1
|
Godwin J, Njimou JR, Abdus-Salam N, Adegoke HI, Panda PK, Tripathy BC, Maicaneanu SA. Nanosorbent based on coprecipitation of ZnO in goethite for competitive sorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) systems. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:149-165. [PMID: 38887757 PMCID: PMC11180079 DOI: 10.1007/s40201-023-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/25/2023] [Indexed: 06/20/2024]
Abstract
Amongst the various water pollutants, heavy metal ions require special attention because of their toxic nature and effects on humans and the environment. Preserving natural resources will have positive impacts on living conditions by reducing diseases and water treatment by nanotechnology is effective in solving this problem owing to the properties of nanomaterials. In this study, a goethite nanoparticle was prepared by hydrothermal method, while ZnO/goethite nanocomposite by co-precipitation was developed. The nanoparticles were characterized using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Transform Electron Microscopy (TEM), Thermogravimetric Differential Thermal Analysis (TGA-DTA), Dynamic Light Scattering (DLS), and Breunner-Emmet-Teller (BET) surface area analysis. The adsorption of Cd(II)-Pb(II) and Cd(II)-Pb(II)-Ni(II) ions systems on ZnO/goethite nanocomposite was investigated in a batch mode. The findings of the study showed that nanoparticles ZnO/goethite composite were mixed of spherical and rod-like shapes. The BET results revealed average particle sizes of 41.11 nm for nanoparticles for ZnO/goethite while TGA/DTA confirmed the stability of the adsorbents. The optimum adsorption capacities of the nanocomposite for Pb(II), Cd(II), and Ni(II) ions from the Pb-Cd-Ni ternary system were 415.5, 195.3, and 87.13 mg g-1, respectively. The adsorption isotherm data fitted well with the Langmuir isotherm model. The study concluded that the nanoparticle adsorbents are efficient for the remediation of toxic pollutants and are, therefore, recommended for wastewater treatment.
Collapse
Affiliation(s)
- John Godwin
- Department of Chemistry, Kogi State College of Education (Technical), P.O.B 242, Kabba, Nigeria
- Department of Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Jacques Romain Njimou
- School of Chemical Engineering and Mineral Industries, University of Ngaoundere, P. O Box 454, Ngaoundere, Cameroon
- Madia Department of Chemistry, Biochemistry, Physics, and Engineering, Kopchick College of Natural Science and Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705 USA
| | | | | | - Prasanna Kumar Panda
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Bankim Chandra Tripathy
- Hydro & Electrometallurgy Department, Institute of Minerals and Materials Technology, Bhubaneswar, 751 013 India
| | - Sanda Andrada Maicaneanu
- Madia Department of Chemistry, Biochemistry, Physics, and Engineering, Kopchick College of Natural Science and Mathematics, Indiana University of Pennsylvania, Indiana, PA 15705 USA
| |
Collapse
|
2
|
Hamad MTMH, Ibrahim S. Effective fabrication and characterization of eco-friendly nano particles composite for adsorption Cd (II) and Cu (II) ions from aqueous solutions using modelling studies. Sci Rep 2024; 14:11767. [PMID: 38782956 DOI: 10.1038/s41598-024-61050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Abstract
The public health and environment are currently facing significant risks due to the discharge of industrial wastewater, which contains harmful heavy metals and other contaminants. Therefore, there is a pressing need for sustainable and innovative technologies to treat wastewater. The main objective of this research was to develop novel composites known as chitosan, Padina pavonica, Fe(III), and nano MgO incorporated onto pomegranate peel with the specific purpose of removing Cd (II) and Cu (II) ions from aqueous solutions. The characterization of these nanocomposites involved the utilization of several analytical methods, including Fourier-transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis, and X-ray photoelectron spectroscopy. The efficiency of these nanocomposites was evaluated through batch mode experiments, investigating the impact of factors such as pH, initial concentration, contact time, and adsorbent dose on the adsorption of Cu(II) ions. The optimum conditions for the removal of ions were pH = 5 for Cu (II) and 6 for Cd (II), contact time: 120 min, adsorbent dosage: 0.2 g, initial metal ion concentration: 50 mg/L for each metal ion for the present study. The MgO@Pp demonstrated the highest removal efficiencies for Cu(II) and Cd(II) at 98.2% and 96.4%, respectively. In contrast, the CS@Fe-PA achieved removal efficiencies of 97.2% for Cu(II) and 89.2% for Cd(II). The modified MgO@Pp exhibited significantly higher total adsorption capacities for Cu(II) and Cd(II) at 333.3 and 200 mg/g, respectively, compared to CS@Fe-PA, which had capacities of 250 and 142 mg/g, respectively. The adsorption of Cd (II) and Cu (II) ions by MgO@Pp was found to be a spontaneous process. The R2 values obtained using the Freundlich and Redlich-Peterson models were the highest for the MgO@Pp composite, with values of 0.99, 0.988, 0.987, and 0.994, respectively, for Cu (II) and Cd (II). The pseudo-second-order equation was determined to be the best-fit kinetic model for this process. Reusability experiments confirmed that the adsorbents can be utilized for up to four regeneration cycles. Based on the findings of this study, MgO @ Pp is the most promising alternative and could be instrumental in developing strategies to address existing environmental pollution through adsorption.
