1
|
Chalitsios CV, Ley H, Gao J, Turner MR, Thompson AG. Apolipoproteins, lipids, lipid-lowering drugs and risk of amyotrophic lateral sclerosis and frontotemporal dementia: a meta-analysis and Mendelian randomisation study. J Neurol 2024; 271:6956-6969. [PMID: 39230722 PMCID: PMC11447100 DOI: 10.1007/s00415-024-12665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have clinical, pathological and genetic overlapping. Lipid pathways are implicated in ALS. This study examined the effect of blood lipid levels on ALS, FTD risk, and survival in ALS. METHODS A systematic review and meta-analysis of high and low-density lipoprotein cholesterol (HDL-c and LDL-c), total cholesterol, triglycerides, apolipoproteins B and A1 levels with ALS was performed. Two-sample Mendelian randomisation (MR) analysis sought the causal effects of these exposures on ALS, FTD, and survival in ALS. The effect of lipid-lowering drugs was also examined using genetic proxies for targets of lipid-lowering medications. RESULTS Three cohort studies met the inclusion criteria for meta-analysis. Meta-analysis indicated an association between higher LDL-c (HRper mmol/L = 1.07, 95%CI:1.02-1.12;I 2 =18%) and lower HDL-c (HRper mmol/L = 0.83, 95%CI:0.74-0.94;I 2 =0%) with an increased risk of ALS. MR suggested causal effects of higher LDL-c (ORIVW = 1.085, 95%:CI 1.008-1.168, pFDR = 0.0406), total cholesterol (ORIVW = 1.081, 95%:CI 1.013-1.154, pFDR = 0.0458) and apolipoprotein B (ORIVW = 1.104, 95%:CI 1.041-1.171, pFDR = 0.0061) increasing ALS risk, and higher apolipoprotein B level increasing FTD risk (ORIVW = 1.424, 95%CI 1.072-1.829, pFDR = 0.0382). Reducing LDL-c through APOB inhibition was associated with lower ALS (ORIVW = 0.84, 95%CI 0.759-0.929, pFDR = 0.00275) and FTD risk (ORIVW = 0.581, 95%CI 0.387-0.874, pFDR = 0.0362). CONCLUSION These data support the influence of LDL-c and total cholesterol on ALS risk and apolipoprotein B on the risk of ALS and FTD. Potential APOB inhibition might decrease the risk of sporadic ALS and FTD. Further work in monogenic forms of ALS and FTD is necessary to determine whether blood lipids influence penetrance and phenotype.
Collapse
Affiliation(s)
- Christos V Chalitsios
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Harriet Ley
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Jiali Gao
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Martin R Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK
| | - Alexander G Thompson
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Level 6, West Wing, Oxford, OX3 9DU, UK.
| |
Collapse
|
2
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
3
|
Reis PM, Vargas BS, Rebelo RA, Massafera MP, Prado FM, Oreliana H, de Oliveira HV, Freitas F, Ronsein GE, Miyamoto S, Di Mascio P, Medeiros MHG. Quantitative Analysis of Glutathione and Carnosine Adducts with 4-Hydroxy-2-nonenal in Muscle in a hSOD1 G93A ALS Rat Model. Chem Res Toxicol 2024; 37:1306-1314. [PMID: 39066735 PMCID: PMC11337210 DOI: 10.1021/acs.chemrestox.4c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the dysfunction and death of motor neurons through multifactorial mechanisms that remain unclear. ALS has been recognized as a multisystemic disease, and the potential role of skeletal muscle in disease progression has been investigated. Reactive aldehydes formed as secondary lipid peroxidation products in the redox processes react with biomolecules, such as DNA, proteins, and amino acids, resulting in cytotoxic effects. 4-Hydroxy-2-nonenal (HNE) levels are elevated in the spinal cord motor neurons of ALS patients, and HNE-modified proteins have been identified in the spinal cord tissue of an ALS transgenic mice model, suggesting that reactive aldehydes can contribute to motor neuron degeneration in ALS. One biological pathway of aldehyde detoxification involves conjugation with glutathione (GSH) or carnosine (Car). Here, the detection and quantification of Car, GSH, GSSG (glutathione disulfide), and the corresponding adducts with HNE, Car-HNE, and GS-HNE, were performed in muscle and liver tissues of a hSOD1G93A ALS rat model by reverse-phase high-performance liquid chromatography coupled to electrospray ion trap tandem mass spectrometry in the selected reaction monitoring mode. A significant increase in the levels of GS-HNE and Car-HNE was observed in the muscle tissue of the end-stage ALS animals. Therefore, analyzing variations in the levels of these adducts in ALS animal tissue is crucial from a toxicological perspective and can contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Pablo
V. M. Reis
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Bianca S. Vargas
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Rafael A. Rebelo
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Mariana P. Massafera
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Fernanda M. Prado
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Hector Oreliana
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Henrique V. de Oliveira
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Florêncio
P. Freitas
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica,
Instituto de Química, Universidade
de São Paulo, São
Paulo, SP 05508-900, Brazil
| |
Collapse
|
4
|
Chourpiliadis C, Seitz C, Lovik A, Joyce EE, Pan L, Hu Y, Kläppe U, Samuelsson K, Press R, Ingre C, Fang F. Lifestyle and medical conditions in relation to ALS risk and progression-an introduction to the Swedish ALSrisc Study. J Neurol 2024; 271:5447-5459. [PMID: 38878106 PMCID: PMC11319377 DOI: 10.1007/s00415-024-12496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND This study was an introduction to the Swedish ALSrisc Study and explored the association of lifestyle and medical conditions, with risk and progression of amyotrophic lateral sclerosis (ALS). METHODS We included 265 newly diagnosed ALS patients during 2016-2022 in Stockholm and 207 ALS-free siblings and partners of the patients as controls. Information on body mass index (BMI), smoking, and history of head injuries, diabetes mellitus, hypercholesterolemia, and hypertension was obtained through the Euro-MOTOR questionnaire at recruitment. Patients were followed from diagnosis until death, invasive ventilation, or November 30, 2022. RESULTS Higher BMI at recruitment was associated with lower risk for ALS (OR 0.89, 95%CI 0.83-0.95), especially among those diagnosed after 65 years. One unit increase in the average BMI during the 3 decades before diagnosis was associated with a lower risk for ALS (OR 0.94, 95%CI 0.89-0.99). Diabetes was associated with lower risk of ALS (OR 0.38, 95%CI 0.16-0.90), while hypercholesterolemia was associated with higher risk of ALS (OR 2.10, 95%CI 1.13-3.90). Higher BMI at diagnosis was associated with lower risk of death (HR 0.91, 95%CI 0.84-0.98), while the highest level of smoking exposure (in pack-years) (HR 1.90, 95%CI 1.20-3.00), hypercholesterolemia (HR 1.84, 95%CI 1.06-3.19), and hypertension (HR 1.76, 95%CI 1.03-3.01) were associated with higher risk of death, following ALS diagnosis. CONCLUSIONS Higher BMI and diabetes were associated with lower risk of ALS. Higher BMI was associated with lower risk of death, whereas smoking (especially in high pack-years), hypercholesterolemia, and hypertension were associated with higher risk of death after ALS diagnosis.
Collapse
Affiliation(s)
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anikó Lovik
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Institute of Psychology, Leiden University, Leiden, The Netherlands
| | - Emily E Joyce
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lu Pan
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yihan Hu
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Kläppe
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Rayomand Press
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Fang Fang
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
5
|
Talbott EO, Malek AM, Arena VC, Wu F, Steffes K, Sharma RK, Buchanich J, Rager JR, Bear T, Hoffman CA, Lacomis D, Donnelly C, Mauna J, Vena JE. Case-control study of environmental toxins and risk of amyotrophic lateral sclerosis involving the national ALS registry. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:533-542. [PMID: 38591179 DOI: 10.1080/21678421.2024.2336108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
OBJECTIVE Neurotoxic chemicals are suggested in the etiology of amyotrophic lateral sclerosis (ALS). We examined the association of environmental and occupational risk factors including persistent organochlorine pesticides (OCPs) and ALS risk among cases from the Centers for Disease Control and Prevention National ALS Registry and age, sex, and county-matched controls. METHODS Participants completed a risk factor survey and provided a blood sample for OCP measurement. ALS cases were confirmed through the Registry. Conditional logistic regression assessed associations between ALS and risk factors including OCP levels. RESULTS 243 matched case-control pairs (61.7% male, mean [SD] age = 62.9 [10.1]) were included. Fifteen of the 29 OCPs examined had sufficient detectable levels for analysis. Modest correlations of self-reported years of exposure to residential pesticide mixtures and OCP serum levels were found (p<.001). Moreover, occupational exposure to lead including soldering and welding with lead/metal dust and use of lead paint/gasoline were significantly related to ALS risk (OR = 1.77, 95% CI: 1.11-2.83). Avocational gardening was a significant risk factor for ALS (OR = 1.57, 95% CI: 1.04-2.37). ALS risk increased for each 10 ng/g of α-Endosulfan (OR = 1.42, 95% CI: 1.14-1.77) and oxychlordane (OR = 1.24, 95% CI: 1.01-1.53). Heptachlor (detectable vs. nondetectable) was also associated with ALS risk (OR = 3.57, 95% CI: 1.50-8.52). CONCLUSION This national case-control study revealed both survey and serum levels of OCPs as risk factors for ALS. Despite the United States banning many OCPs in the 1970s and 1980s, their use abroad and long half-lives continue to exert possible neurotoxic health effects.
