1
|
Nagayama S, Hasegawa-Ishii S, Kikuta S. Anesthetized animal experiments for neuroscience research. Front Neural Circuits 2024; 18:1426689. [PMID: 38884008 PMCID: PMC11177690 DOI: 10.3389/fncir.2024.1426689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Brain research has progressed with anesthetized animal experiments for a long time. Recent progress in research techniques allows us to measure neuronal activity in awake animals combined with behavioral tasks. The trends became more prominent in the last decade. This new research style triggers the paradigm shift in the research of brain science, and new insights into brain function have been revealed. It is reasonable to consider that awake animal experiments are more ideal for understanding naturalistic brain function than anesthetized ones. However, the anesthetized animal experiment still has advantages in some experiments. To take advantage of the anesthetized animal experiments, it is important to understand the mechanism of anesthesia and carefully handle the obtained data. In this minireview, we will shortly summarize the molecular mechanism of anesthesia in animal experiments, a recent understanding of the neuronal activities in a sensory system in the anesthetized animal brain, and consider the advantages and disadvantages of the anesthetized and awake animal experiments. This discussion will help us to use both research conditions in the proper manner.
Collapse
Affiliation(s)
- Shin Nagayama
- Department of Neurobiology and Anatomy, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Sanae Hasegawa-Ishii
- Pathology Research Team, Faculty of Health Sciences, Kyorin University, Mitaka, Japan
| | - Shu Kikuta
- Department of Otorhinolaryngology, Medical School of Nihon University, Tokyo, Japan
| |
Collapse
|
2
|
Salvatore SV, Lambert PM, Benz A, Rensing NR, Wong M, Zorumski CF, Mennerick S. Periodic and aperiodic changes to cortical EEG in response to pharmacological manipulation. J Neurophysiol 2024; 131:529-540. [PMID: 38323322 PMCID: PMC11305649 DOI: 10.1152/jn.00445.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/31/2024] [Indexed: 02/08/2024] Open
Abstract
Cortical electroencephalograms (EEGs) may help understanding of neuropsychiatric illness and new treatment mechanisms. The aperiodic component (1/f) of EEG power spectra is often treated as noise, but recent studies suggest that changes to the aperiodic exponent of power spectra may reflect changes in excitation/inhibition balance, a concept linked to antidepressant effects, epilepsy, autism, and other clinical conditions. One confound of previous studies is behavioral state, because factors associated with behavioral state other than excitation/inhibition ratio may alter EEG parameters. Thus, to test the robustness of the aperiodic exponent as a predictor of excitation/inhibition ratio, we analyzed video-EEG during active exploration in mice of both sexes during various pharmacological manipulations with the fitting oscillations and one over f (FOOOF) algorithm. We found that GABAA receptor (GABAAR)-positive allosteric modulators increased the aperiodic exponent, consistent with the hypothesis that an increased exponent signals enhanced cortical inhibition, but other drugs (ketamine and GABAAR antagonists at subconvulsive doses) did not follow the prediction. To tilt excitation/inhibition ratio more selectively toward excitation, we suppressed the activity of parvalbumin-positive interneurons with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Contrary to our expectations, circuit disinhibition with the DREADD increased the aperiodic exponent. We conclude that the aperiodic exponent of EEG power spectra does not yield a universally reliable marker of cortical excitation/inhibition ratio.NEW & NOTEWORTHY Neuropsychiatric illness may be associated with altered excitation/inhibition balance. A single electroencephalogram (EEG) parameter, the aperiodic exponent of power spectra, may predict the ratio between excitation and inhibition. Here, we use cortical EEGs in mice to evaluate this hypothesis, using pharmacological manipulations of known mechanism. We show that the aperiodic exponent of EEG power spectra is not a reliable marker of excitation/inhibition ratio. Thus, alternative markers of this ratio must be sought.
Collapse
Affiliation(s)
- Sofia V Salvatore
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Peter M Lambert
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Ann Benz
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Nicholas R Rensing
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
3
|
Salvatore SV, Lambert PM, Benz A, Rensing NR, Wong M, Zorumski CF, Mennerick S. Periodic and aperiodic changes to cortical EEG in response to pharmacological manipulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558828. [PMID: 37790570 PMCID: PMC10542500 DOI: 10.1101/2023.09.21.558828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Cortical electroencephalograms (EEG) may help understanding of neuropsychiatric illness and new treatment mechanisms. The aperiodic component (1/ f ) of EEG power spectra is often treated as noise, but recent studies suggest that changes to the aperiodic exponent of power spectra may reflect changes in excitation/inhibition (E/I) balance, a concept linked to antidepressant effects, epilepsy, autism, and other clinical conditions. One confound of previous studies is behavioral state, because factors associated with behavioral state other than E/I ratio may alter EEG parameters. Thus, to test the robustness of the aperiodic exponent as a predictor of E/I ratio, we analyzed active exploration in mice using video EEG following various pharmacological manipulations with the Fitting Oscillations & One Over F (FOOOF) algorithm. We found that GABA A receptor (GABA A R) positive allosteric modulators increased the aperiodic exponent, consistent with the hypothesis that an increased exponent signals enhanced cortical inhibition, but other drugs (ketamine and GABA A R antagonists at sub-convulsive doses) did not follow the prediction. To tilt E/I ratio more selectively toward excitation, we suppressed the activity of parvalbumin (PV) interneurons with Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). Contrary to our expectations and studies demonstrating increased cortical activity following PV suppression, circuit disinhibition with the DREADD increased the aperiodic exponent. We conclude that the aperiodic exponent of EEG power spectra does not yield a universally reliable marker of E/I ratio. Alternatively, the concept of E/I state may be sufficiently oversimplified that it cannot be mapped readily onto an EEG parameter. Significance StateBment Neuropsychiatric illness is widely prevalent and debilitating. Causes are not well understood, but some hypotheses point toward altered excitation/inhibition (E/I) balance. Here, we use cortical electroencephalograms (EEG) in mice, given applicability of cortical EEG across species, and evaluate the impact of validated drugs, including anxiolytics (pentobarbital and diazepam), along with novel rapid-acting antidepressants (ketamine and allopregnanolone). We focus on analyzing the aperiodic component of EEG power spectra, which may be associated with changes in E/I ratio. We show that aperiodic exponent of EEG power spectra is not a reliable marker of E/I ratio. Moreover, the concept of E/I ratio may be too broad and complex to be defined by an EEG parameter.
