1
|
Yavari B, Athari SS, Omidi Y, Jalali A, Najafi R. EpCAM aptamer activated 5-FU-loaded PLGA nanoparticles in CRC treatment; in vitro and in vivo study. J Drug Target 2023; 31:296-309. [PMID: 36398476 DOI: 10.1080/1061186x.2022.2148679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, epithelial cell adhesion molecule (EpCAM) aptamer-activated nanoparticles (Ap-NPs) were synthesised to enhance treatment efficiency in colorectal cancer (CRC). PLGA [poly(d, l-lactide-co-glycolide)] copolymer was fabricated by conjugation of COOH-PEG-NH2 to PLGA-COOH through an EDC/NHS-mediated chemistry. Afterwards, 5-fluorouracil-loaded (FU) nanoparticles were prepared using the water/oil/water double emulsion solvent evaporation method. The in vitro cytotoxicity of formulations was evaluated using the MTT assay in HCT-116, CT-26 and HEK-293 cell lines. For in vivo study, tumour-bearing BALB/c mice were established by subcutaneous injection of CT-26 cell line. The results indicated that fabricated AP-FU-NPs had 101 nm size with a spherical surface, relatively homogeneously and, satisfactory encapsulation efficiency (83.93%). In vitro experiments revealed that Ap-FU-NPs had a superior in vitro cytotoxicity than both FU-NPs and free 5-FU in CT-26 and HCT-116 cells but, were significantly low toxic against HEK-293 cells relative to free 5-FU. Furthermore, in vivo results showed no significant haemolytic effect, hepatic and renal injury, or weight loss. After treatment of various animal groups with formulations, notable tumour growth delay was observed following the order: Ap-FU-NPs < FU-NPs < 5-FU < PBS. The results suggest that AP-FU-NPs could be an effective and promising carrier for 5-FU delivery to the EpCAM overexpressing CRC cells.
Collapse
Affiliation(s)
- Bahram Yavari
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyyed Shamsadin Athari
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Yadollah Omidi
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Akram Jalali
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Medical Biotechnology, School of Advanced Medical Sciences & Technologies, Hamadan University of Medical Sciences, Hamadan, Iran.,Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
2
|
Labbé F, He Q, Zhan Q, Tiedje KE, Argyropoulos DC, Tan MH, Ghansah A, Day KP, Pascual M. Neutral vs. non-neutral genetic footprints of Plasmodium falciparum multiclonal infections. PLoS Comput Biol 2023; 19:e1010816. [PMID: 36595546 PMCID: PMC9838855 DOI: 10.1371/journal.pcbi.1010816] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/13/2023] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
At a time when effective tools for monitoring malaria control and eradication efforts are crucial, the increasing availability of molecular data motivates their application to epidemiology. The multiplicity of infection (MOI), defined as the number of genetically distinct parasite strains co-infecting a host, is one key epidemiological parameter for evaluating malaria interventions. Estimating MOI remains a challenge for high-transmission settings where individuals typically carry multiple co-occurring infections. Several quantitative approaches have been developed to estimate MOI, including two cost-effective ones relying on molecular data: i) THE REAL McCOIL method is based on putatively neutral single nucleotide polymorphism loci, and ii) the varcoding method is a fingerprinting approach that relies on the diversity and limited repertoire overlap of the var multigene family encoding the major Plasmodium falciparum blood-stage antigen PfEMP1 and is therefore under selection. In this study, we assess the robustness of the MOI estimates generated with these two approaches by simulating P. falciparum malaria dynamics under three transmission conditions using an extension of a previously developed stochastic agent-based model. We demonstrate that these approaches are complementary and best considered across distinct transmission intensities. While varcoding can underestimate MOI, it allows robust estimation, especially under high transmission where repertoire overlap is extremely limited from frequency-dependent selection. In contrast, THE REAL McCOIL often considerably overestimates MOI, but still provides reasonable estimates for low and moderate transmission. Regardless of transmission intensity, results for THE REAL McCOIL indicate that an inaccurate tail at high MOI values is generated, and that at high transmission, an apparently reasonable estimated MOI distribution can arise from some degree of compensation between overestimation and underestimation. As many countries pursue malaria elimination targets, defining the most suitable approach to estimate MOI based on sample size and local transmission intensity is highly recommended for monitoring the impact of intervention programs.
Collapse
Affiliation(s)
- Frédéric Labbé
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, Indianapolis, United States of America
| | - Qi Zhan
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Kathryn E. Tiedje
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Dionne C. Argyropoulos
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mun Hua Tan
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Science, University of Ghana, Legon, Ghana
| | - Karen P. Day
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Australia
- Department of Microbiology and Immunology, Bio21 Institute and Peter Doherty Institute, The University of Melbourne, Melbourne, Australia
| | - Mercedes Pascual
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
3
|
Arowolo A, Rhoda C, Mbele M, Oluwole OG, Khumalo N. A cost-effective method for detecting mutations in the human FAM111B gene associated with POIKTMP syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Abstract
Background
Mutations of the human FAM111B gene are associated with hereditary fibrosing poikiloderma with tendon contracture, myopathy, and pulmonary fibrosis (POIKTMP), a rare and autosomal dominant multi-systemic fibrosing disease. To date, a total of 36 cases are documented, with eleven associated mutations identified and confirmed by Whole-Exome Sequencing and Sanger sequencing. However, these methods require a certain level of expertise. The FAM111B gene was annotated using the SNAPGENE tool to identify various restriction enzymes. The enzymes that cut at the positions where mutations of interest have been reported were selected. The method was implemented using the DNA samples extracted from the skin fibroblast collected from an affected South African family and unrelated control.
Results
The findings showed that of the eleven FAM111B mutational sites investigated with this method, ten mutations can be identified including the known mutation FAM111B NM_198947.4: c.1861T>G (pTyr621Asp) associated with the POIKTMP in South Africa.
Conclusions
Limited access to molecular diagnosis contributes to why POIKTMP is rarely diagnosed. Our study describes an inexpensive PCR–RFLP method to screen for POIKTMP FAM111B gene mutations. The PCR–RFLP can be used as a cost-effective method for diagnosing FAM111B mutations in POIKTMP, and it does not require having robust experience in molecular biology.
Collapse
|
4
|
Minkner R, Boonyakida J, Park EY, Wätzig H. Oligonucleotide separation techniques for purification and analysis: What can we learn for today's tasks? Electrophoresis 2022; 43:2402-2427. [PMID: 36285667 DOI: 10.1002/elps.202200079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022]
Abstract
Nucleic acids are the blueprint of life. They are not only the construction plan of the single cell or higher associations of them, but also necessary for function, communication and regulation. Due to the pandemic, the attention shifted in particular to their therapeutic potential as a vaccine. As pharmaceutical oligonucleotides are unique in terms of their stability and application, special delivery systems were also considered. Oligonucleotide production systems can vary and depend on the feasibility, availability, price and intended application. To achieve good purity, reliable results and match the strict specifications in the pharmaceutical industry, the separation of oligonucleotides is always essential. Besides the separation required for production, additional and specifically different separation techniques are needed for analysis to determine if the product complies with the designated specifications. After a short introduction to ribonucleic acids (RNAs), messenger RNA vaccines, and their production and delivery systems, an overview regarding separation techniques will be provided. This not only emphasises electrophoretic separations but also includes spin columns, extractions, precipitations, magnetic nanoparticles and several chromatographic separation principles, such as ion exchange chromatography, ion-pair reversed-phase, size exclusion and affinity.
Collapse
Affiliation(s)
- Robert Minkner
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Jirayu Boonyakida
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan.,Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hermann Wätzig
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
5
|
Špaček J, Benner SA. Agnostic Life Finder (ALF) for Large-Scale Screening of Martian Life During In Situ Refueling. ASTROBIOLOGY 2022; 22:1255-1263. [PMID: 35796703 DOI: 10.1089/ast.2021.0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Before the first humans depart for Mars in the next decade, hundreds of tons of martian water-ice must be harvested to produce propellant for the return vehicle, a process known as in situ resource utilization (ISRU). We describe here an instrument, the Agnostic Life Finder (ALF), that is an inexpensive life-detection add-on to ISRU. ALF exploits a well-supported view that informational genetic biopolymers in life in water must have two structural features: (1) Informational biopolymers must carry a repeating charge; they must be polyelectrolytes. (2) Their building blocks must fit into an aperiodic crystal structure; the building blocks must be size-shape regular. ALF exploits the first structural feature to extract polyelectrolytes from ∼10 cubic meters of mined martian water by applying a voltage gradient perpendicularly to the water's flow. This gradient diverts polyelectrolytes from the flow toward their respective electrodes (polyanions to the anode, polycations to the cathode), where they are captured in cartridges before they encounter the electrodes. There, they can later be released to analyze their building blocks, for example, by mass spectrometry or nanopore. Upstream, martian cells holding martian informational polyelectrolytes are disrupted by ultrasound. To manage the (unknown) conductivity of the water due to the presence of salts, the mined water is preconditioned by electrodialysis using porous membranes. ALF uses only resources and technology that must already be available for ISRU. Thus, life detection is easily and inexpensively integrated into SpaceX or NASA ISRU missions.