Collapse
Affiliation(s)
| | - Sabah Ibrahim
- Central Laboratory for Environmental Quality Monitoring, National Water Research Center, Shubra El Kheima, Egypt
| |
Collapse
|
3
|
Jokić Govedarica J, Tomašević Pilipović D, Gvoić V, Kerkez Đ, Leovac Maćerak A, Slijepčević N, Bečelić-Tomin M. Eco-friendly nanoparticles: mechanisms and capacities for efficient removal of heavy metals and phosphate from water using definitive screening design approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:118. [PMID: 38478162 DOI: 10.1007/s10653-024-01879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
Can nano-zero-valent iron, synthesized using oak leaf extract, be the key solution for water preservation, efficiently removing heavy metal ions and phosphate anions simultaneously? This research unveils how this technology not only promises high efficiency in the remediation of water resources, but also sets new standards for environmentally friendly processes. The high antioxidant capacity and high phenol content indicate suggest the possibility of oak-nZVI synthesis using oak leaf extract as a stable material with minimal agglomeration. The simultaneous removal of Cd and phosphates, as well as and Ni and phosphates was optimized by a statistically designed experiment with a definitive screening design approach. By defining the key factors with the most significant impact, a more efficient and faster method is achieved, improving the economic sustainability of the research by minimizing the number of experiments while maximizing precision. In terms of significance, four input parameters affecting process productivity were monitored: initial metal concentration (1-9 mg L-1), initial ion concentration (1-9 mg L-1), pH value (2-10), and oak-nZVI dosage (2-16 mL). The process optimization resulted in the highest simultaneous removal efficiency of 98.99 and 87.30% for cadmium and phosphate ions, respectively. The highest efficiency for the simultaneous removal of nickel and phosphate ions was 93.44 and 96.75%, respectively. The optimization process fits within the confidence intervals, which confirms the assumption that the selected regression model well describes the process. In the context of e of the challenges and problems of environmental protection, this work has shown considerable potential and successful application for the simultaneous removal of Cd(II) and Ni(II) in the presence of phosphates from water.
Collapse
Affiliation(s)
- Jovana Jokić Govedarica
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Dragana Tomašević Pilipović
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia.
| | - Vesna Gvoić
- Faculty of Technical Sciences, Department of Graphic Engineering and Design, University of Novi Sad, Trg Dositeja Obradovića 6, 21000, Novi Sad, Serbia
| | - Đurđa Kerkez
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Anita Leovac Maćerak
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Nataša Slijepčević
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Milena Bečelić-Tomin
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| |
Collapse
|
4
|
Rehman S, Yousaf S, Ye Q, Chenhui L, Bilal M, Shaikh AJ, Khan MS, Shahzad SA, Wu P. Bentonite binding with mercury(II) ion through promotion of reactive oxygen species derived from manure-based dissolved organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26107-26119. [PMID: 36352071 DOI: 10.1007/s11356-022-23948-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
This study reports the mercury binding by bentonite clay influenced by cattle manure-derived dissolved organic matter (DOM). The DOM (as total organic carbon; TOC) was reacted with bentonite at 5.2 pH to monitor the subsequent uptake of Hg2+ for 5 days. The binding kinetics of Hg2+ to the resulting composite was studied (metal = 350 µM/L, pH 5.2). Bentonite-DOM bound much more Hg2+ than original bentonite and accredited to the establishment of further binding sites. On the other hand, the presence of DOM was found to decrease the Hg2+ binding on the clay surface, specifically, the percent decrease of metal with increasing DOM concentration. Post to binding of DOM with bentonite resulted in increased particle size diameter (~ 33.37- ~ 87.67 nm) by inducing the mineral modification of the pore size distribution, thus increasing the binding sites. The XPS and FTIR results confirm the pronounced physico-chemical features of bentonite-DOM more than that of bentonite. Hydroxyl and oxygen vacancies on the surface were found actively involved in Hg2+ uptake by bentonite-DOM composite. Furthermore, DOM increased the content of Hg2+ binding by ~ 10% (pseudo-second-order qe = 90.9-100.0) through boosting up Fe3+ reduction with the DOM. The quenching experiment revealed that more oxygen functionalities were generated in bentonite-DOM, where hydroxyl was found to be dominant specie for Hg2+ binding. The findings of this study can be used as theoretical reference for mineral metal interaction under inhibitory or facilitating role of DOM, risk assessment, management, and mobilization/immobilization of mercury in organic matter-containing environment.
