In terms of eukaryotes, the abundances of copepods, syncarids and oligochaetes and total abundances of stygofauna were greater in wells than aquifers. These findings highlight the need to consider sampling requirements when completing groundwater ecology surveys.
Collapse
Affiliation(s)
- Kathryn Korbel
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| | | | | | | | - Grant C. Hose
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
20
|
Menció A, Mas-Pla J, Otero N, Regàs O, Boy-Roura M, Puig R, Bach J, Domènech C, Zamorano M, Brusi D, Folch A. Nitrate pollution of groundwater; all right…, but nothing else? THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 539:241-251. [PMID: 26363397 DOI: 10.1016/j.scitotenv.2015.08.151] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 08/31/2015] [Accepted: 08/31/2015] [Indexed: 05/26/2023]
Abstract
Contamination from agricultural sources and, in particular, nitrate pollution, is one of the main concerns in groundwater management. However, this type of pollution entails the entrance of other substances into the aquifer, as well as it may promote other processes. In this study, we deal with hydrochemical and isotopic analysis of groundwater samples from four distinct zones in Catalonia (NE Spain), which include 5 different aquifer types, to investigate the influence of fertilization on the overall hydrochemical composition of groundwater. Results indicate that intense fertilizer application, causing high nitrate pollution in aquifers, also homogenize the contents of the major dissolved ions (i.e.; Cl(-), SO4(2-), Ca(2+), Na(+), K(+), and Mg(2+)). Thus, when groundwater in igneous and sedimentary aquifers is compared, significant differences are observed under natural conditions for Cl(-), Na(+) and Ca(2+) (with p-values ranging from <0.001 to 0.038), and when high nitrate concentrations occur, these differences are reduced (most p-values ranged between 0.054 and 0.978). Moreover, positive linear relationships between nitrate and some ions are found indicating the magnitude of the fertilization impact on groundwater hydrochemistry (with R(2) values of 0.490, 0.609 and 0.470, for SO4(2-), Ca(2+) and Cl(-), respectively). Nevertheless, the increasing concentration of specific ions is not only attributed to agricultural pollution, but to their enhancing effect upon the biogeochemical processes that control water-rock interactions. Such results raise awareness that these processes should be evaluated in advance in order to assess an adequate groundwater resources management.
Collapse
Affiliation(s)
- Anna Menció
- Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain.
| | - Josep Mas-Pla
- Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain; Institut Català de Recerca de l'Aigua (ICRA), Spain.
| | - Neus Otero
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès, s/n - 08028 Barcelona, Spain.
| | - Oriol Regàs
- Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain
| | | | - Roger Puig
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès, s/n - 08028 Barcelona, Spain
| | - Joan Bach
- Àrea de Geodinàmica Externa i Hidrogeologia, Deptartament de Geologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Cristina Domènech
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), C/Martí i Franquès, s/n - 08028 Barcelona, Spain
| | - Manel Zamorano
- Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain
| | - David Brusi
- Grup de Geologia Aplicada i Ambiental (GAiA), Centre de Recerca en Geologia i Cartografia Ambiental (Geocamb), Deptartament de Ciències Ambientals, Facultat de Ciències, Universitat de Girona, 17071 Girona, Spain
| | - Albert Folch
- Grup d'Hidrologia Subterrània, Dept. D'Enginyeria del Terreny, Cartogràfica i Geofísica, Universitat Politècnica de Catalunya-Barcelona Tech, Spain.
| |
Collapse
|
21
|
Menció A, Korbel KL, Hose GC. River-aquifer interactions and their relationship to stygofauna assemblages: a case study of the Gwydir River alluvial aquifer (New South Wales, Australia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 479-480:292-305. [PMID: 24565862 DOI: 10.1016/j.scitotenv.2014.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/28/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
In contrast to surface water ecosystems, groundwater ecosystems are usually considered to have relatively stable conditions and physically inert environments. However, many groundwater ecosystems undergo substantial changes through space and time, related to fluxes in groundwater flow, exchange and nutrient imports. In this study we used hydrochemical data to: 1) determine the different hydrogeological conditions in an alluvial system, the shallow Gwydir River alluvial aquifer (located in Northern New South Wales, Australia); and 2) analyze the relationship between hydrochemical conditions and the composition of stygofauna assemblages in the aquifer. Using hydrochemical modeling and multivariate analyses, four main hydrogeological situations were defined as occurring in the aquifer. Bores were classified as having either a high, low or no influence from or exchange with the river. The latter group was further subdivided into those of low and high salinity. Further analysis combining the biological and hydrochemical data identified two main groups of samples. The first group was composed mainly of samples related to the aquifer groundwater which had higher richness and abundance of fauna compared to samples in the second group which was comprised of samples affected by stream water leakage and samples related to the highest salinities. These results suggest that more stable conditions (mainly related to steadier groundwater head levels) and lower nitrate concentrations promoted a more diverse and abundant stygofauna community.
Collapse
Affiliation(s)
- A Menció
- Grup de Geologia Aplicada i Ambiental (GAIA), Centre de Geologia i Cartografia Ambientals (GEOCAMB), Àrea de Geodinàmica, Departament de Ciències Ambientals, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain.
| | - K L Korbel
- School of the Environment, University of Technology, Sydney, NSW 2007, Australia.
| | - G C Hose
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
22
|
Stumpp C, Hose GC. The impact of water table drawdown and drying on subterranean aquatic fauna in in-vitro experiments. PLoS One 2013; 8:e78502. [PMID: 24278111 PMCID: PMC3835856 DOI: 10.1371/journal.pone.0078502] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
Abstract
The abstraction of groundwater is a global phenomenon that directly threatens groundwater ecosystems. Despite the global significance of this issue, the impact of groundwater abstraction and the lowering of groundwater tables on biota is poorly known. The aim of this study is to determine the impacts of groundwater drawdown in unconfined aquifers on the distribution of fauna close to the water table, and the tolerance of groundwater fauna to sediment drying once water levels have declined. A series of column experiments were conducted to investigate the depth distribution of different stygofauna (Syncarida and Copepoda) under saturated conditions and after fast and slow water table declines. Further, the survival of stygofauna under conditions of reduced sediment water content was tested. The distribution and response of stygofauna to water drawdown was taxon specific, but with the common response of some fauna being stranded by water level decline. So too, the survival of stygofauna under different levels of sediment saturation was variable. Syncarida were better able to tolerate drying conditions than the Copepoda, but mortality of all groups increased with decreasing sediment water content. The results of this work provide new understanding of the response of fauna to water table drawdown. Such improved understanding is necessary for sustainable use of groundwater, and allows for targeted strategies to better manage groundwater abstraction and maintain groundwater biodiversity.
Collapse
Affiliation(s)
- Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Grant C. Hose
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
23
|
Sirisena KA, Daughney CJ, Moreau-Fournier M, Ryan KG, Chambers GK. National survey of molecular bacterial diversity of New Zealand groundwater: relationships between biodiversity, groundwater chemistry and aquifer characteristics. FEMS Microbiol Ecol 2013; 86:490-504. [DOI: 10.1111/1574-6941.12176] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/23/2013] [Accepted: 06/25/2013] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | - Ken G. Ryan
- Victoria University of Wellington; Wellington New Zealand
| | | |
Collapse
|