Collapse
Affiliation(s)
- Jan Špaček
- Firebird Biomolecular Sciences, LLC, Alachua, Florida, USA
| | | |
Collapse
|
6
|
Soil CO 2 emission and soil attributes associated with the microbiota of a sugarcane area in southern Brazil. Sci Rep 2021; 11:8325. [PMID: 33859219 PMCID: PMC8050326 DOI: 10.1038/s41598-021-87479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022] Open
Abstract
The spatial structure of soil CO2 emission (FCO2) and soil attributes are affected by different factors in a highly complex way. In this context, this study aimed to characterize the spatial variability patterns of FCO2 and soil physical, chemical, and microbiological attributes in a sugarcane field area after reform activities. The study was conducted in an Oxisol with the measurement of FCO2, soil temperature (Ts), and soil moisture (Ms) in a regular 90 × 90-m grid with 100 sampling points. Soil samples were collected at each sampling point at a depth of 0–0.20 m to determine soil physical (density, macroporosity, and microporosity), particle size (sand, silt, and clay), and chemical attributes (soil organic matter, pH, P, K, Ca, Mg, Al, H + Al, cation exchange capacity, and base saturation). Geostatistical analyses were performed to assess the spatial variability and map soil attributes. Two regions (R1 and R2) with contrasting emission values were identified after mapping FCO2. The abundance of bacterial 16S rRNA, pmoA, and nifH genes, determined by real-time quantitative PCR (qPCR), enzymatic activity (dehydrogenase, urease, cellulase, and amylase), and microbial biomass carbon were determined in R1 and R2. The mean values of FCO2 (2.91 µmol m−2 s−1), Ts (22.6 °C), and Ms (16.9%) over the 28-day period were similar to those observed in studies also conducted under Oxisols in sugarcane areas and conventional soil tillage. The spatial pattern of FCO2 was similar to that of macropores, air-filled pore space, silt content, soil organic matter, and soil carbon decay constant. No significant difference was observed between R1 and R2 for the copy number of bacterial 16S rRNA and nifH genes, but the results of qPCR for the pmoA gene presented differences (p < 0.01) between regions. The region R1, with the highest FCO2 (2.9 to 4.2 µmol m−2 s−1), showed higher enzymatic activity of dehydrogenase (33.02 µg TPF g−1 dry soil 24 h−1), urease (41.15 µg NH4–N g−1 dry soil 3 h−1), amylase (73.84 µg glucose g−1 dry soil 24 h−1), and microbial biomass carbon (41.35 µg C g−1 soil) than R2, which had the lowest emission (1.9 to 2.7 µmol m−2 s−1). In addition, the soil C/N ratio was higher in R2 (15.43) than in R1 (12.18). The spatial pattern of FCO2 in R1 and R2 may not be directly related to the total amount of the microbial community (bacterial 16S rRNA) in the soil but to the specific function that these microorganisms play regarding soil carbon degradation (pmoA).
Collapse
|
7
|
Csibra E, Renders M, Pinheiro VB. Bacterial Cell Display as a Robust and Versatile Platform for Engineering Low-Affinity Ligands and Enzymes. Chembiochem 2020; 21:2844-2853. [PMID: 32413179 PMCID: PMC7586821 DOI: 10.1002/cbic.202000203] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Indexed: 12/31/2022]
Abstract
Directed evolution has been remarkably successful at expanding the chemical and functional boundaries of biology. That progress is heavily dependent on the robustness and flexibility of the available selection platforms, given the significant cost to (re)develop a given platform to target a new desired function. Bacterial cell display has a significant track record as a viable strategy for the engineering of mesophilic enzymes, as enzyme activity can be probed directly and free from interference from the cellular milieu, but its adoption has lagged behind other display-based methods. Herein, we report the development of SNAP as a quantitative reporter for bacterial cell display, which enables fast troubleshooting and the systematic development of the display-based selection platform, thus improving its robustness. In addition, we demonstrate that even weak interactions between displayed proteins and nucleic acids can be harnessed for the specific labelling of bacterial cells, allowing functional characterisation of DNA binding proteins and enzymes, thus making it a highly flexible platform for these biochemical functions. Together, this establishes bacterial display as a robust and flexible platform, ideally suited for the systematic engineering of ligands and enzymes needed for XNA molecular biology.
Collapse
Affiliation(s)
- Eszter Csibra
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Current address: Imperial College LondonExhibition RoadLondonSW7 2AZUK
| | - Marleen Renders
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Current address: Touchlight Genetics Ltd. Morelands & Riverdale BuildingsLower Sunbury RoadHamptonTW12 2ERUK
| | - Vitor B. Pinheiro
- University College LondonDepartment of Structural and Molecular BiologyGower StreetLondonWC1E 6BTUK
- Rega Institute for Medical ResearchKU LeuvenHerestraat, 49 box 10413000LeuvenBelgium
- Institute of Structural and Molecular BiologyBirkbeck CollegeUniversity of LondonMalet StreetLondonWC1E 7HXUK
| |
Collapse
|
8
|
The effect of rs1076560 (DRD2) and rs4680 (COMT) on tardive dyskinesia and cognition in schizophrenia subjects. Psychiatr Genet 2020; 30:125-135. [PMID: 32931693 PMCID: PMC10111058 DOI: 10.1097/ypg.0000000000000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of the study is to test the association of a functional variant each in DRD2 and COMT genes with schizophrenia and its endophenotypes. BASIC METHODS Effect of two functional variants rs1076560 in DRD2 and rs4680 in COMT on (1) schizophrenia (502 cases, 448 controls) diagnosed by Diagnostic and Statistical Manual of Mental Disorders-IV criteria and in subsets with (2) tardive dyskinesia (80 positive, 103 negative), assessed by Abnormal Involuntary Movement Scale (AIMS), positive and negative symptoms assessed by Positive and Negative Syndrome Scale (PANSS) and (3) cognition (299 cases, 245 controls), estimated by Penn Computerized Neurocognitive Battery, were analysed either using analysis of variance (ANOVA) or regression analysis. MAIN RESULTS No association of two SNPs with schizophrenia, but association of rs4680 (P < 0.05) with tardive dyskinesia was observed. On ANOVA, main effect of smoking [F(2,148) = 16.3; P = 3.9 × 10]; rs4680 [F(2,148) = 3.3; P = 0.04] and interaction effect of tardive dyskinesia-status*Smoking [F(2,148) = 5.4, P = 0.006]; Smoking*rs1076560 [F(3,148) = 3.6; P = 0.01]; Smoking*rs4680 [F(4,148) = 5.3; P = 4.7 × 10] were significant with AIMS tardive dyskinesia score. The main effect of rs1076560 [F(2,148) = 4.5; P = 0.013] and rs4680 [F(2,148) = 4.0; P = 0.02] were significant with limb truncal tardive dyskinesia. Allelic/genotypic (P = 0.004/P = 0.01) association of rs1076560 with negative scale of PANSS in tardive dyskinesia-negative; diminished expression factor of PANSS in tardive dyskinesia-negative subcohort (allelic/genotypic P = 3.3 × 10/6.6 × 10) and tardive dyskinesia cohorts (P = 0.003/0.002); genotypic association (P = 0.05) with disorganised/concrete factor in tardive dyskinesia-positive subcohorts were observed by regression analysis using gPLINKv2.050. Further allelic/genotypic (P = 0.02) association of rs4680 with depressed factor of PANSS in tardive dyskinesia cohort was observed. Allelic/genotypic association of rs1076560 with abstraction and mental flexibilityaccuracy (P = 0.03/0.04), abstraction and mental flexibilityefficiency (P = 0.01/0.02); allelic association with spatial abilityprocessing speed (P = 0.03), emotionefficiency (P = 0.05); and with spatial abilityefficiency (genotypic, P = 0.05) in healthy controls and allelic association of rs4680 with emotionefficiency in cases with schizophrenia (P = 0.04) were notable. PRINCIPAL CONCLUSION Dopaminergic genes seem to contribute to tardive dyskinesia and cognition warranting replication.