Collapse
Affiliation(s)
- Evelyn O Talbott
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Angela M Malek
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Vincent C Arena
- Department of Biostatistics, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Fan Wu
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Kristen Steffes
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Ravi K Sharma
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Jeanine Buchanich
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Judith R Rager
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Todd Bear
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - Caroline A Hoffman
- Department of Epidemiology, University of Pittsburgh, School of Public Health, Pittsburgh, PA, USA
| | - David Lacomis
- Departments of Neurology and Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA, and
| | - Chris Donnelly
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jocelyn Mauna
- Department of Neurobiology, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - John E Vena
- Department of Public Health Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Dubbioso R, Spisto M, Verde L, Iuzzolino VV, Senerchia G, Salvatore E, De Pietro G, De Falco I, Sannino G. Voice signals database of ALS patients with different dysarthria severity and healthy controls. Sci Data 2024; 11:800. [PMID: 39030186 PMCID: PMC11271596 DOI: 10.1038/s41597-024-03597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
This paper describes a new publicly-available database of VOiCe signals acquired in Amyotrophic Lateral Sclerosis (ALS) patients (VOC-ALS) and healthy controls performing different speech tasks. This dataset consists of 1224 voice signals recorded from 153 participants: 51 healthy controls (32 males and 19 females) and 102 ALS patients (65 males and 37 females) with different severity of dysarthria. Each subject's voice was recorded using a smartphone application (Vox4Health) while performing several vocal tasks, including a sustained phonation of the vowels /a/, /e/, /i/, /o/, /u/ and /pa/, /ta/, /ka/ syllable repetition. Basic derived speech metrics such as harmonics-to-noise ratio, mean and standard deviation of fundamental frequency (F0), jitter and shimmer were calculated. The F0 standard deviation of vowels and syllables showed an excellent ability to identify people with ALS and to discriminate the different severity of dysarthria. These data represent the most comprehensive database of voice signals in ALS and form a solid basis for research on the recognition of voice impairment in ALS patients for use in clinical applications.
Collapse
Affiliation(s)
- Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, 80131, Italy
| | - Myriam Spisto
- Department of Psychology of the University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Laura Verde
- Department of Mathematics and Physics of the University of Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Valentina Virginia Iuzzolino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, 80131, Italy
| | - Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples "Federico II", Naples, 80131, Italy
| | - Elena Salvatore
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Naples, 80131, Italy
| | - Giuseppe De Pietro
- Department of Information Sciences and Technologies, Pegaso University, Naples, 80143, Italy
| | - Ivanoe De Falco
- National Research Council of Italy (CNR), Institute for High-Performance Computing and Networking (ICAR), Naples, 80131, Italy
| | - Giovanna Sannino
- National Research Council of Italy (CNR), Institute for High-Performance Computing and Networking (ICAR), Naples, 80131, Italy.
| |
Collapse
|
7
|
Riva N, Domi T, Pozzi L, Lunetta C, Schito P, Spinelli EG, Cabras S, Matteoni E, Consonni M, Bella ED, Agosta F, Filippi M, Calvo A, Quattrini A. Update on recent advances in amyotrophic lateral sclerosis. J Neurol 2024; 271:4693-4723. [PMID: 38802624 PMCID: PMC11233360 DOI: 10.1007/s00415-024-12435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
In the last few years, our understanding of disease molecular mechanisms underpinning ALS has advanced greatly, allowing the first steps in translating into clinical practice novel research findings, including gene therapy approaches. Similarly, the recent advent of assistive technologies has greatly improved the possibility of a more personalized approach to supportive and symptomatic care, in the context of an increasingly complex multidisciplinary line of actions, which remains the cornerstone of ALS management. Against this rapidly growing background, here we provide an comprehensive update on the most recent studies that have contributed towards our understanding of ALS pathogenesis, the latest results from clinical trials as well as the future directions for improving the clinical management of ALS patients.
Collapse
Affiliation(s)
- Nilo Riva
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy.
| | - Teuta Domi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Pozzi
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Lunetta
- Istituti Clinici Scientifici Maugeri IRCCS, Neurorehabilitation Unit of Milan Institute, 20138, Milan, Italy
| | - Paride Schito
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Edoardo Gioele Spinelli
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Cabras
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Enrico Matteoni
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Monica Consonni
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Eleonora Dalla Bella
- 3Rd Neurology Unit and Motor Neuron Disease Centre, Fondazione IRCCS "Carlo Besta" Neurological Insitute, Milan, Italy
| | - Federica Agosta
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Massimo Filippi
- Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neuroimaging Research Unit, Department of Neurology, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute Huniversity, Milan, Italy
| | - Andrea Calvo
- ALS Centre, 'Rita Levi Montalcini' Department of Neuroscience, University of Turin; SC Neurologia 1U, AOU città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Quattrini
- Experimental Neuropathology Unit, Division of Neuroscience, Institute of Experimental Neurology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
8
|
Ketabforoush A, Faghihi F, Azedi F, Ariaei A, Habibi MA, Khalili M, Ashtiani BH, Joghataei MT, Arnold WD. Sodium Phenylbutyrate and Tauroursodeoxycholic Acid: A Story of Hope Turned to Disappointment in Amyotrophic Lateral Sclerosis Treatment. Clin Drug Investig 2024; 44:495-512. [PMID: 38909349 DOI: 10.1007/s40261-024-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
The absence of a definitive cure for amyotrophic lateral sclerosis (ALS) emphasizes the crucial need to explore new and improved treatment approaches for this fatal, progressive, and disabling neurodegenerative disorder. As at the end of 2023, five treatments - riluzole, edaravone, dextromethorphan hydrobromide + quinidine sulfate (DHQ), tofersen, and sodium phenylbutyrate-tauroursodeoxycholic acid (PB-TUDCA) - were FDA approved for the treatment of patients with ALS. Among them PB-TUDCA has been shown to impact DNA processing impairments, mitochondria dysfunction, endoplasmic reticulum stress, oxidative stress, and pathologic folded protein agglomeration defects, which have been associated with ALS pathophysiology. The Phase 2 CENTAUR trial demonstrated significant impact of PB-TUDCA on the ALS Functional Rating Scale-Revised (ALSFRS-R) risk of death, hospitalization, and the need for tracheostomy or permanent assisted ventilation in patients with ALS based on post hoc analyses. More recently, contrasting with the CENTAUR trial results, results from the Phase 3 PHOENIX trial (NCT05021536) showed no change in ALSFRS-R total score at 48 weeks. Consequently, the sponsor company initiated the process with the US FDA and Health Canada to voluntarily withdraw the marketing authorizations for PB-TUDCA. In the present article, we review ALS pathophysiology, with a focus on PB-TUDCA's proposed mechanisms of action and recent clinical trial results and discuss the implications of conflicting trial data for ALS and other neurological disorders.
Collapse
Affiliation(s)
- Arsh Ketabforoush
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA
| | - Faezeh Faghihi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Armin Ariaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Maryam Khalili
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - W David Arnold
- NextGen Precision Health, University of Missouri, 1030 Hitt St., Columbia, MO, 65211, USA.
- Department of Physical Medicine and Rehabilitation, University of Missouri, Columbia, MO, USA.
- Department of Neurology, University of Missouri, Columbia, MO, USA.
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
9
|
Zeng Y, Guo R, Cao S, Chavarria Gonzalez S, Pang K, Liu C, Yang H. Mendelian randomization study supports relative carbohydrate intake as an independent risk factor for amyotrophic lateral sclerosis. Nutr Neurosci 2024:1-9. [PMID: 38781481 DOI: 10.1080/1028415x.2024.2352196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVES Observational studies suggested a potential correlation between dietary intake and amyotrophic lateral sclerosis (ALS), but conflicting findings exist and causality remains unclear. Here, we performed a Mendelian randomization (MR) analysis to evaluate the causal impact of relative intake of (i) carbohydrate, (ii) fat, and (iii) protein on ALS risk. METHODS The genome-wide association summary statistics of three dietary macronutrient intake traits and ALS were obtained. Initially, forward and reverse univariable MR (UVMR) analysis were conducted using the inverse variance weighted (IVW) method as the primary approach, supplemented by MR-Egger, weighted median, and maximum likelihood. Subsequently, multivariable MR (MVMR) analysis was performed to assess the independent causal effects of each dietary. Additionally, diverse sensitivity tests were conducted to evaluate the reliability of the MR analyses. RESULTS The forward UVMR analysis conducted by IVW indicated that relative carbohydrate intake significantly increased ALS risk. Furthermore, results from three other MR methods paralleled those from IVW. However, the other two dietary intake traits did not have a causative impact on ALS risk. The reverse UVMR analysis indicated that ALS did not causatively influence the three dietary intake traits. The MVMR analysis showed that after adjusting for the effects of the other two dietary intake traits, relative carbohydrate intake independently and significantly increased ALS risk. Sensitivity tests indicated no significant heterogeneity or horizontal pleiotropy. DISCUSSION MR analysis supported relative carbohydrate independently increasing ALS risk. Nevertheless, further validation of this finding in future large cohorts is required. Abbreviations: ALS: amyotrophic lateral sclerosis; CI: confidence interval; GWAS: genome-wide association study; IV: instrumental variable; IVW: iverse variance weighted; MR: Mendelian randomization; MVMR: multivariable Mendelian randomization; OR: odds ratio; RCT: randomized controlled trial; SNPs: single-nucleotide polymorphisms; UVMR: univariable Mendelian randomization.