Collapse
|
4
|
Radovanovic L, Novakovic A, Petrovic J, Saponjic J. Different Alterations of Hippocampal and Reticulo-Thalamic GABAergic Parvalbumin-Expressing Interneurons Underlie Different States of Unconsciousness. Int J Mol Sci 2023; 24:ijms24076769. [PMID: 37047741 PMCID: PMC10094978 DOI: 10.3390/ijms24076769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
We traced the changes in GABAergic parvalbumin (PV)-expressing interneurons of the hippocampus and reticulo-thalamic nucleus (RT) as possible underlying mechanisms of the different local cortical and hippocampal electroencephalographic (EEG) microstructures during the non-rapid-eye movement (NREM) sleep compared with anesthesia-induced unconsciousness by two anesthetics with different main mechanisms of action (ketamine/diazepam versus propofol). After 3 h of recording their sleep, the rats were divided into two experimental groups: one half received ketamine/diazepam anesthesia and the other half received propofol anesthesia. We simultaneously recorded the EEG of the motor cortex and hippocampus during sleep and during 1 h of surgical anesthesia. We performed immunohistochemistry and analyzed the PV and postsynaptic density protein 95 (PSD-95) expression. PV suppression in the hippocampus and at RT underlies the global theta amplitude attenuation and hippocampal gamma augmentation that is a unique feature of ketamine-induced versus propofol-induced unconsciousness and NREM sleep. While PV suppression resulted in an increase in hippocampal PSD-95 expression, there was no imbalance between inhibition and excitation during ketamine/diazepam anesthesia compared with propofol anesthesia in RT. This increased excitation could be a consequence of a lower GABA interneuronal activity and an additional mechanism underlying the unique local EEG microstructure in the hippocampus during ketamine/diazepam anesthesia.
Collapse
Affiliation(s)
- Ljiljana Radovanovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Andrea Novakovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jelena Petrovic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| | - Jasna Saponjic
- Institute of Biological Research “Sinisa Stankovic”, National Institute of the Republic of Serbia, University of Belgrade, 11060 Belgrade, Serbia
| |
Collapse
|
5
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
6
|
Belov D, Fesenko Z, Efimov A, Lakstygal A, Efimova E. Different sensitivity to anesthesia according to ECoG data in dopamine transporter knockout and heterozygous rats. Neurosci Lett 2022; 788:136839. [PMID: 35964824 DOI: 10.1016/j.neulet.2022.136839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 10/15/2022]
Abstract
Dopamine in the brain is involved in many important functions, including the regulation of wakefulness. There is also some evidence suggesting that the dopamine function is crucial in anesthetic function. The state of anesthesia is characterized by a change in the level of consciousness and a change in brain electrical activity. Due to impaired mechanisms of dopamine transportation back to the synaptic terminal, dopamine transporter (DAT) knockout and heterozygous rats have increased levels of the extracellular dopamine. In our work, we registered ECoG disturbances in knockout and heterozygous rats, as well as disturbances in tone and activity in acute experiments under the anesthesia Zoletil (tiletamine and zolazepam) from the somatosensory cortex using a NeuroNexus flat multielectrode array to study gamma activity. We also used four low-resistance electrodes to control the slow rhythm. Both low-resistance and high-resistance electrodes showed differences in the ECoG spectrum of heterozygotes and total knockouts from the wild type and from each other. Heterozygous rats for the DAT gene (HET) showed increased rapid beta and gamma activity and decreased slow delta activity, while complete knockouts (KO), on the contrary, showed increased delta activity and decreased beta and gamma activity. Thus, the ECoG spectrum of HET is shifted to the right, while that of KO is shifted to the left. Full knockouts also showed decreased spatial synchronization in the 30-100 Hz gamma range compared to the wild type (WT). It is assumed that sedation of HET and KO is shifted towards opposite directions compared to WT under the same anesthesia conditions.
Collapse
Affiliation(s)
- Dmitry Belov
- V.A. Almazov NMRC, 2 Akkuratova, St., St. Petersburg 197341, Russia.
| | - Zoia Fesenko
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia; Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Andrey Efimov
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| | - Anton Lakstygal
- Department of Biology, Saint Petersburg State University, Universitetskaya nab., 7-9, Saint Petersburg 199034, Russia
| | - Evgeniya Efimova
- Institute of Translational Biomedicine, Saint Petersburg State University, 7-9 Universitetskaya nab., Saint Petersburg 199034, Russia
| |
Collapse
|