Collapse
|
9
|
Abstract
The use of RNA electrophoretic mobility shift assays (REMSAs) for analysis of RNA-protein interactions have been limited to lengthy assay time and qualitative assessment. To vastly improve assay efficiency, feasibility and quality of data procured from REMSAs, we combine here some of the best-known labeling and electrophoretic techniques. Nucleic acid fragments are end-labeled with fluorescent tags, as opposed to the radioactive or biotin tags. The fluorescent probes may be detected directly from the electrophoresis gel, eliminating the need for cumbersome membrane transfer and immunoblotting. Modifying the REMSA protocol to include low-molarity, lithium borate conductive media and near-infrared-labeled probes allows for a reduction assay time, quantitative comparison between experimental conditions and crisp band resolution (i.e., optimized results).
Collapse
|
10
|
Laroche A, Frick M, Graf RJ, Larsen J, Laurie JD. Pyramiding disease resistance genes in elite winter wheat germplasm for Western Canada. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2019.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Stawicki TM, Linbo T, Hernandez L, Parkinson L, Bellefeuille D, Rubel EW, Raible DW. The role of retrograde intraflagellar transport genes in aminoglycoside-induced hair cell death. Biol Open 2019; 8:bio.038745. [PMID: 30578252 PMCID: PMC6361216 DOI: 10.1242/bio.038745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sensory hair cells are susceptible to numerous insults, including certain therapeutic medications like aminoglycoside antibiotics, and hearing and balance disorders are often a dose-limiting side effect of these medications. We show that mutations in multiple genes in both the retrograde intraflagellar transport (IFT) motor and adaptor complexes lead to resistance to aminoglycoside-induced hair cell death. These mutations also lead to defects in the entry of both aminoglycosides and the vital dye FM1-43 into hair cells, both processes that depend on hair cell mechanotransduction activity. However, the trafficking of proteins important for mechanotransduction activity is not altered by these mutations. Our data suggest that both retrograde IFT motor and adaptor complex genes are playing a role in aminoglycoside toxicity through affecting aminoglycoside uptake into hair cells. Summary: Here we show that both retrograde intraflagellar transport motor proteins and IFT-A adaptor molecules play a role in aminoglycoside-induced hair cell death, seemingly through regulating aminoglycoside uptake.
Collapse
Affiliation(s)
- Tamara M Stawicki
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA .,Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Tor Linbo
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Liana Hernandez
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Lauren Parkinson
- Program in Neuroscience, Lafayette College, Easton, PA 18042, USA
| | | | - Edwin W Rubel
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - David W Raible
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
13
|
Nevler A, Muller AJ, Cozzitorto JA, Goetz A, Winter JM, Yeo TP, Lavu H, Yeo CJ, Prendergast GC, Brody JR. A Sub-Type of Familial Pancreatic Cancer: Evidence and Implications of Loss-of-Function Polymorphisms in Indoleamine-2,3-Dioxygenase-2. J Am Coll Surg 2018; 226:596-603. [PMID: 29426021 PMCID: PMC6047862 DOI: 10.1016/j.jamcollsurg.2017.12.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Variation in an individual’s genetic status can impact the development of pancreatic ductal adenocarcinoma; however, the m ajority of familial pancreatic cancers (FPC) cannot yet be attributed to a specific inherited mutation. We present data suggesting a correlation between loss-of-function single nucleotide polymorphisms (SNPs) in an immune regulator gene, indoleamine-2,3-dioxygenase-2 (IDO2), and an increased risk of FPC. STUDY DESIGN Germline DNA from patients who underwent resection for pancreatic ductal adenocarcinoma (n = 79) was sequenced for the IDO2 SNPs R248W and Y359Stop. Genotypes resulting in inactivation of IDO2 (Y325X homozygous, R248W homozygous) were labeled as homozygous, and the other genotypes were grouped as wild-type or heterozygous. Genotype distributions of each SNP were analyzed for Hardy-Weinberg deviation. A genotype frequency set from the 1000 Genomes Project (n = 99) was used as a genetic control for genotype distribution comparisons. RESULTS A significant 2-fold increase in the overall prevalence of the Y359Stop homozygous genotype compared with the expected Hardy-Weinberg equilibrium was noted (p < 0.05). Familial pancreatic cancer was noted in 15 cases (19%) and comparison of the FPC cohort set to the genetic control set showed a 3-fold increase in Y359Stop homozygous rates (p = 0.054). Overall in our cohort, the homozygous genotype group was associated with increased risk of FPC (odds ratio 5.4; 95% CI 1.6 to 17.6; p < 0.01). Sex, age at diagnosis, and history of tobacco use were not found to be significantly associated with FPC. CONCLUSIONS Our preliminary data suggest a strong association between the IDO2 inactivating Y359Stop SNP and an increased risk of FPC when compared with the control group. Future studies will evaluate the value of IDO2 genotyping as a prognostic, early detection marker for pancreatic ductal adenocarcinoma and a predictive marker for novel immune checkpoint therapies.
Collapse
Affiliation(s)
- Avinoam Nevler
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Alexander J Muller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Lankenau Institute for Medical Research, Wynnewood, PA
| | - Joseph A Cozzitorto
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Austin Goetz
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA
| | - Jordan M Winter
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Theresa P Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Harish Lavu
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Charles J Yeo
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - George C Prendergast
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; Lankenau Institute for Medical Research, Wynnewood, PA
| | - Jonathan R Brody
- Jefferson Pancreas, Biliary and Related Cancer Center and Department of Surgery, Thomas Jefferson University, Philadelphia, PA; Sidney Kimmel Medical College and Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
14
|
Ream JA, Lewis LK, Lewis KA. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions. Anal Biochem 2016; 511:36-41. [PMID: 27495142 DOI: 10.1016/j.ab.2016.07.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 11/19/2022]
Abstract
Interactions between proteins and nucleic acids are frequently analyzed using electrophoretic mobility shift assays (EMSAs). This technique separates bound protein:nucleic acid complexes from free nucleic acids by electrophoresis, most commonly using polyacrylamide gels. The current study utilizes recent advances in agarose gel electrophoresis technology to develop a new EMSA protocol that is simpler and faster than traditional polyacrylamide methods. Agarose gels are normally run at low voltages (∼10 V/cm) to minimize heating and gel artifacts. In this study we demonstrate that EMSAs performed using agarose gels can be run at high voltages (≥20 V/cm) with 0.5 × TB (Tris-borate) buffer, allowing for short run times while simultaneously yielding high band resolution. Several parameters affecting band and image quality were optimized for the procedure, including gel thickness, agarose percentage, and applied voltage. Association of the siRNA-binding protein p19 with its target RNA was investigated using the new system. The agarose gel and conventional polyacrylamide gel methods generated similar apparent binding constants in side-by-side experiments. A particular advantage of the new approach described here is that the short run times (5-10 min) reduce opportunities for dissociation of bound complexes, an important concern in non-equilibrium nucleic acid binding experiments.
Collapse
Affiliation(s)
- Jennifer A Ream
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, 601 University Dr., San Marcos, TX, 78666, USA.
| |
Collapse
|
15
|
Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish. G3-GENES GENOMES GENETICS 2016; 6:2225-35. [PMID: 27207957 PMCID: PMC4938675 DOI: 10.1534/g3.116.030080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio) we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip), and the ciliary transition zone (cc2d2a, mks1, and cep290) lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study.
Collapse
|
16
|
Jobling MG. The chromosomal nature of LT-II enterotoxins solved: a lambdoid prophage encodes both LT-II and one of two novel pertussis-toxin-like toxin family members in type II enterotoxigenic Escherichia coli. Pathog Dis 2016; 74:ftw001. [PMID: 26755534 PMCID: PMC4957749 DOI: 10.1093/femspd/ftw001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2016] [Indexed: 01/06/2023] Open
Abstract
Heat-labile enterotoxins (LT) of enterotoxigenic Escherichia coli (ETEC) are structurally and functionally related to cholera toxin (CT). LT-I toxins are plasmid-encoded and flanked by IS elements, while LT-II toxins of type II ETEC are chromosomally encoded with flanking genes that appear phage related. Here, I determined the complete genomic sequence of the locus for the LT-IIa type strain SA53, and show that the LT-IIa genes are encoded by a 51 239 bp lambdoid prophage integrated at the rac locus, the site of a defective prophage in E. coli K12 strains. Of 50 LT-IIa and LT-IIc, 46 prophages also encode one member of two novel two-gene ADP-ribosyltransferase toxin families that are both related to pertussis toxin, which I named eplBA or ealAB, respectively. The eplBA and ealAB genes are syntenic with the Shiga toxin loci in their lambdoid prophages of the enteric pathogen enterohemorrhagic E. coli. These novel AB5 toxins show pertussis-toxin-like activity on tissue culture cells, and like pertussis toxin bind to sialic acid containing glycoprotein ligands. Type II ETEC are the first mucosal pathogens known to simultaneously produce two ADP-ribosylating toxins predicted to act on and modulate activity of both stimulatory and inhibitory alpha subunits of host cell heterotrimeric G-proteins. Two novel pertussis-toxin-like toxins are also present in the genome of the prophage that also encodes the LT-II enterotoxin genes in type II enterotoxigenic Escherichi coli.