Collapse
Affiliation(s)
- Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Si Cao
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, People's Republic of China
| | - Sarel Chavarria Gonzalez
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ke Pang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chunxia Liu
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
10
|
Wahl D, Clayton ZS. Peripheral vascular dysfunction and the aging brain. Aging (Albany NY) 2024; 16:9280-9302. [PMID: 38805248 PMCID: PMC11164523 DOI: 10.18632/aging.205877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
Aging is the greatest non-modifiable risk factor for most diseases, including cardiovascular diseases (CVD), which remain the leading cause of mortality worldwide. Robust evidence indicates that CVD are a strong determinant for reduced brain health and all-cause dementia with advancing age. CVD are also closely linked with peripheral and cerebral vascular dysfunction, common contributors to the development and progression of all types of dementia, that are largely driven by excessive levels of oxidative stress (e.g., reactive oxygen species [ROS]). Emerging evidence suggests that several fundamental aging mechanisms (e.g., "hallmarks" of aging), including chronic low-grade inflammation, mitochondrial dysfunction, cellular senescence and deregulated nutrient sensing contribute to excessive ROS production and are common to both peripheral and cerebral vascular dysfunction. Therefore, targeting these mechanisms to reduce ROS-related oxidative stress and improve peripheral and/or cerebral vascular function may be a promising strategy to reduce dementia risk with aging. Investigating how certain lifestyle strategies (e.g., aerobic exercise and diet modulation) and/or select pharmacological agents (natural and synthetic) intersect with aging "hallmarks" to promote peripheral and/or cerebral vascular health represent a viable option for reducing dementia risk with aging. Therefore, the primary purpose of this review is to explore mechanistic links among peripheral vascular dysfunction, cerebral vascular dysfunction, and reduced brain health with aging. Such insight and assessments of non-invasive measures of peripheral and cerebral vascular health with aging might provide a new approach for assessing dementia risk in older adults.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science and Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Zachary S. Clayton
- University of Colorado Anschutz Medical Campus, Department of Medicine, Division of Geriatric Medicine, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Imrell S, Fang F, Ingre C, Sennfält S. Increased incidence of motor neuron disease in Sweden: a population-based study during 2002-2021. J Neurol 2024; 271:2730-2735. [PMID: 38386047 PMCID: PMC11055737 DOI: 10.1007/s00415-024-12219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Motor neuron diseases (MND), with amyotrophic lateral sclerosis constituting most cases, are rare conditions of unknown etiology. There have been reports of an increase in incidence during the latter half of the twentieth century in various Western countries, including Sweden. This study provides updated data on the incidence of MND in Sweden during the last 20 years. METHODS Data was obtained from the Swedish National Patient Register on individuals diagnosed with MND from 2002 to 2021 and analysed in relation to group level data for the entire Swedish population. Incidence rates were calculated and presented in relation to year, age, sex, and region. RESULTS In the early 2000s, there was a crude incidence rate of 3.5-3.7 per 100,000 person-years, which then increased to 4.0-4.6 from 2008 onward. Age standardization to the starting year (2002) partially mitigated this increase. The incidence rate was greater among men compared to women and was highest within the age range of 70 to 84 years. There were indications of a higher incidence rate in the northernmost parts of the country, although the difference was not statistically significant. CONCLUSIONS The incidence rate of MND in Sweden now seems to have surpassed 4 cases per 100,000 person-years. This is higher when compared to both other European countries and previous Swedish studies. It remains to be determined if this increase reflects an actual increasing incidence of MND in Sweden or is due to other factors such as better registry coverage.
Collapse
Affiliation(s)
- Sofia Imrell
- Department of Neurology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Fang Fang
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Stefan Sennfält
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
12
|
Hobin F, De Vocht J, Lamaire N, Beyens H, Ombelet F, Van Damme P. Specialized multidisciplinary care improves ALS survival in Belgium: a population-based retrospective study. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:282-289. [PMID: 38240367 DOI: 10.1080/21678421.2024.2304058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
ALS is a neurodegenerative disease characterized by loss of motor neurons, resulting in progressive weakness and wasting of muscles. The average survival time is 2-5 years, mostly due to respiratory failure. Since current therapies can prolong survival time by only a few months, multidisciplinary care remains the cornerstone of the management of ALS. At the ALS Expert Centre of University Hospitals Leuven, a large proportion of Belgian ALS patients are seen for diagnosis and a significant number is also in follow-up with the multidisciplinary team. In this retrospective study, we compared the outcome of incident patients who were in follow-up at our site with patients who were not in follow-up. We included 659 patients of which 557 (84.5%) received specialized care at the ALS Expert Centre. After adjusting for clinically relevant prognostic parameters, multidisciplinary follow-up significantly prolonged survival (p = 0.004; HR = 0.683; CI 95% [0.528 - 0.884]). This increase in survival is mainly driven by patients with spinal onset (p = 0.035; HR = 0.746; CI 95% [0.568 - 0.980]), since no significant increased survival time was observed in patients with bulbar onset (p = 0.28; HR = 0.778; CI 95% [0.495 - 1.223]). These data confirm that multidisciplinary follow-up contributes to a better outcome of patients, emphasizing the importance of multidisciplinary specialized care in ALS.
Collapse
Affiliation(s)
- Frederik Hobin
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium, and
- VIB, Centre for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Joke De Vocht
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium, and
- VIB, Centre for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Nikita Lamaire
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Hilde Beyens
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Fouke Ombelet
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium, and
- VIB, Centre for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, Leuven, Belgium, and
- VIB, Centre for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| |
Collapse
|
13
|
Alexovič M, Uličná C, Sabo J, Davalieva K. Human peripheral blood mononuclear cells as a valuable source of disease-related biomarkers: Evidence from comparative proteomics studies. Proteomics Clin Appl 2024; 18:e2300072. [PMID: 37933719 DOI: 10.1002/prca.202300072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE The discovery of specific and sensitive disease-associated biomarkers for early diagnostic purposes of many diseases is still highly challenging due to various complex molecular mechanisms triggered, high variability of disease-related interactions, and an overlap of manifestations among diseases. Human peripheral blood mononuclear cells (PBMCs) contain protein signatures corresponding to essential immunological interplay. Certain diseases stimulate PBMCs and contribute towards modulation of their proteome which can be effectively identified and evaluated via the comparative proteomics approach. EXPERIMENTAL DESIGN In this review, we made a detailed survey of the PBMCS-derived protein biomarker candidates for a variety of diseases, published in the last 15 years. Articles were preselected to include only comparative proteomics studies. RESULTS PBMC-derived biomarkers were investigated for cancer, glomerular, neurodegenerative/neurodevelopmental, psychiatric, chronic inflammatory, autoimmune, endocrinal, infectious, and other diseases. A detailed review of these studies encompassed the proteomics platforms, proposed candidate biomarkers, their immune cell type specificity, and potential clinical application. CONCLUSIONS Overall, PBMCs have shown a solid potential in giving early diagnostic and prognostic biomarkers for many diseases. The future of PBMC biomarker research should reveal its full potential through well-designed comparative studies and extensive testing of the most promising protein biomarkers identified so far.
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Csilla Uličná
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, Skopje, North Macedonia
| |
Collapse
|
14
|
Ma J, Zhang H, Liang F, Li G, Pang X, Zhao R, Wang J, Chang X, Guo J, Zhang W. The male-to-female ratio in late-onset multiple acyl-CoA dehydrogenase deficiency: a systematic review and meta-analysis. Orphanet J Rare Dis 2024; 19:72. [PMID: 38365830 PMCID: PMC10873946 DOI: 10.1186/s13023-024-03072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
BACKGROUND Late-onset multiple acyl-CoA dehydrogenase deficiency (MADD) is the most common lipid storage myopathy. There are sex differences in fat metabolism and it is not known whether late-onset MADD affects men and women equally. METHODS In this systematic review and meta-analysis, the PubMed, Embase, Web of Science, CNKI, CBM, and Wanfang databases were searched until 01/08/2023. Studies reporting sex distribution in patients with late-onset MADD were included. Two authors independently screened studies for eligibility, extracted data, and assessed risk of bias. Pre-specified outcomes of interest were the male-to-female ratio (MFR) of patients with late-onset MADD, the differences of clinical characteristics between the sexes, and factors influencing the MFR. RESULTS Of 3379 identified studies, 34 met inclusion criteria, yielding a total of 609 late-onset MADD patients. The overall pooled percentage of males was 58% (95% CI, 54-63%) with low heterogeneity across studies (I2 = 2.99%; P = 0.42). The mean onset ages, diagnostic delay, serum creatine kinase (CK), and allelic frequencies of 3 hotspot variants in ETFDH gene were similar between male and female patients (P > 0.05). Meta-regressions revealed that ethnic group was associated with the MFR in late-onset MADD, and subgroup meta-analyses demonstrated that East-Asian patients had a higher percentage of male, lower CK, and higher proportion of hotspot variants in ETFDH gene than non-East-Asian patients (P < 0.05). CONCLUSIONS Male patients with late-onset MADD were more common than female patients. Ethnicity was proved to be a factor influencing the MFR in late-onset MADD. These findings suggest that male sex may be a risk factor for the disease.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Huiqiu Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Feng Liang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Guanxi Li
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Xiaomin Pang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Rongjuan Zhao
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Juan Wang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Xueli Chang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China
| | - Junhong Guo
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China.
| | - Wei Zhang
- Department of Neurology, First Hospital, Shanxi Medical University, No.85, Jiefang South Street, Taiyuan, China.
| |
Collapse
|
15
|
Borrego-Hernández D, Vázquez-Costa JF, Domínguez-Rubio R, Expósito-Blázquez L, Aller E, Padró-Miquel A, García-Casanova P, Colomina MJ, Martín-Arriscado C, Osta R, Cordero-Vázquez P, Esteban-Pérez J, Povedano-Panadés M, García-Redondo A. Intermediate Repeat Expansion in the ATXN2 Gene as a Risk Factor in the ALS and FTD Spanish Population. Biomedicines 2024; 12:356. [PMID: 38397958 PMCID: PMC10886453 DOI: 10.3390/biomedicines12020356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Intermediate CAG expansions in the gene ataxin-2 (ATXN2) are a known risk factor for ALS, but little is known about their role in FTD risk. Moreover, their contribution to the risk and phenotype of patients might vary in populations with different genetic backgrounds. The aim of this study was to assess the relationship of intermediate CAG expansions in ATXN2 with the risk and phenotype of ALS and FTD in the Spanish population. Repeat-primed PCR was performed in 620 ALS and 137 FTD patients in three referral centers in Spain to determine the exact number of CAG repeats. In our cohort, ≥27 CAG repeats in ATXN2 were associated with a higher risk of developing ALS (odds ratio [OR] = 2.666 [1.471-4.882]; p = 0.0013) but not FTD (odds ratio [OR] = 1.446 [0.558-3.574]; p = 0.44). Moreover, ALS patients with ≥27 CAG repeats in ATXN2 showed a shorter survival rate compared to those with <27 repeats (hazard ratio [HR] 1.74 [1.18, 2.56], p = 0.005), more frequent limb onset (odds ratio [OR] = 2.34 [1.093-4.936]; p = 0.028) and a family history of ALS (odds ratio [OR] = 2.538 [1.375-4.634]; p = 0.002). Intermediate CAG expansions of ≥27 repeats in ATXN2 are associated with ALS risk but not with FTD in the Spanish population. ALS patients carrying an intermediate expansion in ATXN2 show more frequent limb onset but a worse prognosis than those without expansions. In patients carrying C9orf72 expansions, the intermediate ATXN2 expansion might increase the penetrance and modify the phenotype.