Collapse
Affiliation(s)
- Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Sayyaf Yousaf
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Quanyun Ye
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Liu Chenhui
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Ahson Jabbar Shaikh
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Muhammad Saqib Khan
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, KPK, University Road, Abbottabad, 22060, Pakistan
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, People's Republic of China.
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, 510006, People's Republic of China.
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
5
|
Golia EE, Chartodiplomenou MA, Papadimou SG, Kantzou OD, Tsiropoulos NG. Influence of soil inorganic amendments on heavy metal accumulation by leafy vegetables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8617-8632. [PMID: 34796440 DOI: 10.1007/s11356-021-17420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to assess the effect of four inorganic soil amendments, such as lime (CaCO3), red mud consisting of 75% hematite (Fe2O3), gypsum (CaSO4·2H2O), and Al oxide (Al2O3), of an alkaline heavy metal-contaminated soil. For this purpose, a pot experiment was conducted by physically mixing individual six subsamples of a soil sample collected from Thessaly area with four inorganic soil amendments along with two leafy plants, spinach and lettuce. Al oxide causes the maximum reduction of the water-soluble Cu concentration, as its concentrations is no longer detectable. The Cu availability index decreases when aluminum oxide was used. The use of gypsum and red mud caused almost equal reduction while the smallest decrease was caused by the use of lime. The Zn availability index decreased equally when aluminum oxide and gypsum were mixed with the soil sample. The highest reduction of Cu and Zn transfer coefficient (TC) was observed when the Al2O3 was used. In spinach, Zn TC reduction was 39.8% and Cu TC reduction was 41.0%. In lettuce, the addition of Al2O3 led to Cu TC reduction of over 37.3% and Zn TC reduction of up to 38.7%. Generally, Al2O3 nanoparticles may function as suitable sorbents for the removal of Zn and Cu from soil samples, with an increasing effectiveness in spinach rather than lettuce. Liming materials seem to increase the soil alkalinity and promote the complexation of soluble heavy metals with hydroxide ions leading to immobilization of heavy metals in soil and reduce their amount in leafy vegetables. Remediation of contaminated soils is considered necessary to reduce environmental risks and to achieve the means available to increase agricultural production of safe and quality food.
Collapse
Affiliation(s)
- Evangelia E Golia
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece.
- Department of Agriculture, Laboratory of Soil Science, Aristotle University of Thessaloniki, University Campus, 541 24, Thessaloniki, Greece.
| | - Maria-Anna Chartodiplomenou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Sotiria G Papadimou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Analytical Chemistry and Pesticides Laboratory, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Ourania-Despoina Kantzou
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Soil Science, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| | - Nikolaos G Tsiropoulos
- Department of Agriculture Crop Production and Rural Environment, Laboratory of Analytical Chemistry and Pesticides Laboratory, University of Thessaly, Fytokou Street, 384 46, Volos, Greece
| |
Collapse
|
6
|
Two Step Fabrication of Nano-ZnO-α-FeOOH Composite for Experimental and Modeling Studies of Removal of Indigo Carmine and Alizarin Red S in Batch Process. CHEMISTRY AFRICA 2022. [DOI: 10.1007/s42250-022-00567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Boregowda N, Jogigowda SC, Bhavya G, Sunilkumar CR, Geetha N, Udikeri SS, Chowdappa S, Govarthanan M, Jogaiah S. Recent advances in nanoremediation: Carving sustainable solution to clean-up polluted agriculture soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 297:118728. [PMID: 34974084 DOI: 10.1016/j.envpol.2021.118728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Agriculture is one of the foremost significant human activities, which symbolizes the key source for food, fuel and fibers. This activity results in a lot of ecological harms particularly with the excessive usage of chemical fertilizers and pesticides. Different agricultural practices have remained industrialized to advance food production, due to the growth in the world population and to meet the food demand through the routine use of more effective fertilizers and pesticides. Soil is intensely embellished by environmental contamination and it can be stated as "universal incline." Soil pollution usually occurs from sewage wastes, accidental discharges or as byproducts of chemical residues of unrestrained production of numerous materials. Soil pollution with hazardous materials alters the physical, chemical, and biological properties, causing undesirable changes in soil fertility and ecosystem. Engineered nanomaterials offer various solutions for remediation of contaminated soils. Engineered nanomaterial-enable technologies are able to prevent the uncontrolled release of harmful materials into the environment along with capabilities to combat soil and groundwater borne pollutants. Currently, nanobiotechnology signifies a hopeful attitude to advance agronomic production and remediate polluted soils. Studies have outlined the way of nanomaterial applications to restore the eminence of the environment and assist the detection of polluted sites, along with potential remedies. This review focuses on the latest developments in agricultural nanobiotechnology and the tools developed to combat soil or land and or terrestrial pollution, as well as the benefits of using these tools to increase soil fertility and reduce potential toxicity.