Collapse
Affiliation(s)
- Michael G Jobling
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E 19th Ave, Aurora CO 80045, USA
| |
Collapse
|
17
|
|
18
|
Ghosh S, Bhunia AK, Paun BC, Gilbert SF, Dhru U, Patel K, Kern SE. Genome annotation by shotgun inactivation of a native gene in hemizygous cells: application to BRCA2 with implication of hypomorphic variants. Hum Mutat 2015; 36:260-9. [PMID: 25451944 DOI: 10.1002/humu.22736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/19/2014] [Indexed: 12/30/2022]
Abstract
The greatest interpretive challenge of modern medicine may be to functionally annotate the vast variation of human genomes. Demonstrating a proposed approach, we created a library of BRCA2 exon 27 shotgun-mutant plasmids including solitary and multiplex mutations to generate human knockin clones using homologous recombination. This 55-mutation, 13-clone syngeneic variance library (SyVaL) comprised severely affected clones having early-stop nonsense mutations, functionally hypomorphic clones having multiple missense mutations emphasizing the potential to identify and assess hypomorphic mutations in novel proteomic and epidemiologic studies, and neutral clones having multiple missense mutations. Efficient coverage of nonessential amino acids was provided by mutation multiplexing. Severe mutations were distinguished from hypomorphic or neutral changes by chemosensitivity assays (hypersensitivity to mitomycin C and acetaldehyde), by analysis of RAD51 focus formation, and by mitotic multipolarity. A multiplex unbiased approach of generating all-human SyVaLs in medically important genes, with random mutations in native genes, would provide databases of variants that could be functionally annotated without concerns arising from exogenous cDNA constructs or interspecies interactions, as a basis for subsequent proteomic domain mapping or clinical calibration if desired. Such gene-irrelevant approaches could be scaled up for multiple genes of clinical interest, providing distributable cellular libraries linked to public-shared functional databases.
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, 21287
| | | | | | | | | | | | | |
Collapse
|
19
|
Efendi F, Handajani R, Nursalam N. Searching for the best agarose candidate from genus Gracilaria, Eucheuma, Gelidium and local brands. Asian Pac J Trop Biomed 2015. [DOI: 10.1016/j.apjtb.2015.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
20
|
Why Johnny can't clone: Common pitfalls and not so common solutions. Biotechniques 2015; 59:IV-XIII. [PMID: 26345511 DOI: 10.2144/000114324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/14/2015] [Indexed: 11/23/2022] Open
Abstract
The demand for cloned genes has increased incessantly over the past 32 years, but some who need recombinant plasmids struggle to produce them. While the pitfalls of traditional ligation-dependent cloning are non-trivial, most can be avoided with sufficient effort and attention to detail. Here, the chemical properties of enzymes and reagents used to clone genes into plasmids are reviewed to draw attention to the most pertinent details. In particular, the virtues of agarose gel electrophoresis monitoring, the nature of the interactions between DNA and silica, and challenges associated with thermostable DNA polymerases, restriction endonucleases, and T4 DNA ligase are explored. Common pitfalls associated with Escherichia coli transformation and DNA modifying enzymes are also described. A thorough understanding of established methods is essential for troubleshooting, implementing alternative approaches, and inventing new techniques in response to changes in technology and demand.
Collapse
|
21
|
Charlier JB, Polese C, Nouet C, Carnol M, Bosman B, Krämer U, Motte P, Hanikenne M. Zinc triggers a complex transcriptional and post-transcriptional regulation of the metal homeostasis gene FRD3 in Arabidopsis relatives. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3865-78. [PMID: 25900619 PMCID: PMC4473987 DOI: 10.1093/jxb/erv188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, FRD3 (FERRIC CHELATE REDUCTASE DEFECTIVE 3) plays a central role in metal homeostasis. FRD3 is among a set of metal homeostasis genes that are constitutively highly expressed in roots and shoots of Arabidopsis halleri, a zinc hyperaccumulating and hypertolerant species. Here, we examined the regulation of FRD3 by zinc in both species to shed light on the evolutionary processes underlying the evolution of hyperaccumulation in A. halleri. We combined gene expression studies with the use of β-glucuronidase and green fluorescent protein reporter constructs to compare the expression profile and transcriptional and post-transcriptional regulation of FRD3 in both species. The AtFRD3 and AhFRD3 genes displayed a conserved expression profile. In A. thaliana, alternative transcription initiation sites from two promoters determined transcript variants that were differentially regulated by zinc supply in roots and shoots to favour the most highly translated variant under zinc-excess conditions. In A. halleri, a single transcript variant with higher transcript stability and enhanced translation has been maintained. The FRD3 gene thus undergoes complex transcriptional and post-transcriptional regulation in Arabidopsis relatives. Our study reveals that a diverse set of mechanisms underlie increased gene dosage in the A. halleri lineage and illustrates how an environmental challenge can alter gene regulation.
Collapse
Affiliation(s)
- Jean-Benoit Charlier
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Catherine Polese
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Cécile Nouet
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium
| | - Monique Carnol
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, B-4000 Liège, Belgium
| | - Bernard Bosman
- Laboratory of Plant and Microbial Ecology, Department of Biology, Ecology, Evolution, University of Liège, B-4000 Liège, Belgium
| | - Ute Krämer
- Department of Plant Physiology, Ruhr University Bochum, D-44801 Bochum, Germany
| | - Patrick Motte
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium
| | - Marc Hanikenne
- Functional Genomics and Plant Molecular Imaging, Center for Protein Engineering (CIP), Department of Life Sciences, University of Liège, B-4000 Liège, Belgium PhytoSYSTEMS, University of Liège, B-4000 Liège, Belgium
| |
Collapse
|
22
|
Sanderson BA, Araki N, Lilley JL, Guerrero G, Lewis LK. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis. Anal Biochem 2014; 454:44-52. [PMID: 24637158 PMCID: PMC4021863 DOI: 10.1016/j.ab.2014.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 11/29/2022]
Abstract
Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution.
Collapse
Affiliation(s)
- Brian A Sanderson
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Naoko Araki
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Jennifer L Lilley
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - Gilberto Guerrero
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA
| | - L Kevin Lewis
- Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX 78666, USA.
| |
Collapse
|
23
|
Zhou W, Zhou Y, Wu J, Liu Z, Zhao H, Liu J, Ding J. Aptamer-nanoparticle bioconjugates enhance intracellular delivery of vinorelbine to breast cancer cells. J Drug Target 2014; 22:57-66. [PMID: 24156476 DOI: 10.3109/1061186x.2013.839683] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Targeted uptake of therapeutic nanoparticles in cell- or tissue-specific manner is an attractive technology since they can offer greater efficacy and reduce cytotoxicity on peripheral healthy tissues. In this study, AS1411 (AP), a DNA aptamer specifically binding to nucleolin that is overexpressed on the plasma membrane of breast cancer (BC) cells, was exploited as the targeting ligand of a nanoparticle-based drug delivery system. Vinorelbine (VRL) loaded PLGA-PEG nanoparticles (NP) were formulated by an emulsion/solvent evaporation method, and AP was conjugated to the particle surface using the EDC/NHS technique. The drug-loading efficiency and in vitro drug release studies were measured using HPLC. The resulting AP-NP/VRL formed spherical nanoparticles (<200 nm) with drug loading of about 7% and a stable in vitro drug release profile. Fluorescence microscopy was used to confirm the cellular uptake of the particles and targeted drug delivery. Moreover, cytotoxicity studies were carried out in two different cell lines, MDA-MB-231 BC cells and MCF-10A normal epithelial cells. AP-nucleolin interaction significantly enhanced in vitro cytotoxicity to nucleolin overexpressed cells, as compared with non-targeted nanoparticles, while there was no significant difference in cytotoxicity of the two types of nanoparticles on the nucleolin negative cells. The results further support that AS1411-functionalized nanoparticles are potential carrier candidates for targeted drug delivery towards BC.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University , Changsha, Hunan Province , PR China
| | | | | | | | | | | | | |
Collapse
|
24
|
Richardson JJ, Liang K, Kempe K, Ejima H, Cui J, Caruso F. Immersive polymer assembly on immobilized particles for automated capsule preparation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:6874-6878. [PMID: 24123174 DOI: 10.1002/adma.201302696] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/31/2013] [Indexed: 06/02/2023]
Abstract
We report a versatile approach for polymer capsule preparation using immobilized particles, which are immersed into polymer solutions either manually or by using an automated robotic dipping machine. This technique produces polyelectrolyte capsules with improved retention over conventionally prepared capsules. Additionally, responsive hydrogel capsules of different diameter can be prepared simultaneously.