Collapse
Affiliation(s)
- Daniel Borrego-Hernández
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Juan Francisco Vázquez-Costa
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Department of Medicine, University of Valencia, 46010 Valencia, Spain
| | - Raúl Domínguez-Rubio
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Laura Expósito-Blázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Elena Aller
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
- Genetics Department, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain
| | - Ariadna Padró-Miquel
- Genetics Laboratory (LCTMS), Bellvitge University Hospital-IDIBELL, 08908 L’Hospitalet de Llobregat, Spain;
| | - Pilar García-Casanova
- Neuromuscular Unit, ERN-NMD Group, Department of Neurology, Hospital Universitario y Politécnico La Fe, Instituto de Investigación Sanitaria La Fe, 46026 Valencia, Spain; (J.F.V.-C.); (P.G.-C.)
| | - María J. Colomina
- Anesthesia Service Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain;
| | | | - Rosario Osta
- Laboratório de Genética e Biotecnologia (LAGENBIO), Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Aragon Institute for Health Research (IIS Aragon), Zaragoza University, 50013 Zaragoza, Spain;
| | - Pilar Cordero-Vázquez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Jesús Esteban-Pérez
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
| | - Mónica Povedano-Panadés
- Motoneuron Functional Unit, Hospital Universitari de Bellvitge, 08907 L’Hospitalet de Llobregat, Spain; (R.D.-R.); (M.P.-P.)
| | - Alberto García-Redondo
- ALS Research Laboratory Unit, Department of Neurology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain; (L.E.-B.); (P.C.-V.); (J.E.-P.); (A.G.-R.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain;
| |
Collapse
|
16
|
Zaccai S, Nemirovsky A, Lerner L, Alfahel L, Eremenko E, Israelson A, Monsonego A. CD4 T-cell aging exacerbates neuroinflammation in a late-onset mouse model of amyotrophic lateral sclerosis. J Neuroinflammation 2024; 21:17. [PMID: 38212835 PMCID: PMC10782641 DOI: 10.1186/s12974-023-03007-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/26/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset progressive neurodegenerative disorder characterized by the loss of upper and lower motor neurons in the brain and spinal cord. Accumulating evidence suggests that ALS is not solely a neuronal cell- or brain tissue-autonomous disease and that neuroinflammation plays a key role in disease progression. Furthermore, whereas both CD4 and CD8 T cells were observed in spinal cords of ALS patients and in mouse models of the disease, their role in the neuroinflammatory process, especially considering their functional changes with age, is not fully explored. In this study, we revealed the structure of the CD4 T-cell compartment during disease progression of early-onset SOD1G93A and late-onset SOD1G37R mouse models of ALS. We show age-related changes in the CD4 T-cell subset organization between these mutant SOD1 mouse models towards increased frequency of effector T cells in spleens of SOD1G37R mice and robust infiltration of CD4 T cells expressing activation markers and the checkpoint molecule PD1 into the spinal cord. The frequency of infiltrating CD4 T cells correlated with the frequency of infiltrating CD8 T cells which displayed a more exhausted phenotype. Moreover, RNA-Seq and immunohistochemistry analyses of spinal cords from SOD1G37R mice with early clinical symptoms demonstrated immunological trajectories reminiscent of a neurotoxic inflammatory response which involved proinflammatory T cells and antigen presentation related pathways. Overall, our findings suggest that age-related changes of the CD4 T cell landscape is indicative of a chronic inflammatory response, which aggravates the disease process and can be therapeutically targeted.
Collapse
Affiliation(s)
- Shir Zaccai
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Anna Nemirovsky
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Livnat Lerner
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Leenor Alfahel
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Ekaterina Eremenko
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, Faculty of Health Sciences and The School of Brain Sciences and Cognition, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
17
|
Klíčová K, Mareš J, Menšíková K, Kaiserová M, Friedecký D, Kaňovský P, Strnad M, Matěj R. Utilizing neurodegenerative markers for the diagnostic evaluation of amyotrophic lateral sclerosis. Eur J Med Res 2024; 29:31. [PMID: 38184629 PMCID: PMC10771003 DOI: 10.1186/s40001-023-01596-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/14/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive deterioration of upper and lower motor neurons. A definitive diagnostic test or biomarker for ALS is currently unavailable, leading to a diagnostic delay following the onset of initial symptoms. Our study focused on cerebrospinal fluid (CSF) concentrations of clusterin, tau protein, phosphorylated tau protein, and beta-amyloid1-42 in ALS patients and a control group. METHODS Our study involved 54 ALS patients and 58 control subjects. Among the ALS patients, 14 presented with bulbar-onset ALS, and 40 with limb-onset ALS. We quantified biomarker levels using enzyme-linked immunosorbent assay (ELISA) and compared the results using the Mann-Whitney U-test. RESULTS Significant elevations in neurodegenerative markers, including tau protein (p < 0.0001), phosphorylated tau protein (p < 0.0001), and clusterin (p = 0.038), were observed in ALS patients compared to controls. Elevated levels of tau protein and phosphorylated tau protein were also noted in both bulbar and limb-onset ALS patients. However, no significant difference was observed for beta-amyloid1-42. ROC analysis identified tau protein (AUC = 0.767) and p-tau protein (AUC = 0.719) as statistically significant predictors for ALS. CONCLUSION Our study demonstrates that neurodegenerative marker levels indicate an ongoing neurodegenerative process in ALS. Nonetheless, the progression of ALS cannot be predicted solely based on these markers. The discovery of a specific biomarker could potentially complement existing diagnostic criteria for ALS.
Collapse
Affiliation(s)
- Kateřina Klíčová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic.
| | - Jan Mareš
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - David Friedecký
- Laboratory of Inherited Metabolic Disorders, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic Olomouc, Czech Republic
| | - Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
| | - Miroslav Strnad
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Olomouc, Czech Republic
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University Olomouc, Olomouc, Czech Republic
| | - Radoslav Matěj
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czech Republic
| |
Collapse
|
18
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
19
|
Ovsepian SV, O'Leary VB, Martinez S. Selective vulnerability of motor neuron types and functional groups to degeneration in amyotrophic lateral sclerosis: review of the neurobiological mechanisms and functional correlates. Brain Struct Funct 2024; 229:1-14. [PMID: 37999738 PMCID: PMC10827929 DOI: 10.1007/s00429-023-02728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
Collapse
Affiliation(s)
- Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine, Charles University, Ruská 87, 10000, Prague, Czech Republic
| | - Salvador Martinez
- Instituto de Neurociencias UMH-CSIC, Avda. Ramon y Cajal, 03550, San Juan de Alicante, Spain.
- Center of Biomedical Network Research on Mental Health (CIBERSAM), ISCIII, Madrid, Spain.
| |
Collapse
|
20
|
Shi Y, Zhu R. Analysis of damage-associated molecular patterns in amyotrophic lateral sclerosis based on ScRNA-seq and bulk RNA-seq data. Front Neurosci 2023; 17:1259742. [PMID: 37942135 PMCID: PMC10628000 DOI: 10.3389/fnins.2023.1259742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Background Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disorder characterized by the progressive loss of motor neurons. Despite extensive research, the exact etiology of ALS remains elusive. Emerging evidence highlights the critical role of the immune system in ALS pathogenesis and progression. Damage-Associated Molecular Patterns (DAMPs) are endogenous molecules released by stressed or damaged cells, acting as danger signals and activating immune responses. However, their specific involvement in ALS remains unclear. Methods We obtained single-cell RNA sequencing (scRNA-seq) data of ALS from the primary motor cortex in the Gene Expression Omnibus (GEO) database. To better understand genes associated with DAMPs, we performed analyses on cell-cell communication and trajectory. The abundance of immune-infiltrating cells was assessed using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. We performed univariate Cox analysis to construct the risk model and utilized the least absolute shrinkage and selection operator (LASSO) analysis. Finally, we identified potential small molecule drugs targeting ALS by screening the Connectivity Map database (CMap) and confirmed their potential through molecular docking analysis. Results Our study annotated 10 cell types, with the expression of genes related to DAMPs predominantly observed in microglia. Analysis of intercellular communication revealed 12 ligand-receptor pairs in the pathways associated with DAMPs, where microglial cells acted as ligands. Among these pairs, the SPP1-CD44 pair demonstrated the greatest contribution. Furthermore, trajectory analysis demonstrated distinct differentiation fates of different microglial states. Additionally, we constructed a risk model incorporating four genes (TRPM2, ROCK1, HSP90AA1, and HSPA4). The validity of the risk model was supported by multivariate analysis. Moreover, external validation from dataset GSE112681 confirmed the predictive power of the model, which yielded consistent results with datasets GSE112676 and GSE112680. Lastly, the molecular docking analysis suggested that five compounds, namely mead-acid, nifedipine, nifekalant, androstenol, and hydrastine, hold promise as potential candidates for the treatment of ALS. Conclusion Taken together, our study demonstrated that DAMP entities were predominantly observed in microglial cells within the context of ALS. The utilization of a prognostic risk model can accurately predict ALS patient survival. Additionally, genes related to DAMPs may present viable drug targets for ALS therapy.
Collapse
Affiliation(s)
| | - Ruixia Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
21
|
Oprisan AL, Popescu BO. Dysautonomia in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:14927. [PMID: 37834374 PMCID: PMC10573406 DOI: 10.3390/ijms241914927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease, characterized in its typical presentation by a combination of lower and upper motor neuron symptoms, with a progressive course and fatal outcome. Due to increased recognition of the non-motor symptoms, it is currently considered a multisystem disorder with great heterogeneity, regarding genetical, clinical, and neuropathological features. Often underestimated, autonomic signs and symptoms have been described in patients with ALS, and various method analyses have been used to assess autonomic nervous system involvement. The aim of this paper is to offer a narrative literature review on autonomic disturbances in ALS, based on the scarce data available to date.