Collapse
Affiliation(s)
- Nandini Boregowda
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Sanjay C Jogigowda
- Department of Oral Medicine & Radiology, JSS Dental College & Hospital, JSS Academy of Higher Education & Research, Sri Shivarathreeshwara Nagara, Mysuru, 570015, India
| | - Gurulingaiah Bhavya
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Channarayapatna Ramesh Sunilkumar
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India; Global Association of Scientific Young Minds, GASYM, Mysuru, India
| | - Nagaraja Geetha
- Nanobiotechnology Laboratory, DOS in Biotechnology, Manasagangotri, University of Mysore, Mysuru, 570 006, India
| | - Shashikant Shiddappa Udikeri
- Agricultural Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, 580005, Karnataka, India
| | - Srinivas Chowdappa
- Department of Microbiology and Biotechnology, Jnana Bharathi Campus, Bangalore University, Bengaluru, 560 056, Karnataka, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, South Korea
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
8
|
Yan Y, Wan B, Mansor M, Wang X, Zhang Q, Kappler A, Feng X. Co-sorption of metal ions and inorganic anions/organic ligands on environmental minerals: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 803:149918. [PMID: 34482133 DOI: 10.1016/j.scitotenv.2021.149918] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/31/2021] [Accepted: 08/22/2021] [Indexed: 05/21/2023]
Abstract
Co-sorption of metal ions and anions/ligands at the mineral-water interface plays a critical role in regulating the mobility, transport, fate, and bioavailability of these components in natural environments. This review focuses on co-sorption of metal ions and naturally occurring anions/ligands on environmentally relevant minerals. The underlying mechanisms for their interfacial reactions are summarized and the environmental impacts are discussed. Co-sorption mechanisms of these components depend on a variety of factors, such as the identity and properties of minerals, pH, species and concentration of metal ions and anions/ligands, addition sequence of co-sorbed ions, and reaction time. The simultaneous presence of metal ions and anions/ligands alters the initial sorption behaviors with promotive or competitive effects. Promotive effects are mainly attributed to surface electrostatic interactions, ternary surface complexation, and surface precipitation, especially for the co-sorption systems of metal ions and inorganic anions on minerals. Competitive effects involve potential complexation of metal-anions/ligands in solution or their competition for surface adsorption sites. Organic ligands usually increase metal ion sorption on minerals at low pH via forming ternary surface complexes or surface precipitates, but inhibit metal ion sorption via the formation of aqueous complexes at high pH. The different mechanisms may act simultaneously during metal ion and anion/ligand co-sorption on minerals. Finally, the potential application for remediation of metal-contaminated sites is discussed based on the different co-sorption behaviors. Future challenges and topics are raised for metal-anion/ligand co-sorption research.
Collapse
Affiliation(s)
- Yupeng Yan
- Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Biao Wan
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany.
| | - Muammar Mansor
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany
| | - Xiaoming Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | - Qin Zhang
- Key Laboratory of Poyang Lake Watershed Agricultural Resources and Ecology of Jiangxi Province, College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Andreas Kappler
- Geomicrobiology, Center for Applied Geosciences, University of Tuebingen, 72076 Tuebingen, Germany; Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, People's Republic of China.
| |
Collapse
|
9
|
Srivastav A, Ganjewala D, Singhal RK, Rajput VD, Minkina T, Voloshina M, Srivastava S, Shrivastava M. Effect of ZnO Nanoparticles on Growth and Biochemical Responses of Wheat and Maize. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122556. [PMID: 34961025 PMCID: PMC8708393 DOI: 10.3390/plants10122556] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 05/04/2023]
Abstract
Zinc is an essential element that is also renowned for widespread contamination and toxicity at high concentrations. The present study was carried out to analyze the responses induced by lower, as well as higher, doses of zinc (0-200 mg/L), in the form of zinc oxide nanoparticles (ZnO NPs) in wheat and maize, for a period of 21 days. Accumulation of zinc increases with increasing Zn doses in both wheat and maize, with higher doses being in wheat (121 mg/kg in root and 66 mg/kg in shoot) than in maize (95 mg/kg in root and 48 mg/kg in shoot). The activity of alpha-amylase showed increase, while that of dehydrogenase decline, in response to ZnO NPs. The length and biomass of plants and photosynthetic pigments increased slightly upon ZnO NPs supply. Malondialdehyde content showed a progressive increase in root and shoot of both plants. However, in response, antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, and catalase) showed increase up to lower concentrations (100 mg/L) of ZnO NPs but decline variably at higher levels (150-200 mg/L) in wheat and maize. The results suggest that lower supply of ZnO NPs (100 mg/L) could be stimulatory to the growth of plants and can be recommended as a Zn fertilizer source for crop production.
Collapse
Affiliation(s)
- Akansha Srivastav
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
| | - Rakesh Kumar Singhal
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India;
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (M.V.)
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (M.V.)
| | - Marina Voloshina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia; (V.D.R.); (T.M.); (M.V.)