Collapse
Affiliation(s)
- Joseph J Richardson
- Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Moore AC, Mark TE, Hogan AK, Topczewski J, LeClair EE. Peripheral axons of the adult zebrafish maxillary barbel extensively remyelinate during sensory appendage regeneration. J Comp Neurol 2013; 520:4184-203. [PMID: 22592645 DOI: 10.1002/cne.23147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myelination is a cellular adaptation allowing rapid conduction along axons. We have investigated peripheral axons of the zebrafish maxillary barbel (ZMB), an optically clear sensory appendage. Each barbel carries taste buds, solitary chemosensory cells, and epithelial nerve endings, all of which regenerate after amputation (LeClair and Topczewski [2010] PLoS One 5:e8737). The ZMB contains axons from the facial nerve; however, myelination within the barbel itself has not been established. Transcripts of myelin basic protein (mbp) are expressed in normal and regenerating adult barbels, indicating activity in both maintenance and repair. Myelin was confirmed in situ by using toluidine blue, an anti-MBP antibody, and transmission electron microscopy (TEM). The adult ZMB contains ∼180 small-diameter axons (<2 μm), approximately 60% of which are myelinated. Developmental myelination was observed via whole-mount immunohistochemistry 4-6 weeks postfertilization, showing myelin sheaths lagging behind growing axons. Early-regenerating axons (10 days postsurgery), having no or few myelin layers, were disorganized within a fibroblast-rich collagenous scar. Twenty-eight days postsurgery, barbel axons had grown out several millimeters and were organized with compact myelin sheaths. Fiber types and axon areas were similar between normal and regenerated tissue; within 4 weeks, regenerating axons restored ∼85% of normal myelin thickness. Regenerating barbels express multiple promyelinating transcription factors (sox10, oct6 = pou3f1; krox20a/b = egr2a/b) typical of Schwann cells. These observations extend our understanding of the zebrafish peripheral nervous system within a little-studied sensory appendage. The accessible ZMB provides a novel context for studying axon regeneration, Schwann cell migration, and remyelination in a model vertebrate.
Collapse
Affiliation(s)
- Alex C Moore
- Department of Biological Sciences, DePaul University, Chicago, Illinois 60614, USA
| | | | | | | | | |
Collapse
|
26
|
Dorfman KD, King SB, Olson DW, Thomas JDP, Tree DR. Beyond gel electrophoresis: microfluidic separations, fluorescence burst analysis, and DNA stretching. Chem Rev 2013; 113:2584-667. [PMID: 23140825 PMCID: PMC3595390 DOI: 10.1021/cr3002142] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Scott B. King
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Daniel W. Olson
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Joel D. P. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| | - Douglas R. Tree
- Department of Chemical Engineering and Materials Science, University of Minnesota — Twin Cities, 421 Washington Ave. SE, Minneapolis, MN 55455, Phone: 1-612-624-5560. Fax: 1-612-626-7246
| |
Collapse
|
27
|
Bischoff SR, Tsai SQ, Hardison NE, Motsinger-Reif AA, Freking BA, Nonneman DJ, Rohrer GA, Piedrahita JA. Differences in X-chromosome transcriptional activity and cholesterol metabolism between placentae from swine breeds from Asian and Western origins. PLoS One 2013; 8:e55345. [PMID: 23383161 PMCID: PMC3561265 DOI: 10.1371/journal.pone.0055345] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/21/2012] [Indexed: 12/19/2022] Open
Abstract
To gain insight into differences in placental physiology between two swine breeds noted for their dissimilar reproductive performance, that is, the Chinese Meishan and white composite (WC), we examined gene expression profiles of placental tissues collected at 25, 45, 65, 85, and 105 days of gestation by microarrays. Using a linear mixed model, a total of 1,595 differentially expressed genes were identified between the two pig breeds using a false-discovery rate q-value ≤0.05. Among these genes, we identified breed-specific isoforms of XIST, a long non-coding RNA responsible X-chromosome dosage compensation in females. Additionally, we explored the interaction of placental gene expression and chromosomal location by DIGMAP and identified three Sus scrofa X chromosomal bands (Xq13, Xq21, Xp11) that represent transcriptionally active clusters that differ between Meishan and WC during placental development. Also, pathway analysis identified fundamental breed differences in placental cholesterol trafficking and its synthesis. Direct measurement of cholesterol confirmed that the cholesterol content was significantly higher in the Meishan versus WC placentae. Taken together, this work identifies key metabolic pathways that differ in the placentae of two swine breeds noted for differences in reproductive prolificacy.
Collapse
Affiliation(s)
- Steve R. Bischoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Shengdar Q. Tsai
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Nicholas E. Hardison
- Program in Statistical Genetics, Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Alison A. Motsinger-Reif
- Program in Statistical Genetics, Department of Statistics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Bradley A. Freking
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Dan J. Nonneman
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Gary A. Rohrer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, Nebraska, United States of America
| | - Jorge A. Piedrahita
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
28
|
Duszynski RJ, Topczewski J, LeClair EE. Divergent requirements for fibroblast growth factor signaling in zebrafish maxillary barbel and caudal fin regeneration. Dev Growth Differ 2013; 55:282-300. [PMID: 23350700 DOI: 10.1111/dgd.12035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 12/14/2012] [Accepted: 12/14/2012] [Indexed: 12/31/2022]
Abstract
The zebrafish maxillary barbel is an integumentary organ containing skin, glands, pigment cells, taste buds, nerves, and endothelial vessels. The maxillary barbel can regenerate (LeClair & Topczewski 2010); however, little is known about its molecular regulation. We have studied fibroblast growth factor (FGF) pathway molecules during barbel regeneration, comparing this system to a well-known regenerating appendage, the zebrafish caudal fin. Multiple FGF ligands (fgf20a, fgf24), receptors (fgfr1-4) and downstream targets (pea3, il17d) are expressed in normal and regenerating barbel tissue, confirming FGF activation. To test if specific FGF pathways were required for barbel regeneration, we performed simultaneous barbel and caudal fin amputations in two temperature-dependent zebrafish lines. Zebrafish homozygous for a point mutation in fgf20a, a factor essential for caudal fin blastema formation, regrew maxillary barbels normally, indicating that the requirement for this ligand is appendage-specific. Global overexpression of a dominant negative FGF receptor, Tg(hsp70l:dn-fgfr1:EGFP)(pd1) completely blocked fin outgrowth but only partially inhibited barbel outgrowth, suggesting reduced requirements for FGFs in barbel tissue. Maxillary barbels expressing dn-fgfr1 regenerated peripheral nerves, dermal connective tissue, endothelial tubes, and a glandular epithelium; in contrast to a recent report in which dn-fgfr1 overexpression blocks pharyngeal taste bud formation in zebrafish larvae (Kapsimali et al. 2011), we observed robust formation of calretinin-positive tastebuds. These are the first experiments to explore the molecular mechanisms of maxillary barbel regeneration. Our results suggest heterogeneous requirements for FGF signaling in the regeneration of different zebrafish appendages (caudal fin versus maxillary barbel) and taste buds of different embryonic origin (pharyngeal endoderm versus barbel ectoderm).
Collapse
Affiliation(s)
- Robert J Duszynski
- Department of Biological Sciences, DePaul University, Chicago, IL 60614, USA
| | | | | |
Collapse
|
29
|
Isolation and purification of microbial community DNA from soil naturally enriched for chitin. Biologia (Bratisl) 2012. [DOI: 10.2478/s11756-012-0059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Scrimieri F, Calhoun ES, Patel K, Gupta R, Huso DL, Hruban RH, Kern SE. FAM190A rearrangements provide a multitude of individualized tumor signatures and neo-antigens in cancer. Oncotarget 2011; 2:69-75. [PMID: 21378412 PMCID: PMC3167148 DOI: 10.18632/oncotarget.220] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We found FAM190A transcripts to have internal rearrangements in 40% (19/48) of unselected human cancers. Most of these tumors (84%) had in-frame structures, 94% of which involved deletion of exon 9. The FAM190A gene is located at 4q22.1 in a region of common fragility, FRA4F. Although normally stable in somatic cells, common fragile sites can be hotspots of rearrangement in cancer. The genomic deletion patterns observed at some sites, including FRA4F at 4q22.1, are proposed to be the result of selection for disrupted tumor-suppressor genes. Our evidence, however, indicated additional patterns for FAM190A. We found genomic deletions accounted for some FAM190A in-frame structures, and cases pre-selected for FAM190A genomic deletions had a yet higher prevalence of FAM190A rearrangements. Our evidence of widespread in-frame heterozygous and homozygous rearrangements affecting this gene in tumors of multiple types leads speculation on structural grounds that the mutant forms may retain, provide new, or possibly convey dominant-negative functions. Although a functionally uncharacterized gene, it is evolutionary conserved across vertebrates. In addition to its potential oncogenic role, the in-frame deletions predict the formation of cancer-specific FAM190A peptide sequences (neo-antigens) with potential diagnostic and therapeutic usefulness.