Collapse
Affiliation(s)
- Alexandra L Oprisan
- Department of Clinical Neurosciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Neurology, Colentina Clinical Hospital, 020125 Bucharest, Romania
- Laboratory of Cell Biology, Neurosciences and Experimental Neurology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania
| |
Collapse
|
22
|
Izenberg A. Amyotrophic Lateral Sclerosis and Other Motor Neuron Diseases. Continuum (Minneap Minn) 2023; 29:1538-1563. [PMID: 37851042 DOI: 10.1212/con.0000000000001345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
OBJECTIVE This article reviews the clinical spectrum of amyotrophic lateral sclerosis (ALS), its variant presentations, and the approach to diagnosis and management. This review includes a detailed discussion of current and emerging disease-modifying therapies and the management of respiratory and bulbar manifestations of disease. An updated review of ALS genetics and pathophysiology is also provided. This article also touches on several other important motor neuron diseases. LATEST DEVELOPMENTS A new set of simplified diagnostic criteria may help identify patients at earlier stages of the disease. A coformulation of sodium phenylbutyrate and tauroursodeoxycholic acid has been shown to have a significant benefit on disease progression and survival, leading to approval by regulatory authorities in the United States and Canada. An oral formulation of edaravone and an antisense oligonucleotide to a SOD1 gene variation (tofersen) have also recently been approved by the US Food and Drug Administration (FDA). Phase 3 trials of intrathecal mesenchymal stem cells failed to meet primary end points for efficacy. Updated American Academy of Neurology quality measures for the care of patients with ALS were published in 2023. ESSENTIAL POINTS There has been continued progress in ALS genetics, diagnosis, and disease-modifying therapies. However, we still lack a definitive biomarker or a treatment that can halt the progression or reverse the course of disease. The evolving understanding of the genetic and pathophysiologic underpinnings of disease offers promise for more effective and clinically meaningful treatments in the future.
Collapse
|
23
|
Pérez Gómez AA, Wang M, Kochan K, Amstalden K, Young CR, Welsh CJ, Phillips TD, Brinkmeyer-Langford CL. C57BL/6J mice exposed to perfluorooctanoic acid demonstrate altered immune responses and increased seizures after Theiler's murine encephalomyelitis virus infection. Front Immunol 2023; 14:1228509. [PMID: 37600798 PMCID: PMC10434537 DOI: 10.3389/fimmu.2023.1228509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Neurological diseases can stem from environmental influences such as antecedent viral infections or exposure to potential toxicants, some of which can trigger immune responses leading to neurological symptoms. Theiler's murine encephalomyelitis virus (TMEV) is used to model human neurological conditions associated with prior viral infections, with outcomes partly attributable to improper induction and regulation of the immune response. Perfluorooctanoic acid (PFOA) can alter pathologies known to influence neurological disease such as inflammatory responses, cytokine expression, and glial activation. Co-exposure to TMEV and PFOA was used to test the hypothesis that early life exposure to the potential immunotoxicant PFOA would affect immune responses so as to render TMEV-resistant C57BL/6J (B6) mice susceptible to viral-induced neurological disease. Methods Neonate B6 mice were exposed to different treatments: non-injected, sham-infected with PBS, and TMEV-infected, with the drinking water of each group including either 70 ppt PFOA or filtered water. The effects of PFOA were evaluated by comparing neurological symptoms and changes in immune-related cytokine and chemokine production induced by viral infection. Immune responses of 23 cytokines and chemokines were measured before and after infection to determine the effects of PFOA exposure on immune response. Results Prior to infection, an imbalance between Th1, Th2, and Treg cytokines was observed in PFOA-exposed mice, suppressing IL-4 and IL-13 production. However, the balance was restored and characterized by an increase in pro-inflammatory cytokines in the non-infected group, and a decrease in IL-10 in the PFOA + TMEV group. Furthermore, the PFOA + TMEV group experienced an increase in seizure frequency and severity. Discussion Overall, these findings provide insight into the complex roles of immune responses in the pathogenesis of virus-associated neurological diseases influenced by co-exposures to viruses and immunotoxic compounds.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Meichen Wang
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Kelli Kochan
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, TX, United States
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Timothy D. Phillips
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Candice L. Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
24
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
25
|
Zhang W, Xiao D, Mao Q, Xia H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023; 8:267. [PMID: 37433768 PMCID: PMC10336149 DOI: 10.1038/s41392-023-01486-5] [Citation(s) in RCA: 162] [Impact Index Per Article: 162.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/22/2023] [Accepted: 05/07/2023] [Indexed: 07/13/2023] Open
Abstract
Studies in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Amyotrophic lateral sclerosis, Huntington's disease, and so on, have suggested that inflammation is not only a result of neurodegeneration but also a crucial player in this process. Protein aggregates which are very common pathological phenomenon in neurodegeneration can induce neuroinflammation which further aggravates protein aggregation and neurodegeneration. Actually, inflammation even happens earlier than protein aggregation. Neuroinflammation induced by genetic variations in CNS cells or by peripheral immune cells may induce protein deposition in some susceptible population. Numerous signaling pathways and a range of CNS cells have been suggested to be involved in the pathogenesis of neurodegeneration, although they are still far from being completely understood. Due to the limited success of traditional treatment methods, blocking or enhancing inflammatory signaling pathways involved in neurodegeneration are considered to be promising strategies for the therapy of neurodegenerative diseases, and many of them have got exciting results in animal models or clinical trials. Some of them, although very few, have been approved by FDA for clinical usage. Here we comprehensively review the factors affecting neuroinflammation and the major inflammatory signaling pathways involved in the pathogenicity of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis. We also summarize the current strategies, both in animal models and in the clinic, for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Weifeng Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China
| | - Dan Xiao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, P.R. China
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No. 169 Changle West Road, Xi'an, 710032, China
| | - Qinwen Mao
- Department of Pathology, University of Utah, Huntsman Cancer Institute, 2000 Circle of Hope Drive, Salt Lake City, UT, 84112, USA
| | - Haibin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, 199 South Chang'an Road, Xi'an, 710062, P.R. China.
| |
Collapse
|
26
|
Skajaa N, Riahi EB, Szépligeti SK, Horváth‐Puhó E, Sørensen TT, Henderson VW, Sørensen HT. Type 2 diabetes, obesity, and risk of amyotrophic lateral sclerosis: A population-based cohort study. Brain Behav 2023; 13:e3007. [PMID: 37073502 PMCID: PMC10275529 DOI: 10.1002/brb3.3007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/20/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Type 2 diabetes and obesity may be inversely associated with amyotrophic lateral sclerosis (ALS), but the evidence is controversial. METHODS Using Danish, nationwide registries (1980-2016), we identified patients with a diagnosis of type 2 diabetes (N = 295,653) and patients with a diagnosis of obesity (N = 312,108). Patients were matched (1:3) to persons from the general population on birth year and sex. We computed incidence rates and Cox regression derived hazard ratios (HRs) of a diagnosis of ALS. In multivariable analyses, HRs were controlled for sex, birth year, calendar year, and comorbidities. RESULTS We observed 168 incident cases of ALS (0.7 [95% confidence interval (CI): 0.6-0.8] per 10,000 person-years) among patients with type 2 diabetes and 859 incident cases of ALS (0.9 [95% CI: 0.9-1.0] per 10,000 person-years) among matched comparators. The adjusted HR was 0.87 (95% CI: 0.72-1.04). The association was present among men (adjusted HR: 0.78 [95% CI: 0.62-0.99]) but not women (adjusted HR: 1.03 [95% CI: 0.78-1.37]), and among those aged ≥60 years (adjusted HR: 0.75 [95% CI: 0.59-0.96]) but not younger. We observed 111 ALS events (0.4 [95% CI: 0.4-0.5] per 10,000 person-years) among obesity patients and 431 ALS events (0.5 [95% CI: 0.5-0.6] per 10,000 person-years) among comparators. The adjusted HR was 0.88 (95% CI: 0.70-1.11). CONCLUSIONS Diagnoses of type 2 diabetes and obesity were associated with a reduced rate of ALS compared with general population comparators, particularly among men and patients aged 60 years or above. However, absolute rate differences were small.
Collapse
Affiliation(s)
- Nils Skajaa
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | - Emil Bjerregaard Riahi
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | | | - Erzsébet Horváth‐Puhó
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
| | | | - Victor W. Henderson
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
- Department of Epidemiology and Population HealthStanford UniversityStanfordCalifornia
- Department of Neurology and Neurological SciencesStanford UniversityStanfordCalifornia
| | - Henrik Toft Sørensen
- Department of Clinical EpidemiologyAarhus University Hospital and Aarhus UniversityAarhusDenmark
- Clinical Excellence Research CenterStanford UniversityStanfordCalifornia
| |
Collapse
|
27
|
Iverson GL, Castellani RJ, Cassidy JD, Schneider GM, Schneider KJ, Echemendia RJ, Bailes JE, Hayden KA, Koerte IK, Manley GT, McNamee M, Patricios JS, Tator CH, Cantu RC, Dvorak J. Examining later-in-life health risks associated with sport-related concussion and repetitive head impacts: a systematic review of case-control and cohort studies. Br J Sports Med 2023; 57:810-821. [PMID: 37316187 DOI: 10.1136/bjsports-2023-106890] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Concern exists about possible problems with later-in-life brain health, such as cognitive impairment, mental health problems and neurological diseases, in former athletes. We examined the future risk for adverse health effects associated with sport-related concussion, or exposure to repetitive head impacts, in former athletes. DESIGN Systematic review. DATA SOURCES Search of MEDLINE, Embase, Cochrane, CINAHL Plus and SPORTDiscus in October 2019 and updated in March 2022. ELIGIBILITY CRITERIA Studies measuring future risk (cohort studies) or approximating that risk (case-control studies). RESULTS Ten studies of former amateur athletes and 18 studies of former professional athletes were included. No postmortem neuropathology studies or neuroimaging studies met criteria for inclusion. Depression was examined in five studies in former amateur athletes, none identifying an increased risk. Nine studies examined suicidality or suicide as a manner of death, and none found an association with increased risk. Some studies comparing professional athletes with the general population reported associations between sports participation and dementia or amyotrophic lateral sclerosis (ALS) as a cause of death. Most did not control for potential confounding factors (eg, genetic, demographic, health-related or environmental), were ecological in design and had high risk of bias. CONCLUSION Evidence does not support an increased risk of mental health or neurological diseases in former amateur athletes with exposure to repetitive head impacts. Some studies in former professional athletes suggest an increased risk of neurological disorders such as ALS and dementia; these findings need to be confirmed in higher quality studies with better control of confounding factors. PROSPERO REGISTRATION NUMBER CRD42022159486.