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi 221005, India;
| | - Manoj Shrivastava
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
- Amity Institute of Biotechnology, Amity University, Noida 201303, India;
- Correspondence:
| |
Collapse
|
10
|
Han B, Song L, Li H, Song H. Immobilization of Cd and phosphorus utilization in eutrophic river sediments by biochar-supported nanoscale zero-valent iron. ENVIRONMENTAL TECHNOLOGY 2021; 42:4072-4078. [PMID: 32186252 DOI: 10.1080/09593330.2020.1745289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
The Ulansuhai River is polluted by heavy metals and faces a serious problem of eutrophication. According to a previous study, biochar-supported nanoscale zero-valent iron composite (BC-nZVI) can be used to effectively immobilize heavy metals, converting Cd from labile to a stable fraction. The present study aimed to evaluate the immobilization of Cd in sediments of eutrophic rivers by BC-nZVI and investigate the effects of phosphorus on Cd immobilization in BC-nZVI immobilized sediments. The immobilization of Cd with BC-nZVI as a stabilizer at different KH2PO4 solution concentrations, the available phosphorus in the sediments, the total phosphorus in the overlying water, and the changes in the pH of the sediments were investigated. The changes of available phosphorus in sediments after the addition of BC, nZVI and BC-nZVI stabilizers were also studied. Results showed that the presence of phosphorus could promote the immobilization of Cd in sediments. The content of total phosphorus in overlying water was reduced, precipitates of phosphate and Cd were produced, and the available phosphorus in sediments was increased after the addition of BC-nZVI. The pH of sediments increased along with the increase in incubation time, which is beneficial for Cd immobilization. This study proved that (1) BC-nZVI can effectively immobilize Cd in eutrophic river sediments, (2) the presence of phosphorous in overlying water is conductive to the conversion of Cd from labile fractions to stable fraction in the sediment, and (3) adsorption and precipitation may be the main mechanisms in Cd immobilization.
Collapse
Affiliation(s)
- Baohong Han
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Lei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Hao Li
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| | - Hongwei Song
- School of Civil Engineering, Inner Mongolia University of Technology, Huhhot, People's Republic of China
| |
Collapse
|
11
|
Mandal A, Dutta A, Das R, Mukherjee J. Role of intertidal microbial communities in carbon dioxide sequestration and pollutant removal: A review. MARINE POLLUTION BULLETIN 2021; 170:112626. [PMID: 34153859 DOI: 10.1016/j.marpolbul.2021.112626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 05/16/2023]
Abstract
Intertidal microbial communities occur as biofilms or microphytobenthos (MPB) which are sediment-attached assemblages of bacteria, protozoa, fungi, algae, diatoms embedded in extracellular polymeric substances. Despite their global occurrence, they have not been reviewed in light of their structural and functional characteristics. This paper reviews the importance of such microbial communities and their importance in carbon dioxide sequestration as well as pollutant bioremediation. Global annual benthic microalgal productivity was 500 million tons of carbon, 50% of which contributed towards the autochthonous carbon fixation in the estuaries. Primary production by MPB was 27-234 gCm-2y-1 in the estuaries of Asia, Europe and the United States. Mechanisms of heavy metal removal remain to be tested in intertidal communities. Cyanobacteria facilitate hydrocarbon degradation in intertidal biofilms and microbial mats by supporting the associated sulfate-reducing bacteria and aerobic heterotrophs. Physiological cooperation between the microorganisms in intertidal communities imparts enhanced ability to utilize polycyclic aromatic hydrocarbon pollutants by these microorganisms than mono-species communities. Future research may be focused on biochemical characteristics of intertidal mats and biofilms, pollutant-microbial interactions and ecosystem influences.
Collapse
Affiliation(s)
- Abhishek Mandal
- School of Environmental Studies, Jadavpur University, 700032, India
| | - Ahana Dutta
- School of Environmental Studies, Jadavpur University, 700032, India
| | - Reshmi Das
- School of Environmental Studies, Jadavpur University, 700032, India.
| | - Joydeep Mukherjee
- School of Environmental Studies, Jadavpur University, 700032, India.
| |
Collapse
|
12
|
Zaidi R, Ullah Khan S, Farooqi I, Azam A. Rapid adsorption of Pb (II) and Cr (VI) from aqueous solution by Aluminum hydroxide nanoparticles: Equilibrium and kinetic evaluation. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.matpr.2021.03.224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Engel M, Lezama Pacheco JS, Noël V, Boye K, Fendorf S. Organic compounds alter the preference and rates of heavy metal adsorption on ferrihydrite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141485. [PMID: 32862002 DOI: 10.1016/j.scitotenv.2020.141485] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The availability of heavy metals in terrestrial environments is largely controlled by their interactions with minerals and organic matter, with iron minerals having a particularly strong role in heavy metal fate. Because soil organic matter contains a variety of compounds that differ in their chemical properties, the underlying impact organic matter-soil mineral associations bestow on heavy metal binding is still unresolved. Here, we systematically examine the binding of Cd, Zn and Ni by a suite of organic-ferrihydrite assemblages, chosen to account for various compound chemistries within soil organic matter. We posited that organic compound functionality would dictate the extent of association with the organic-ferrihydrite assemblages. Increased heavy metal binding to the assemblages was observed and attributed to the introduction of additional binding sites by the organic functional groups with differing metal affinities. The relative increase depended on the metal's Lewis acidity and followed the order Cd > Zn > Ni, whereas the reverse order was obtained for metal binding by pristine ferrihydrite (Ni > Zn > Cd). Citric acid-, aspartic acid- and cysteine-ferrihydrite assemblages also enhanced the metal binding rate. X-ray absorption spectroscopy revealed that the organic coating contributed significantly to Zn binding by the assemblages, despite relatively low organic surface coverage. Our findings provide valuable information on the nature of heavy metal-organic-mineral interactions and metal adsorption processes regulating their bioavailability and transport.