Collapse
Affiliation(s)
- Francesca Scrimieri
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Li Z, Dou X, Ni Y, Sumitomo K, Yamaguchi Y. Acetic acid denaturing pulsed field capillary electrophoresis for RNA separation. Electrophoresis 2010; 31:3531-6. [DOI: 10.1002/elps.201000175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Mrotzek G, Haryanti, Koesharyani I, Tretyakov AN, Sugama K, Saluz HP. Fast short-fragment PCR for rapid and sensitive detection of shrimp viruses. J Virol Methods 2010; 168:262-6. [DOI: 10.1016/j.jviromet.2010.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 04/30/2010] [Accepted: 05/06/2010] [Indexed: 11/26/2022]
|
33
|
Olieric N, Kuchen M, Wagen S, Sauter M, Crone S, Edmondson S, Frey D, Ostermeier C, Steinmetz MO, Jaussi R. Automated seamless DNA co-transformation cloning with direct expression vectors applying positive or negative insert selection. BMC Biotechnol 2010; 10:56. [PMID: 20691119 PMCID: PMC2924254 DOI: 10.1186/1472-6750-10-56] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 08/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular DNA cloning is crucial to many experiments and with the trend to higher throughput of modern approaches automated techniques are urgently required. We have established an automated, fast and flexible low-cost expression cloning approach requiring only vector and insert amplification by PCR and co-transformation of the products. RESULTS Our vectors apply positive selection for the insert or negative selection against empty vector molecules and drive strong expression of target proteins in E.coli cells. Variable tags are available both in N-terminal or C-terminal position. A newly developed beta-lactamase (DeltaW290) selection cassette contains a segment inside the beta-lactamase open reading frame encoding a stretch of hydrophilic amino acids that result in a T7 promoter when back-translated. This position of the promoter permits positive selection and attenuated expression of fusion proteins with C-terminal tags. We have tested eight vectors by inserting six target sequences of variable length, provenience and function. The target proteins were cloned, expressed and detected using an automated Tecan Freedom Evo II liquid handling work station. Only two colonies had to be picked to score with 85% correct inserts while 80% of those were positive in expression tests. CONCLUSIONS Our results establish co-transformation and positive/negative selection cloning in conjunction with the provided vectors and selection cassettes as an automatable alternative to commercialized high-throughput cloning systems like Gateway or ligase-independent cloning (LIC) .
Collapse
Affiliation(s)
- Natacha Olieric
- Paul Scherrer Institut, Biomolecular Research, Villigen PSI, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Singhal H, Ren YR, Kern SE. Improved DNA electrophoresis in conditions favoring polyborates and lewis acid complexation. PLoS One 2010; 5:e11318. [PMID: 20593002 PMCID: PMC2892876 DOI: 10.1371/journal.pone.0011318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 06/07/2010] [Indexed: 11/19/2022] Open
Abstract
Spatial compression among the longer DNA fragments occurs during DNA electrophoresis in agarose and non-agarose gels when using certain ions in the conductive buffer, impairing the range of fragment sizes resolved well in a single gel. Substitutions using various polyhydroxyl anions supported the underlying phenomenon as the complexation of Lewis acids to DNA. We saw significant improvements using conditions (lithium borate 10 mM cations, pH 6.5) favoring the formation of borate polyanions and having lower conductance and Joule heating, delayed electrolyte exhaustion, faster electrophoretic run-speed, and sharper separation of DNA bands from 100 bp to 12 kb in a single run.
Collapse
Affiliation(s)
- Hari Singhal
- Department of Biomedical Engineering, The Johns Hopkins University and the Sidney Kimmel Comprehensive Center at Johns Hopkins, Baltimore, Maryland, United States of America
- Department of Oncology, The Johns Hopkins University and the Sidney Kimmel Comprehensive Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Yunzhao R. Ren
- Department of Oncology, The Johns Hopkins University and the Sidney Kimmel Comprehensive Center at Johns Hopkins, Baltimore, Maryland, United States of America
| | - Scott E. Kern
- Department of Oncology, The Johns Hopkins University and the Sidney Kimmel Comprehensive Center at Johns Hopkins, Baltimore, Maryland, United States of America
| |
Collapse
|
35
|
Mitchell K, Iadarola MJ. RT-PCR analysis of pain genes: use of gel-based RT-PCR for studying induced and tissue-enriched gene expression. Methods Mol Biol 2010; 617:279-95. [PMID: 20336429 PMCID: PMC3417750 DOI: 10.1007/978-1-60327-323-7_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Frequently, it is important to ascertain whether a molecule that is involved in one model of pain is also involved in other models of pain. Similarly, it may be important to determine whether a molecule involved in nociception in one tissue is also expressed in other tissues and to ascertain the degree of enrichment. Additionally, before initiating a complex set of experiments or purchasing an expensive immunoassay kit, it may be useful to obtain initial supporting evidence to justify the time and money. Is the transcript for the target receptor, protein, or peptide precursor present in, for example, the dorsal root ganglion? And, if present, how abundant is it? Here is where the power of PCR can be applied to obtain a quick but informative answer. In this chapter, we mainly detail the use of gel-based RT-PCR and also provide suggestions on tissue dissection and interpretation of results. The use of gel-based RT-PCR can address many of the questions of abundance or tissue specificity with a minimum of expense and time.
Collapse
Affiliation(s)
- Kendall Mitchell
- Neurobiology and Pain Therapeutics Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
36
|
Witkiewicz AK, Costantino CL, Metz R, Muller AJ, Prendergast GC, Yeo CJ, Brody JR. Genotyping and expression analysis of IDO2 in human pancreatic cancer: a novel, active target. J Am Coll Surg 2009; 208:781-7; discussion 787-9. [PMID: 19476837 DOI: 10.1016/j.jamcollsurg.2008.12.018] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/02/2008] [Indexed: 01/17/2023]
Abstract
BACKGROUND The recently discovered indoleamine 2,3-dioxygenase-2 (IDO2) gene has 2 functional polymorphisms that abolish its enzymatic activity. We hypothesize that expression of the IDO2 enzyme in primary pancreatic ductal adenocarcinomas (PDA) can help cancer cells evade immune detection. STUDY DESIGN Because the IDO2 enzyme might be the preferential target of d-1-methyl-tryptophan, a clinical lead inhibitor of IDO currently being evaluated in phase I trials, we sequenced IDO2 in 36 pancreatic specimens and evaluated its expression. RESULTS We found that 58% (21 of 36) of cases were heterozygous for the R248W polymorphism; 28% (10 of 36) were homozygous wild-type; and only 14% (5 of 36) were homozygous for the functionally inactive polymorphism. As for the Y359STOP polymorphism, we found that 27% (10 of 36) of cases were heterozygous, 62% (22 of 36) were homozygous wild-type, and only 11% (4 of 36) were homozygous for this functionally inactive allele. Ruling out the possibility of compound polymorphic variants, we estimated 75% of our resected patient cohort had an active IDO2 enzyme, with a conservative estimate that 58% of the patients had at least 1 functional allele. IDO2 was expressed in PDA tissue from each genetically polymorphic subgroup. We also detected IDO2 protein expression in the genetically distinct pancreatic cancer cell lines after exposure with interferon-gamma. CONCLUSIONS This is the first study to report IDO2 expression in PDA and related cancers indicating that IDO2 genetic polymorphisms do not negate interferon-gamma-inducible protein expression. Taken together, our data strongly suggest that the clinical lead compound d-1-methyl-tryptophan might be useful in treatment of PDA.