Collapse
Affiliation(s)
- Grant L Iverson
- Sports Concussion Program, MassGeneral Hospital for Children, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA
- Department of Physical Medicine and Rehabilitation, Schoen Adams Research Institute at Spaulding Rehabilitation, Charlestown, Massachusetts, USA
- Home Base, A Red Sox Foundation and Massachusetts General Hospital Program, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Rudolph J Castellani
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - J David Cassidy
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Geoff M Schneider
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ruben J Echemendia
- Department of Psychology, University of Missouri-Kansas City, Kansas City, Missouri, USA
- University Orthopedic Centre, Concussion Care Clinic, State College, Pennsylvania, USA
| | - Julian E Bailes
- Department of Neurosurgery, NorthShore University HealthSystem, Evanston, Illinois, USA
- Department of Neurosurgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - K Alix Hayden
- Libraries and Cultural Resources, University of Calgary, Calgary, Alberta, Canada
| | - Inga K Koerte
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Mass General Brigham, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey T Manley
- Department of Neurosurgery, University of California San Francisco, San Francisco, California, USA
| | - Michael McNamee
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- School of Sport and Exercise Sciences, Swansea University, Swansea, UK
| | - Jon S Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charles H Tator
- Department of Surgery and Division of Neurosurgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Canadian Concussion Centre, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Robert C Cantu
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
- Robert C. Cantu Concussion Center, Emerson Hospital, Concord, Massachusetts, USA
| | - Jiri Dvorak
- Schulthess Clinic Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
De Marchi F, Saraceno M, Sarnelli MF, Virgilio E, Cantello R, Mazzini L. Potential role of vitamin D levels in amyotrophic lateral sclerosis cognitive impairment. Neurol Sci 2023:10.1007/s10072-023-06751-7. [PMID: 36949299 DOI: 10.1007/s10072-023-06751-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Cognitive impairment (CI) is common in amyotrophic lateral sclerosis (ALS): a keystone is identifying factors that could potentially modify the CI course. In recent years, vitamin D is becoming a potential modificatory factor for CI in many neurological disorders. This study aimed to highlight if vitamin D deficiency correlated with CI and clinical features in a cohort of ALS patients. We included 55 ALS patients with a neuropsychological evaluation (classified with the Strong Criteria) and a vitamin D dosage at the diagnosis. We also reviewed medical records and completed data for medical history, physical and neurological examination, and functional scales. At the diagnosis, 30 patients (54%) had CI. Most patients (82%) displayed low vitamin D levels (19.87 ± 9.80 ng/ml). Comparing the vitamin D level between patients with and without CI, we observed significantly lower values in the first group (15.8 ± 8.2 vs. 22.0 ± 9.7 ng/ml, p: 0.04). In the spinal female subgroup (n = 15), we found an inverse correlation between vitamin D and bizarreness score in the cognitive estimates test (r = 0.58; p: 0.04) and a positive correlation with the Corrected Raven's Standard Progressive Matrices (r = 0.53, p: 0.04). Conversely, in the bulbar female group, we observed a correlation with the corrected direct span (r = 0.84, p: 0.03). With the log-rank survival analysis, we found that the patients with vitamin D < 10 ng/ml had a shorter disease duration (Chi: 5.78, p: 0.02). Our results indicate that levels of vitamin D can influence the cognitive status of people living with ALS and that severe deficits might be an adverse prognostic survival factor.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy.
| | - Massimo Saraceno
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Maria Francesca Sarnelli
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Eleonora Virgilio
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Roberto Cantello
- Neurology Unit, Department of Translational Medicine, Maggiore Della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| | - Letizia Mazzini
- ALS Centre, Neurology Unit, Department of Translational Medicine, Maggiore della Carità Hospital, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
29
|
Batty GD, Kivimäki M, Frank P, Gale CR, Wright L. Systemic inflammation and subsequent risk of amyotrophic lateral sclerosis: prospective cohort study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286852. [PMID: 36945398 PMCID: PMC10029031 DOI: 10.1101/2023.03.06.23286852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Importance While systemic inflammation has been implicated in the aetiology of selected neurodegenerative disorders, its role in the development of amyotrophic lateral sclerosis (ALS) is untested. Objective To quantify the relationship of C-reactive protein (CRP), an acute-phase reactant and marker of systemic inflammation, with ALS occurrence. Design Setting Participants UK Biobank, a prospective cohort study of 502,649 participants who were aged 37 to 73 years when examined at research centres between 2006 and 2010. Exposure Venous blood was collected at baseline in the full cohort and assayed for CRP. Repeat measurement was made 3-7 years later in a representative subgroup (N=14,514) enabling correction for regression dilution. Main Outcomes and Measures ALS as ascertained via national hospitalisation and mortality registries. We computed multi-variable hazard ratios with accompanying 95% confidence intervals for log-transformed CRP expressed as standard deviation and tertiles. Results In an analytical sample of 400,884 individuals (218,203 women), a mean follow-up of 12 years gave rise to 231 hospitalisations and 223 deaths ascribed to ALS. After adjustment for covariates which included health behaviours, comorbidity, and socio-economic status, a one standard deviation higher log-CRP was associated with elevated rates of both ALS mortality (hazard ratios; 95% confidence intervals: 1.32; 1.13, 1.53) and hospitalisations (1.20; 1.00, 1.39). There was evidence of dose-response effects across tertiles of CRP for both outcomes (p for trend≤0.05). Correction for regression dilution led to a strengthening of the relationship with CRP for both mortality (1.62; 1.27, 2.08) and hospitalisations (1.37; 1.05, 1.76) ascribed to ALS. Conclusions and Relevance Higher levels of CRP, a blood-based biomarker widely captured in clinical practice, were associated with a higher subsequent risk of ALS. Key Points Question: Is C-reactive protein (CRP), a marker of systemic inflammation widely used in clinical practice, associated with later risk of amyotrophic lateral sclerosis (ALS)?Findings: Following 11 years disease surveillance in 400,884 individuals (218,203 women), after adjustment for covariates and correction for regression dilution, a one standard deviation higher CRP levels were associations with both mortality (hazard ratio; 95% confidence interval: 1.62; 1.27, 2.08) and hospitalisations (1.37; 1.05, 1.76) ascribed to ALS.Meaning: In the present study, CRP has a dose-response relationship with the risk of later ALS.
Collapse
Affiliation(s)
- G David Batty
- Department of Epidemiology and Public Health, University College London, UK
| | - Mika Kivimäki
- Department of Epidemiology and Public Health, University College London, UK Clinicum, Department of Public Health, University of Helsinki, Finland
| | - Philipp Frank
- Department of Epidemiology and Public Health, University College London, UK
| | - Catharine R Gale
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK Lothian Birth Cohorts, Department of Psychology, University of Edinburgh, UK
| | - Liam Wright
- Centre for Longitudinal Studies, University College London, UK
| |
Collapse
|
30
|
Mead RJ, Shan N, Reiser HJ, Marshall F, Shaw PJ. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation. Nat Rev Drug Discov 2023; 22:185-212. [PMID: 36543887 PMCID: PMC9768794 DOI: 10.1038/s41573-022-00612-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 131.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2022] [Indexed: 12/24/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating disease caused by degeneration of motor neurons. As with all major neurodegenerative disorders, development of disease-modifying therapies has proven challenging for multiple reasons. Nevertheless, ALS is one of the few neurodegenerative diseases for which disease-modifying therapies are approved. Significant discoveries and advances have been made in ALS preclinical models, genetics, pathology, biomarkers, imaging and clinical readouts over the last 10-15 years. At the same time, novel therapeutic paradigms are being applied in areas of high unmet medical need, including neurodegenerative disorders. These developments have evolved our knowledge base, allowing identification of targeted candidate therapies for ALS with diverse mechanisms of action. In this Review, we discuss how this advanced knowledge, aligned with new approaches, can enable effective translation of therapeutic agents from preclinical studies through to clinical benefit for patients with ALS. We anticipate that this approach in ALS will also positively impact the field of drug discovery for neurodegenerative disorders more broadly.
Collapse
Affiliation(s)
- Richard J Mead
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK
| | - Ning Shan
- Aclipse Therapeutics, Radnor, PA, US
| | | | - Fiona Marshall
- MSD UK Discovery Centre, Merck, Sharp and Dohme (UK) Limited, London, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, UK.
- Keapstone Therapeutics, The Innovation Centre, Broomhall, Sheffield, UK.
| |
Collapse
|
31
|
Martinez-Gonzalez L, Martinez A. Emerging clinical investigational drugs for the treatment of amyotrophic lateral sclerosis. Expert Opin Investig Drugs 2023; 32:141-160. [PMID: 36762798 DOI: 10.1080/13543784.2023.2178416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder caused by motoneuron death with a median survival time of 3-5 years since disease onset. There are no effective treatments to date. However, a variety of innovative investigational drugs and biological-based therapies are under clinical development. AREAS COVERED This review provides an overview of the clinical investigational small molecules as well as a brief summary of the biological-based therapies that are currently undergoing clinical trials for the treatment of ALS. All the data were obtained from ClinicalTrials.gov (registered through November 1). EXPERT OPINION Drug discovery for ALS is an active and evolving field, where many investigational clinical drugs are in different trials. There are several mechanisms of action supporting all these new therapies, although proteostasis is gaining stage. Probably, small orally bioavailable molecules able to recover functional TDP-43 homeostasis may have solid chances to modify ALS progression.