Collapse
Affiliation(s)
- Maya Engel
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| | - Juan S Lezama Pacheco
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States
| | - Vincent Noël
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States
| | - Kristin Boye
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, United States
| | - Scott Fendorf
- Department of Earth System Science, Stanford University, Stanford, CA 94305, United States.
| |
Collapse
|
14
|
Wang M, Lu T, Chen W, Zhang H, Qi W, Song Y, Qi Z. Enhanced role of humic acid on the transport of iron oxide colloids in saturated porous media under various solution chemistry conditions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Genchi G, Sinicropi MS, Lauria G, Carocci A, Catalano A. The Effects of Cadmium Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3782. [PMID: 32466586 PMCID: PMC7312803 DOI: 10.3390/ijerph17113782] [Citation(s) in RCA: 922] [Impact Index Per Article: 230.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/12/2022]
Abstract
Cadmium (Cd) is a toxic non-essential transition metal that poses a health risk for both humans and animals. It is naturally occurring in the environment as a pollutant that is derived from agricultural and industrial sources. Exposure to cadmium primarily occurs through the ingestion of contaminated food and water and, to a significant extent, through inhalation and cigarette smoking. Cadmium accumulates in plants and animals with a long half-life of about 25-30 years. Epidemiological data suggest that occupational and environmental cadmium exposure may be related to various types of cancer, including breast, lung, prostate, nasopharynx, pancreas, and kidney cancers. It has been also demonstrated that environmental cadmium may be a risk factor for osteoporosis. The liver and kidneys are extremely sensitive to cadmium's toxic effects. This may be due to the ability of these tissues to synthesize metallothioneins (MT), which are Cd-inducible proteins that protect the cell by tightly binding the toxic cadmium ions. The oxidative stress induced by this xenobiotic may be one of the mechanisms responsible for several liver and kidney diseases. Mitochondria damage is highly plausible given that these organelles play a crucial role in the formation of ROS (reactive oxygen species) and are known to be among the key intracellular targets for cadmium. When mitochondria become dysfunctional after exposure to Cd, they produce less energy (ATP) and more ROS. Recent studies show that cadmium induces various epigenetic changes in mammalian cells, both in vivo and in vitro, causing pathogenic risks and the development of various types of cancers. The epigenetics present themselves as chemical modifications of DNA and histones that alter the chromatin without changing the sequence of the DNA nucleotide. DNA methyltransferase, histone acetyltransferase, histone deacetylase and histone methyltransferase, and micro RNA are involved in the epigenetic changes. Recently, investigations of the capability of sunflower (Helianthus annuus L.), Indian mustard (Brassica juncea), and river red gum (Eucalyptus camaldulensis) to remove cadmium from polluted soil and water have been carried out. Moreover, nanoparticles of TiO2 and Al2O3 have been used to efficiently remove cadmium from wastewater and soil. Finally, microbial fermentation has been studied as a promising method for removing cadmium from food. This review provides an update on the effects of Cd exposure on human health, focusing on the cellular and molecular alterations involved.
Collapse
Affiliation(s)
- Giuseppe Genchi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Maria Stefania Sinicropi
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Graziantonio Lauria
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy; (G.G.); (G.L.)