Collapse
|
37
|
Sumitomo K, Sasaki M, Yamaguchi Y. Acetic acid denaturing for RNA capillary polymer electrophoresis. Electrophoresis 2009; 30:1538-43. [DOI: 10.1002/elps.200800457] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Brody JR, Hucl T, Costantino CL, Eshleman JR, Gallmeier E, Zhu H, van der Heijden MS, Winter JM, Wikiewicz AK, Yeo CJ, Kern SE. Limits to thymidylate synthase and TP53 genes as predictive determinants for fluoropyrimidine sensitivity and further evidence for RNA-based toxicity as a major influence. Cancer Res 2009; 69:984-91. [PMID: 19155291 DOI: 10.1158/0008-5472.can-08-3610] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The major determinants of 5-flurouracil (5-FU) response would seem, based on accumulated literature, to be thymidylate synthase (TYMS, TS) expression levels, TS gene modifications, and TP53 status. We tested 5-FU sensitivity in yeast and human cancer cell models in which TS or TP53 alleles and expression were varied. Polymorphic TS tandem repeat status, TS expression levels reported, TS intragenic mutations, and TP53 status in outbred and experimental cancer cell lines did not predict 5-FU sensitivity or resistance. Novel observations included a dose-resistant persistence of unbound TS protein in many cancers and, upon 5-FU treatment of the colon cancer cell line, HCT116, evidence of allelic switching favoring transcripts of the mutant TS allele. The reported alleles having an intragenic mutation could not be causally associated with major degrees of 5-FU sensitivity. In yeast, TS protein was altered upon treatment with FdUMP, but 5-FU toxicity seemed to be largely RNA-based, being rescued by uridine rather than by thymidine. Cancer cell lines were also rescued from 5-FU toxicity with uridine rather than thymidine. Additionally, a TS (CDC21) knockout yeast strain, obviating any potential role for TS protein as a target, was hypersensitive to 5-FU. When denatured proteins from cancer cells treated with radiolabeled 5-FU were labeled, species with alternative molecular weights other than TS were visualized, providing further evidence for alternative 5-FU protein targets. These data emphasize that TS and TP53 status do not consistently explain the variance in responses of fluoropyrimidine-treated cancer cells, in part due to RNA-based toxicity.
Collapse
Affiliation(s)
- Jonathan R Brody
- Department of Surgery and Pathology, Jefferson Pancreas, Biliary, and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Korbie DJ, Mattick JS. Touchdown PCR for increased specificity and sensitivity in PCR amplification. Nat Protoc 2008; 3:1452-6. [PMID: 18772872 DOI: 10.1038/nprot.2008.133] [Citation(s) in RCA: 370] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Touchdown (TD) PCR offers a simple and rapid means to optimize PCRs, increasing specificity, sensitivity and yield, without the need for lengthy optimizations and/or the redesigning of primers. TD-PCR employs an initial annealing temperature above the projected melting temperature (T(m)) of the primers being used, then progressively transitions to a lower, more permissive annealing temperature over the course of successive cycles. Any difference in T(m) between correct and incorrect annealing will produce an exponential advantage of twofold per cycle. TD-PCR has found wide applicability in standard PCR protocols, including reverse transcriptase-dependent PCR, as well as in the generation of cDNA libraries and single nucleotide polymorphism screening. TD-PCR is particularly useful for templates that are difficult to amplify but can also be standardly used to enhance specificity and product formation. The procedure takes between 90 and 120 min, depending on the template length.
Collapse
Affiliation(s)
- Darren J Korbie
- Australian Research Council Special Research Centre for Functional and Applied Genomics, Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | | |
Collapse
|
40
|
Showalter SL, Huang YH, Witkiewicz A, Costantino CL, Yeo CJ, Green JJ, Langer R, Anderson DG, Sawicki JA, Brody JR. Nanoparticulate delivery of diphtheria toxin DNA effectively kills Mesothelin expressing pancreatic cancer cells. Cancer Biol Ther 2008; 7:1584-90. [PMID: 19039293 PMCID: PMC3218426 DOI: 10.4161/cbt.7.10.6562] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer-related deaths in this country, and there is currently no effective targeted treatment for this deadly disease. A dire need exists to rapidly translate our molecular understanding of this devastating disease into effective, novel therapeutic options. Mesothelin is a candidate target protein shown by a number of laboratories to be specifically overexpressed in pancreatic cancers and not in the adjacent normal tissue. Translational investigations have shown promising results using this molecule as a therapeutic target (e.g., vaccine strategies). In addition, the mesothelin promoter has been cloned and dissected and can therefore be used as a vehicle for regulating expression of DNA sequences. Using a novel, proven, biodegradable nanoparticulate system, we sought to target mesothelin-expressing pancreatic cancer cells with a potent suicide gene, diphtheria toxin-A (DT-A). We first confirmed reports that a majority of pancreatic cancer cell lines and resected pancreatic ductal adenocarcinoma specimens overexpressed mesothelin at the mRNA and protein levels. High mesothelin-expressing pancreatic cancer cell lines produced more luciferase than cell lines with undetectable mesothelin expression when transfected with a luciferase sequence under the regulation of the mesothelin promoter. We achieved dramatic inhibition of protein translation (>95%) in mesothelin-expressing pancreatic cancer cell lines when DT-A DNA, driven by the mesothelin promoter, was delivered to pancreatic cancer cells. We show that this inhibition effectively targets the death of pancreatic cancer cells that overexpress mesothelin. The work presented here provides evidence that this strategy will work in pre-clinical mouse pancreatic cancer models, and suggests that such a strategy will work in the clinical setting against the majority of pancreatic tumors, most of which overexpress mesothelin.
Collapse
Affiliation(s)
- Shayna L. Showalter
- Departments of Surgery and Pathology, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| | - Yu-Hung Huang
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania USA
| | - Agneszka Witkiewicz
- Departments of Surgery and Pathology, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| | - Christina L. Costantino
- Departments of Surgery and Pathology, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| | - Charles J. Yeo
- Departments of Surgery and Pathology, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| | - Jordan J. Green
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Daniel G. Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts USA
| | - Janet A. Sawicki
- Lankenau Institute for Medical Research, Wynnewood, Pennsylvania USA
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| | - Jonathan R. Brody
- Departments of Surgery and Pathology, Thomas Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| |
Collapse
|
41
|
Williams TK, Yeo CJ, Brody J. Does this band make sense? Limits to expression based cancer studies. Cancer Lett 2008; 271:81-4. [PMID: 18602748 DOI: 10.1016/j.canlet.2008.05.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Revised: 05/19/2008] [Accepted: 05/23/2008] [Indexed: 11/25/2022]
Abstract
Cancer researchers commonly employ reverse transcriptase polymerase chain reaction (RT-PCR) for gene expression analysis of cancer cells. While this technique is facile and reproducible, it is not without limitations. The human genome contains abundant nearly identical sequences (e.g. pseudogenes) to mRNA transcript sequences, which amplify when performing RT-PCR on samples with even trace amounts of genomic DNA. Such sequences include housekeeping transcripts such as beta-actin and GAPDH. This is also true for numerous gene products whose expression is altered in disease states such as cancer (e.g. pp32). Moreover, we describe that amplification of undesirable sequences is not simply avoided by designing primers spanning multiple exons. We also found that template-specific reverse transcriptase reactions lack the specificity necessary to definitively determine the sense or anti-sense orientation of an mRNA transcript. Given the above mentioned caveats and limitations of expression analysis studies, we encourage cancer investigators to test for the existence of intronless genomic sequences that are similar to the specific transcript of the gene being studied. Further, RNA samples should be completely genomic DNA-free prior to performing RT-PCR based assays. Finally, to ensure reliability of RT-PCR or array results, we recommend not utilizing the widely accepted loading controls, GAPDH and/or beta-actin.
Collapse
Affiliation(s)
- Timothy K Williams
- Department of Surgery and the Jefferson Pancreas, Biliary and Related Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
Wiskur BJ, Hunt JJ, Callegan MC. Hypermucoviscosity as a virulence factor in experimental Klebsiella pneumoniae endophthalmitis. Invest Ophthalmol Vis Sci 2008; 49:4931-8. [PMID: 18586871 DOI: 10.1167/iovs.08-2276] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Klebsiella pneumoniae is a common cause of endogenous bacterial endophthalmitis, a disease that frequently results in a poor visual outcome. Hypermucoviscosity has been identified as a virulence factor among clinical bacteremia isolates of K. pneumoniae. In this study, an experimental murine model of K. pneumoniae endophthalmitis was established, and the role of hypermucoviscosity in its pathogenesis was analyzed. METHODS C57BL/6J mice were intravitreously injected with 100 CFU of hypermucoviscous (HMV+) or nonhypermucoviscous (HMV-) K. pneumoniae. Intraocular bacterial growth, retinal function, gross pathology, and inflammatory responses were monitored every 3 hours until the eyes lost significant (>90%) retinal function, or the infection appeared to clear. RESULTS The HMV+ strain grew logarithmically in eyes until approximately 15 hours postinfection (PI), reaching a stationary phase of growth at approximately 8.0 log(10) CFU/eye. The HMV- strain grew logarithmically to approximately 7.6 log(10) by 18 hours, but bacterial count declined to approximately 6.4 log(10) CFU/eye by 21 hours PI. Eyes infected with the HMV+ strain retained approximately 35% a-wave and <10% b-wave function by 18 hours PI. These eyes also had a cumulative clinical score of 14+ by 18 hours and underwent phthisis between 21 and 24 hours. Eyes infected with the HMV- strain had a cumulative clinical score of <6 and retained >60% a-wave and >50% b-wave function throughout 21 hours. Five of 7 eyes had <100 CFU HMV- K. pneumoniae at 27 hours PI. CONCLUSIONS The findings demonstrate the site-threatening consequences of K. pneumoniae endophthalmitis and the importance of the hypermucoviscosity phenotype in the pathogenesis of experimental K. pneumoniae endophthalmitis.