Collapse
Affiliation(s)
- Loreto Martinez-Gonzalez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Martinez
- Centro de Investigaciones Biológicas "Margarita Salas"-CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red en enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
32
|
Katiyar D, Singhal S, Bansal P, Nagarajan K, Grover P. Nutraceuticals and phytotherapeutics for holistic management of amyotrophic lateral sclerosis. 3 Biotech 2023; 13:62. [PMID: 36714551 PMCID: PMC9880136 DOI: 10.1007/s13205-023-03475-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Amyotrophic lateral sclerosis" (ALS) is a progressive neuronal disorder that affects sensory neurons in the brain and spinal cord, causing loss of muscle control. Moreover, additional neuronal subgroups as well as glial cells such as microglia, astrocytes, and oligodendrocytes are also thought to play a role in the aetiology. The disease affects upper motor neurons and lowers motor neurons and leads to that either lead to muscle weakness and wasting in the arms, legs, trunk and periventricular area. Oxidative stress, excitotoxicity, programmed cell death, altered neurofilament activity, anomalies in neurotransmission, abnormal protein processing and deterioration, increased inflammation, and mitochondrial dysfunction may all play a role in the progression of ALS. There are presently hardly FDA-approved drugs used to treat ALS, and they are only beneficial in slowing the progression of the disease and enhancing functions in certain individuals with ALS, not really in curing or preventing the illness. These days, researchers focus on understanding the pathogenesis of the disease by targeting several mechanisms aiming to develop successful treatments for ALS. This review discusses the epidemiology, risk factors, diagnosis, clinical features, pathophysiology, and disease management. The compilation focuses on alternative methods for the management of symptoms of ALS with nutraceuticals and phytotherapeutics.
Collapse
Affiliation(s)
- Deepti Katiyar
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Shipra Singhal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Priya Bansal
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - K. Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
33
|
Barbo M, Ravnik-Glavač M. Extracellular Vesicles as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Genes (Basel) 2023; 14:genes14020325. [PMID: 36833252 PMCID: PMC9956314 DOI: 10.3390/genes14020325] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is described as a fatal and rapidly progressive neurodegenerative disorder caused by the degeneration of upper motor neurons in the primary motor cortex and lower motor neurons of the brainstem and spinal cord. Due to ALS's slowly progressive characteristic, which is often accompanied by other neurological comorbidities, its diagnosis remains challenging. Perturbations in vesicle-mediated transport and autophagy as well as cell-autonomous disease initiation in glutamatergic neurons have been revealed in ALS. The use of extracellular vesicles (EVs) may be key in accessing pathologically relevant tissues for ALS, as EVs can cross the blood-brain barrier and be isolated from the blood. The number and content of EVs may provide indications of the disease pathogenesis, its stage, and prognosis. In this review, we collected a recent study aiming at the identification of EVs as a biomarker of ALS with respect to the size, quantity, and content of EVs in the biological fluids of patients compared to controls.
Collapse
|
34
|
Diffusion Tensor Imaging in Amyotrophic Lateral Sclerosis: Machine Learning for Biomarker Development. Int J Mol Sci 2023; 24:ijms24031911. [PMID: 36768231 PMCID: PMC9915541 DOI: 10.3390/ijms24031911] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Diffusion tensor imaging (DTI) allows the in vivo imaging of pathological white matter alterations, either with unbiased voxel-wise or hypothesis-guided tract-based analysis. Alterations of diffusion metrics are indicative of the cerebral status of patients with amyotrophic lateral sclerosis (ALS) at the individual level. Using machine learning (ML) models to analyze complex and high-dimensional neuroimaging data sets, new opportunities for DTI-based biomarkers in ALS arise. This review aims to summarize how different ML models based on DTI parameters can be used for supervised diagnostic classifications and to provide individualized patient stratification with unsupervised approaches in ALS. To capture the whole spectrum of neuropathological signatures, DTI might be combined with additional modalities, such as structural T1w 3-D MRI in ML models. To further improve the power of ML in ALS and enable the application of deep learning models, standardized DTI protocols and multi-center collaborations are needed to validate multimodal DTI biomarkers. The application of ML models to multiparametric MRI/multimodal DTI-based data sets will enable a detailed assessment of neuropathological signatures in patients with ALS and the development of novel neuroimaging biomarkers that could be used in the clinical workup.
Collapse
|
35
|
Zhang Q, Li Q, Zhao H, Shu M, Luo M, Li Y, Ding Y, Shi S, Cheng X, Niu Q. Neurodegenerative disease and antioxidant biomarkers: A bidirectional Mendelian randomization study. Front Neurol 2023; 14:1158366. [PMID: 37034095 PMCID: PMC10076659 DOI: 10.3389/fneur.2023.1158366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2023] Open
Abstract
Objective Previous observational studies have suggested that antioxidant imbalance is correlated with neurodegenerative diseases, while its cause-effect remains unclear. Thus, the goal of the present study is to explore the causal relationship between 11 antioxidant biomarkers and 3 most common neurodegenerative diseases [Alzheimer's disease (AD), Amyotrophic Lateral Sclerosis (ALS) and Parkinson's disease (PD)]. Methods A bidirectional Mendelian randomization (MR) study was performed to investigate the causal effects by using 3 main methods (Variance Weighted (IVW), Weighted Median (WM), and MR-Egger regression) in the European population. The data of 11 antioxidant biomarkers were obtained from the open database by the most up-to-date Genome-Wide Association Studies (GWAS), the summary statistics of PD and ALS were obtained from the International Parkinson's Disease Genomics Consortium (IPDGC) (33,674 cases, and 449,056 controls), and the International Amyotrophic Lateral Sclerosis Genomics Consortium (IALSC) (20,806 cases and 59,804 controls), respectively. For AD, we specifically used two recently published GWAS data, one from the International Genomics of Alzheimer's Project (IGAP) (21,982 cases and 41,944 controls), and the other from a large meta-analysis (71,880 cases and 383,378 controls) as validation data. Results Based on the Bonferroni correction p < 0.0015, there was no significant causal evidence for the antioxidant biomarkers on neurodegenerative diseases, however, the reverse analysis found that AD was significantly related to the decrease in retinol (IVW: beta = -0.023, p = 0.0007; WM: beta = -0.025, p = 0.0121), while the same analysis was carried out between the AD validation database and retinol, the results were consistent (IVW: beta = -0.064, p = 0.025). Moreover, AD on Glutathione S-transferase (GST), PD on Glutathione Peroxidase (GPX) as well as PD on uric acid (UA) also indicated potential causal-and-effect associations (IVW: p = 0.025; p = 0.027; p = 0.021, respectively). Conclusions There was no sufficient evidence that antioxidant imbalance has a significant causal effect on neurodegenerative diseases. However, this study revealed that genetically predicted AD was significantly related to the decrease in retinol, which provides a new insight into previous research and indicates the possibility to regard retinol as potential biomarker for the diagnosis and progress of AD.
Collapse
|
36
|
Włodarczyk P, Witczak M, Gajewska A, Chady T, Piotrowski I. The role of TDP-43 protein in amyotrophic lateral sclerosis. JOURNAL OF MEDICAL SCIENCE 2022. [DOI: 10.20883/medical.e710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease where both upper and lower motoneurons are damaged. Even though the pathogenesis of ALS is unclear, the TDP-43 aggregations and non-nuclear localization may be crucial to understanding this process. Despite intensive research on ALS therapies, only two lifespan-prolonging medications have been approved: Riluzole and Edaravone. Unravelling the TDP-43 pathology could help develop new ALS therapies using mechanisms such as inhibition of nuclear export, autophagy, chaperones, or antisense oligonucleotides. Selective inhibitors of nuclear export (SINEs) are drugs that block Exportin 1 (XPO1) and cause the accumulation of not exported molecules inside the nucleus. SINEs that target XPO1 are shown to slightly extend the survival of neurons and soften motor symptoms. Dysfunctional proteins, including TDP-43, can be eliminated through autophagocytosis, which is regulated by the mTOR kinase. Stimulating the elimination of protein deposits may be an effective ALS therapy. Antisense oligonucleotides (ASO) are single-stranded, synthetic oligonucleotides that can bind and modulate specific RNA: via ribonuclease H, inducing their degradation or inducing alternative splicing via blocking primary RNA transcripts. Current ASOs therapies used in ALS focus on SOD1, C9ORF72, FUS, and ATXN2, and they may be used to slow the ALS progression. Reversing the aggregation is a promising therapeutic strategy. Chaperones control other proteins' quality and protect them against stress factors. Due to the irreversible character of ALS, it is essential to understand its complicated pathology better and to seek new therapies.
Collapse
|
37
|
The Role of Biomaterials in Treating Lou Gehrig’s Disease. ARCHIVES OF NEUROSCIENCE 2022. [DOI: 10.5812/ans-131625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Aydemir D, Surucu S, Basak AN, Ulusu NN. Evaluation of the Hematological and Serum Biochemistry Parameters in the Pre-Symptomatic and Symptomatic Stages of ALS Disease to Support Early Diagnosis and Prognosis. Cells 2022; 11:cells11223569. [PMID: 36428998 PMCID: PMC9688239 DOI: 10.3390/cells11223569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. Since there are no pathognomonic tests for ALS prognoses; clinical diagnoses of the disease take time and are usually difficult. Prognostic biomarkers are urgently needed for rapid and effective ALS prognoses. Male albino rats were divided into ten groups based on age: 0 (40-45 days old), A (70-75 days old), B (90-95 days old), C (110-115 days old), and D (130-135 days old). Each group was divided into two subgroups according to its mutation status: wild type (SOD1WT) or mutated (SOD1G93A). Serum biochemistry and hematological parameters were measured in 90 rats to evaluate possible biomarkers for faster ALS diagnoses and prognoses. Weight loss, cholesterol, creatinine, glucose, total bilirubin (TBIL), blood urine nitrogen (BUN), c-peptide, glucagon, PYY, white blood cell (WBC), lymphocyte (LYM), monocyte (MID), granulocyte (GRAN), red cell distribution width with standard deviation (RDW-SD), red cell distribution width with the coefficient of variation (RDW-CV), platelet (PLT), mean platelet volume (MPV), platelet distribution width (PDW), and procalcitonin (PCT) levels were changed in the SOD1G93A rats compared to the SOD1WT rats independently from aging. For the first time in the literature, we showed promising hematological and serum biochemistry parameters in the pre-symptomatic and symptomatic stages of ALS by eliminating the effects of aging. Our results can be used for early diagnoses and prognoses of ALS, improving the quality of life and survival time of ALS patients.