| | - Alessia Carocci
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| | - Alessia Catalano
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “A. Moro”, 70125 Bari, Italy;
| |
Collapse
|
16
|
Hemati Matin N, Jalali M, Buss W. Synergistic immobilization of potentially toxic elements (PTEs) by biochar and nanoparticles in alkaline soil. CHEMOSPHERE 2020; 241:124932. [PMID: 31590018 DOI: 10.1016/j.chemosphere.2019.124932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 05/15/2023]
Abstract
Biochar and nanoparticle (NP) have the ability to sorb potentially toxic elements (PTEs) from soil and reduce toxicity and leaching into water bodies. However, there is need to tailor biochar formulations to soil types. In this study, we investigate the mobility and chemical forms of Cd, Cr, Cu, Ni, and Zn in a spiked, alkaline soil after amendment with combination of NPs (nano-Fe (NF), nano-clay (NC)) and biochars (almond shell 500 °C, walnut shell 400 °C) in different doses (0, 2.5, 5, and 10%). Many previous studies concluded biochar immobilized PTEs due to an increase in soil pH, which can be disregarded here (soil pH 7.9). In a twenty-week column leaching experiment biochar addition significantly decreased PTE leaching and NP addition further immobilized PTEs in most cases. On average almond biochar more effectively reduced Zn leaching and walnut biochar was more effective in decreasing the leaching of Cd, Cr, and Ni (e.g. 5% biochar reduced Cr leaching by 68%). Copper was immobilized effectively by both biochars. Nano-clay combined with walnut biochar performed best in all treatments, in particular for Cd, Ni, and Zn (e.g. 10% walnut biochar only and in combination with NC reduced Zn leaching by 14.2% and 58.5%, respectively). After amendment, PTEs were present in the Fe-Mn oxides, organic and residual fractions and less in the exchangeable fraction, reducing PTE availability and leachability. The results demonstrate that even for cationic PTEs that behave similarly in the environment optimal biochar-mineral formulations can differ.
Collapse
Affiliation(s)
- Narges Hemati Matin
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Mohsen Jalali
- Department of Soil Science, College of Agriculture, Bu-Ali Sina University, Hamadan, Iran.
| | - Wolfram Buss
- Fenner School of Environment and Society, Australian National University, Canberra, Australia; Conversion Technologies of Biobased Resources, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
17
|
Mortensen NP, Johnson LM, Grieger KD, Ambroso JL, Fennell TR. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod Toxicol 2019; 90:150-165. [PMID: 31476381 DOI: 10.1016/j.reprotox.2019.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/18/2022]
Abstract
We summarize the literature involving the deposition of nanomaterials within the placenta following oral exposure and the biological interactions between nanomaterials and placental development and function. The review focuses on the oral exposure of metal and metal oxide engineered nanomaterials (ENMs), carbon-based ENMs, and nanoplastics in animal models, with a minor discussion of intravenous injections. Although the literature suggests that the placenta is an efficient barrier in preventing nanomaterials from reaching the fetus, nanomaterials that accumulate in the placenta may interfere with its development and function. Furthermore, some studies have demonstrated a decrease in placental weight and association with adverse fetal health outcomes following oral exposure to nanomaterials. Since nanomaterials are increasingly used in food, food packaging, and have been discovered in drinking water, the risk for adverse impacts on placental development and functions, with secondary effects on embryo-fetal development, following unintentional maternal ingestion of nanomaterials requires further investigation.
Collapse
Affiliation(s)
- Ninell P Mortensen
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA.
| | - Leah M Johnson
- Engineered Systems, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Khara D Grieger
- Health and Environmental Risk Analysis Program, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA; Genetic Engineering and Society Center, North Carolina State University, 1070 Partners Way, Raleigh, NC, 27695, USA
| | - Jeffrey L Ambroso
- Center for Global Health, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| | - Timothy R Fennell
- Discovery Sciences, RTI International, 3040 Cornwallis Rd, RTP, NC, 27709, USA
| |
Collapse
|
18
|
Rathod PB, Chappa S, Ajish Kumar KS, Pandey AK, Athawale AA. Poly(ethylenimine) functionalized magnetic nanoparticles for sorption of Pb, Cu, and Ni: potential application in catalysis. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2018.1520731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Prakash Baburao Rathod
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sankararao Chappa
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Ashok K. Pandey
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
- Chemical Science, Homi Bhabha National Institute, Mumbai, India
| | | |
Collapse
|
19
|
Yang J, Hou B, Wang J, Tian B, Bi J, Wang N, Li X, Huang X. Nanomaterials for the Removal of Heavy Metals from Wastewater. NANOMATERIALS 2019; 9:nano9030424. [PMID: 30871096 PMCID: PMC6473982 DOI: 10.3390/nano9030424] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
Removal of contaminants in wastewater, such as heavy metals, has become a severe problem in the world. Numerous technologies have been developed to deal with this problem. As an emerging technology, nanotechnology has been gaining increasing interest and many nanomaterials have been developed to remove heavy metals from polluted water, due to their excellent features resulting from the nanometer effect. In this work, novel nanomaterials, including carbon-based nanomaterials, zero-valent metal, metal-oxide based nanomaterials, and nanocomposites, and their applications for the removal of heavy metal ions from wastewater were systematically reviewed. Their efficiency, limitations, and advantages were compared and discussed. Furthermore, the promising perspective of nanomaterials in environmental applications was also discussed and potential directions for future work were suggested.