Collapse
Affiliation(s)
- Brandt J Wiskur
- Oklahoma Center for Neuroscience, University of Oklahoma HealthSciences Center, Oklahoma City, Oklahoma, USA
| | | | | |
Collapse
|
43
|
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| | - Petr Boček
- Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic, Veveří 97, CZ-602 00 Brno, Czech Republic
| |
Collapse
|
44
|
Hucl T, Brody JR, Gallmeier E, Iacobuzio-Donahue CA, Farrance IK, Kern SE. High Cancer-Specific Expression of Mesothelin (MSLN) Is Attributable to an Upstream Enhancer Containing a Transcription Enhancer Factor–Dependent MCAT Motif. Cancer Res 2007; 67:9055-65. [PMID: 17909009 DOI: 10.1158/0008-5472.can-07-0474] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Identification of genes with cancer-specific overexpression offers the potential to efficiently discover cancer-specific activities in an unbiased manner. We apply this paradigm to study mesothelin (MSLN) overexpression, a nearly ubiquitous, diagnostically and therapeutically useful characteristic of pancreatic cancer. We identified an 18-bp upstream enhancer, termed CanScript, strongly activating transcription from an otherwise weak tissue-nonspecific promoter and operating selectively in cells having aberrantly elevated cancer-specific MSLN transcription. Introducing mutations into CanScript showed two functionally distinct sites: an Sp1-like site and an MCAT element. Gel retardation and chromatin immunoprecipitation assays showed the MCAT element to be bound by transcription enhancer factor (TEF)-1 (TEAD1) in vitro and in vivo. The presence of TEF-1 was required for MSLN protein overexpression as determined by TEF-1 knockdown experiments. The cancer specificity seemed to be provided by a putative limiting cofactor of TEF-1 that could be outcompeted by exogenous TEF-1 only in a MSLN-overexpressing cell line. A CanScript concatemer offered enhanced activity. These results identify a TEF family member as a major regulator of MSLN overexpression, a fundamental characteristic of pancreatic and other cancers, perhaps due to an upstream and highly frequent aberrant cellular activity. The CanScript sequence represents a modular element for cancer-specific targeting, potentially suitable for nearly a third of human malignancies.
Collapse
Affiliation(s)
- Tomas Hucl
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
45
|
Tan TTM, Tan ZY, Tan WL, Lee PFP. Gel electrophoresis: DNA Science Without the DNA! BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 35:342-349. [PMID: 21591121 DOI: 10.1002/bmb.83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The aim of this project is to develop a simple system for the teaching and demonstration of DNA gel electrophoresis. DNA gel electrophoresis requires the use of specialized apparatus, toxic reagents, expensive agarose gel, and DNA samples, as well as a considerable amount of valuable classroom time to complete. A systematic evaluation of suitable alternative materials and components for the simulation of DNA gel electrophoresis was undertaken. A tried and tested set of combinations is presented here for educators to use in hands-on classroom teaching, which does not require DNA, agarose, or Tris-borate-EDTA buffer. The use of common biological stains in place of DNA samples, agar-agar-based gels, and weak electrolyte solutions provides a simple, inexpensive, and highly reproducible system that is adaptable to instructional needs. The migration of multicolored bands during electrophoresis provides an intuitive, compelling demonstration of the concept of electrophoresis.
Collapse
Affiliation(s)
- Timothy Ter Ming Tan
- From the DNA Centre@NIE, National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | | | | | | |
Collapse
|
46
|
Larraín-Linton J, De la Iglesia R, Melo F, González B. Molecular and population analyses of a recombination event in the catabolic plasmid pJP4. J Bacteriol 2006; 188:6793-801. [PMID: 16980481 PMCID: PMC1595507 DOI: 10.1128/jb.00869-06] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupriavidus necator JMP134(pJP4) harbors a catabolic plasmid, pJP4, which confers the ability to grow on chloroaromatic compounds. Repeated growth on 3-chlorobenzoate (3-CB) results in selection of a recombinant strain, which degrades 3-CB better but no longer grows on 2,4-dichlorophenoxyacetate (2,4-D). We have previously proposed that this phenotype is due to a double homologous recombination event between inverted repeats of the multicopies of this plasmid within the cell. One recombinant form of this plasmid (pJP4-F3) explains this phenotype, since it harbors two copies of the chlorocatechol degradation tfd gene clusters, which are essential to grow on 3-CB, but has lost the tfdA gene, encoding the first step in degradation of 2,4-D. The other recombinant plasmid (pJP4-FM) should harbor two copies of the tfdA gene but no copies of the tfd gene clusters. A molecular analysis using a multiplex PCR approach to distinguish the wild-type plasmid pJP4 from its two recombinant forms, was carried out. Expected PCR products confirming this recombination model were found and sequenced. Few recombinant plasmid forms in cultures grown in several carbon sources were detected. Kinetic studies indicated that cells containing the recombinant plasmid pJP4-FM were not selectable by sole carbon source growth pressure, whereas those cells harboring recombinant plasmid pJP4-F3 were selected upon growth on 3-CB. After 12 days of repeated growth on 3-CB, the complete plasmid population in C. necator JMP134 apparently corresponds to this form. However, wild-type plasmid forms could be recovered after growing this culture on 2,4-D, indicating that different plasmid forms can be found in C. necator JMP134 at the population level.
Collapse
Affiliation(s)
- Juanita Larraín-Linton
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
47
|
NEGRO SS, CLOOTS R, GEMMELL NJ. Cost-effective media for the rapid and high resolution of small DNA fragments using polyacrylamide-based electrophoresis. ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01290.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Gallmeier E, Calhoun ES, Rago C, Brody JR, Cunningham SC, Hucl T, Gorospe M, Kohli M, Lengauer C, Kern SE. Targeted disruption of FANCC and FANCG in human cancer provides a preclinical model for specific therapeutic options. Gastroenterology 2006; 130:2145-54. [PMID: 16762635 DOI: 10.1053/j.gastro.2006.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 03/01/2006] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS How specifically to treat pancreatic and other cancers harboring Fanconi anemia gene mutations has raised great interest recently, yet preclinical studies have been hampered by the lack of well-controlled human cancer models. METHODS We endogenously disrupted FANCC and FANCG in a human adenocarcinoma cell line and determined the impact of these genes on drug sensitivity, irradiation sensitivity, and genome maintenance. RESULTS FANCC and FANCG disruption abrogated FANCD2 monoubiquitination, confirming an impaired Fanconi anemia pathway function. On treatment with DNA interstrand-cross-linking agents, FANCC and FANCG disruption caused increased clastogenic damage, G2/M arrest, and decreased proliferation. The extent of hypersensitivity varied among agents, with ratios of inhibitory concentration 50% ranging from 2-fold for oxaliplatin to 14-fold for melphalan, a drug infrequently used in solid tumors. No hypersensitivity was observed on gemcitabine, etoposide, 3-aminobenzamide, NU1025, or hydrogen peroxide. FANCC and FANCG disruption also resulted in increased clastogenic damage on irradiation, but only FANCG disruption caused a subsequent decrease in relative survival. Finally, FANCC and FANCG disruption increased spontaneous chromosomal breakage, supporting the role of these genes in genome maintenance and likely explaining why they are mutated in sporadic cancer. CONCLUSIONS Our human cancer cell model provides optimal controls to elucidate fundamental biologic features of individual Fanconi anemia gene defects and facilitates preclinical studies of therapeutic options. The impact of Fanconi gene defects on drug and irradiation sensitivity renders these genes promising targets for a specific, genotype-based therapy for individual cancer patients, providing a strong rationale for clinical trials.
Collapse
Affiliation(s)
- Eike Gallmeier
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Goedhart J, Gadella TWJ. Analysis of oligonucleotide annealing by electrophoresis in agarose gels using sodium borate conductive medium. Anal Biochem 2005; 343:186-7. [PMID: 15950908 DOI: 10.1016/j.ab.2005.04.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 04/28/2005] [Accepted: 04/30/2005] [Indexed: 11/21/2022]
Affiliation(s)
- Joachim Goedhart
- Laboratory for Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 316, NL-1098 SM Amsterdam, The Netherlands.
| | | |
Collapse
|