Collapse
Affiliation(s)
- Jinyue Yang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Baohong Hou
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Beiqian Tian
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Jingtao Bi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
20
|
Safwat SM, Medhat M, Abdel-Halim H. Adsorption of phenol onto aluminium oxide and zinc oxide: A comparative study with titanium dioxide. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1549572] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Safwat M. Safwat
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| | - Mohamed Medhat
- Sanitary & Environmental Engineering Division, Enviro Consult, Cairo, Egypt
| | - Hisham Abdel-Halim
- Sanitary & Environmental Engineering Division, Faculty of Engineering, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Zhu H, Wu C, Wang J, Zhang X. The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:17499-17508. [PMID: 29658066 DOI: 10.1007/s11356-018-1929-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Stabilization technology is one of widely used remediation technologies for cadmium (Cd)-contaminated agricultural soils, but stabilized Cd in soil may be activated again when external conditions such as acid rain occurred. Therefore, it is necessary to study the effect of acid rain on the performance of different stabilizing agents on Cd-polluted agriculture soils. In this study, Cd-contaminated soils were treated with mono-calcium phosphate (MCP), mono-ammonium phosphate (MAP), and artificial zeolite (AZ) respectively and incubated 3 months. These treatments were followed by two types of simulated acid rain (sulfuric acid rain and mixed acid rain) with three levels of acidity (pH = 3.0, 4.0, and 5.6). The chemical forms of Cd in the soils were determined by Tessier's sequential extraction procedure, and the leaching toxicities of Cd in the soils were assessed by toxicity characteristic leaching procedure (TCLP). The results show that the three stabilizing agents could decrease the mobility of Cd in soil to some degree with or without simulated acid rain (SAR) treatment. The stabilization performances followed the order of AZ < MAP < MCP. Acid rain soaking promoted the activation of Cd in stabilized soil, and both anion composition and pH of acid rain were two important factors that influenced the stabilization effect of Cd.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Jiangsu Key Laboratory of Agricultural Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Chunfa Wu
- Department of Agricultural Resources and Environment, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Jun Wang
- Chongqing Research Academy of Environmental Sciences, Chongqing, 401147, China
| | - Xumei Zhang
- Taicang Soil and Fertilizer Station, Taicang, 215400, China
| |
Collapse
|
22
|
Park JH, Wang JJ, Kim SH, Cho JS, Kang SW, Delaune RD, Han KJ, Seo DC. Recycling of rice straw through pyrolysis and its adsorption behaviors for Cu and Zn ions in aqueous solution. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.041] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Thekkudan VN, Vaidyanathan VK, Ponnusamy SK, Charles C, Sundar S, Vishnu D, Anbalagan S, Vaithyanathan VK, Subramanian S. Review on nanoadsorbents: a solution for heavy metal removal from wastewater. IET Nanobiotechnol 2017; 11:213-224. [PMID: 28476976 PMCID: PMC8676555 DOI: 10.1049/iet-nbt.2015.0114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/04/2016] [Accepted: 06/24/2016] [Indexed: 09/01/2023] Open
Abstract
Elimination of heavy metals from contaminated streams is of prime concern due to their ability to cause toxic chaos with the metabolism of flora and fauna alike. Use of advanced nano-engineered technologies such as the innovative combination of surface chemistry, chemical engineering fundamentals and nanotechnology opens up particularly attractive horizons towards treatment of heavy metal contaminated water resources. The obtained product of surface engineered nanoadsorbent produced has successfully proven to show rapid adsorption rate and superior sorption efficiency towards the removal of a wide range of defiant heavy metal contaminants in wastewater. The use of these materials in water treatment results in markedly improved performance features like large surface area, good volumetric potential, extra shelf-lifetime, less mechanical stress, stability under operational conditions with excellent sorption behaviour, no secondary pollution, strong chelating capabilities and they are easy to recover and reuse. This review intends to serve as a one-stop-reference by bringing together all the recent research works on nanoparticles synthesis and its advantages as adsorbents in the treatment of heavy metal polluted wastewater that have so far been undertaken, thereby providing researchers with a deep insight and bridging the gap between past, present and future of the elegant nanosorbents.
Collapse
Affiliation(s)
- Vinni Novi Thekkudan
- Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | - Vinoth Kumar Vaidyanathan
- Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | | | - Christy Charles
- Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | - SaiLavanyaa Sundar
- Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | - Dhanya Vishnu
- Bioprocess Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Chennai 603203, India
| | - Saravanan Anbalagan
- Department of Chemical Engineering, SSN College of Engineering, Chennai 603110, India
| | - Vasanth Kumar Vaithyanathan
- Department of Electronics and Communication Engineering, SKP Engineering College, Thiruvannamalai 606601, India
| | - Sivanesan Subramanian
- Department of Applied Science and Technology, AC College of Technology, Anna University, Chennai 600025, India
| |
Collapse
|
24
|
Ata MS, Wojtal P, Zhitomirsky I. Electrophoretic deposition of materials using humic acid as a dispersant and film forming agent. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Self-curled coral-like γ-Al 2 O 3 nanoplates for use as an adsorbent. J Colloid Interface Sci 2015; 453:244-251. [DOI: 10.1016/j.jcis.2015.03.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/20/2015] [Accepted: 03/21/2015] [Indexed: 12/11/2022]
|