Collapse
Affiliation(s)
- Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
| | - Selcuk Surucu
- Department of Anatomy, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
| | - Ayse Nazli Basak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory, NDAL-KUTTAM, School of Medicine, Koç University, Istanbul 34010, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Sariyer, Istanbul 34450, Turkey
- Koç University Research Center for Translational Medicine (KUTTAM), Sariyer, Istanbul 34450, Turkey
- Correspondence:
| |
Collapse
|
39
|
Gelon PA, Dutchak PA, Sephton CF. Synaptic dysfunction in ALS and FTD: anatomical and molecular changes provide insights into mechanisms of disease. Front Mol Neurosci 2022; 15:1000183. [PMID: 36263379 PMCID: PMC9575515 DOI: 10.3389/fnmol.2022.1000183] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Synaptic loss is a pathological feature of all neurodegenerative diseases including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). ALS is a disease of the cortical and spinal motor neurons resulting in fatal paralysis due to denervation of muscles. FTD is a form of dementia that primarily affects brain regions controlling cognition, language and behavior. Once classified as two distinct diseases, ALS and FTD are now considered as part of a common disease spectrum based on overlapping clinical, pathological and genetic evidence. At the cellular level, aggregation of common proteins and overlapping gene susceptibilities are shared in both ALS and FTD. Despite the convergence of these two fields of research, the underlying disease mechanisms remain elusive. However, recent discovers from ALS and FTD patient studies and models of ALS/FTD strongly suggests that synaptic dysfunction is an early event in the disease process and a unifying hallmark of these diseases. This review provides a summary of the reported anatomical and cellular changes that occur in cortical and spinal motor neurons in ALS and FTD tissues and models of disease. We also highlight studies that identify changes in the proteome and transcriptome of ALS and FTD models and provide a conceptual overview of the processes that contribute to synaptic dysfunction in these diseases. Due to space limitations and the vast number of publications in the ALS and FTD fields, many articles have not been discussed in this review. As such, this review focuses on the three most common shared mutations in ALS and FTD, the hexanucleuotide repeat expansion within intron 1 of chromosome 9 open reading frame 72 (C9ORF72), transactive response DNA binding protein 43 (TARDBP or TDP-43) and fused in sarcoma (FUS), with the intention of highlighting common pathways that promote synaptic dysfunction in the ALS-FTD disease spectrum.
Collapse
|
40
|
Farace C, Fiorito G, Pisano A, Etzi F, Sabalic A, Fenu G, Asara Y, Solinas G, Madeddu R. Human tissue lead (Pb) levels and amyotrophic lateral sclerosis: a systematic review and meta-analysis of case-control studies. Neurol Sci 2022; 43:5851-5859. [PMID: 35809130 PMCID: PMC9474539 DOI: 10.1007/s10072-022-06237-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 12/01/2022]
Abstract
AIM To combine the current scientific literature evidence and elucidate the differences of lead (Pb) bioaccumulation in human tissues by comparing amyotrophic lateral sclerosis (ALS) patients and healthy controls. METHODS We systematically searched for case-control studies on the association of Pb levels with ALS, in human cells, tissues, and body fluids (nervous tissue, muscle, blood, cerebrospinal fluid, urine, skin appendages). Then, we performed a meta-analysis for all the tissues in which at least five case-control studies were available: whole blood (9 studies), serum/plasma (5 studies), and cerebrospinal fluid (CSF) (6 studies). Differences between cases and controls were evaluated using standardized mean difference, and combined estimates were derived using random effect maximum likelihood (REML) meta-analyses. RESULTS Among 1734 records, we identified 46 full-text studies, of which 14 case-control studies met the meta-analysis inclusion criteria. We found higher Pb levels in ALS cases than controls in blood (standardized mean difference (SMD) = 0.61; 95% confidence interval (CI) 0.20, 1.01; p = 0.003), plasma/serum (SMD = 0.27; 95% CI - 0.16, 0.70; p = 0.26), and CSF (SMD = 0.53; 95% CI - 0.09, 1.15; p = 0.09). CONCLUSIONS This work provides further evidence of the association between Pb bioaccumulation and ALS in body fluids. The lack of association studies in solid tissues did not allow a robust meta-analysis. Future prospective studies are needed to clarify the causality in the association of Pb bioaccumulation with ALS.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
- National Institute of Biostructure and Biosystem, Rome, Italy
| | - Giovanni Fiorito
- Department of Biomedical Science-Hygiene, University of Sassari, Sassari, Italy
- School of Public Health, Imperial College, London, UK
| | - Andrea Pisano
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy.
| | - Federica Etzi
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
| | - Angela Sabalic
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
| | - Grazia Fenu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
| | - Yolande Asara
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
| | - Giuliana Solinas
- Department of Biomedical Science-Hygiene, University of Sassari, Sassari, Italy
| | - Roberto Madeddu
- Department of Biomedical Sciences-Histology, University of Sassari, Viale S. Pietro 43b, 07100, Sassari, Italy
- National Institute of Biostructure and Biosystem, Rome, Italy
| |
Collapse
|
41
|
Sonkodi B, Pállinger É, Radovits T, Csulak E, Shenker-Horváth K, Kopper B, Buzás EI, Sydó N, Merkely B. CD3+/CD56+ NKT-like Cells Show Imbalanced Control Immediately after Exercise in Delayed-Onset Muscle Soreness. Int J Mol Sci 2022; 23:ijms231911117. [PMID: 36232420 PMCID: PMC9569472 DOI: 10.3390/ijms231911117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/24/2022] Open
Abstract
The purpose of the study was to carry out an immunophenotypical characterization with a special focus on natural killer cells of junior swimmers from the Hungarian National Swim Team before and after an intensive acute exercise. Nineteen swimmers, ten females and nine males, completed the exercise protocol. Sixteen swimmers experienced delayed-onset muscle soreness. Most of our findings substantiated earlier results, such as the increase in the percentage of the CD3−/CD56+ natural killer cells and the CD3−/CD56dim+ NK cells, and the decrease in the percentage of CD3+ T cells among lymphocytes after the exercise protocol. The drop of natural killer cell activity back to the pre-exercise level was in line with earlier findings. Interestingly, the percentage of CD3+/CD56+ NKT-like cells did not change significantly in those three swimmers who did not report delayed-onset muscle soreness. On the contrary, the percentage of CD3+/CD56+ NKT-like cells among lymphocytes increased in fourteen and decreased in two swimmers reporting delayed-onset muscle soreness. This study for the first time demonstrated a link between the delayed-onset muscle soreness and the imbalanced control of CD3+/CD56+ NKT-like cells among lymphocytes. However, validation of this association in a larger sample size study will be necessary.
Collapse
Affiliation(s)
- Balázs Sonkodi
- Department of Health Sciences and Sport Medicine, Hungarian University of Sports Science, 1123 Budapest, Hungary
- Correspondence:
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | - Emese Csulak
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
| | | | - Bence Kopper
- Faculty of Kinesiology, Hungarian University of Sports Science, 1123 Budapest, Hungary
| | - Edit I. Buzás
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1085 Budapest, Hungary
- HCEMM-SU Extracellular Vesicle Research Group, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1089 Budapest, Hungary
| | - Nóra Sydó
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary
- Department of Sports Medicine, Semmelweis University, 1122 Budapest, Hungary
| |
Collapse
|
42
|
Motataianu A, Serban G, Barcutean L, Balasa R. Oxidative Stress in Amyotrophic Lateral Sclerosis: Synergy of Genetic and Environmental Factors. Int J Mol Sci 2022; 23:ijms23169339. [PMID: 36012603 PMCID: PMC9409178 DOI: 10.3390/ijms23169339] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a grievous neurodegenerative disease whose survival is limited to only a few years. In spite of intensive research to discover the underlying mechanisms, the results are fairly inconclusive. Multiple hypotheses have been regarded, including genetic, molecular, and cellular processes. Notably, oxidative stress has been demonstrated to play a crucial role in ALS pathogenesis. In addition to already recognized and exhaustively studied genetic mutations involved in oxidative stress production, exposure to various environmental factors (e.g., electromagnetic fields, solvents, pesticides, heavy metals) has been suggested to enhance oxidative damage. This review aims to describe the main processes influenced by the most frequent genetic mutations and environmental factors concurring in oxidative stress occurrence in ALS and the potential therapeutic molecules capable of diminishing the ALS related pro-oxidative status.
Collapse
Affiliation(s)
- Anca Motataianu
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Georgiana Serban
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Correspondence: ; Tel.: +40-0724-051-516
| | - Laura Barcutean
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Rodica Balasa
- Department of Neurology, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540136 Targu Mures, Romania
- 1st Neurology Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, “George Emil Palade” University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
43
|
Ben-Zaken S, Nefussy B, Meckel Y, Eliakim A, Nemet D, Gotkine M, Lorber D, Zeev A, Drory VE. Common genetic basis of ALS patients and soccer players may contribute to disease risk. Neurol Sci 2022; 43:4231-4238. [DOI: 10.1007/s10072-022-05990-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022]
|
44
|
Pérez Gómez AA, Karmakar M, Carroll RJ, Lawley KS, Amstalden K, Young CR, Threadgill DW, Welsh CJ, Brinkmeyer-Langford C. Serum Cytokines Predict Neurological Damage in Genetically Diverse Mouse Models. Cells 2022; 11:2044. [PMID: 35805128 PMCID: PMC9265636 DOI: 10.3390/cells11132044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/02/2022] Open
Abstract
Viral infections contribute to neurological and immunological dysfunction driven by complex genetic networks. Theiler's murine encephalomyelitis virus (TMEV) causes neurological dysfunction in mice and can model human outcomes to viral infections. Here, we used genetically distinct mice from five Collaborative Cross mouse strains and C57BL/6J to demonstrate how TMEV-induced immune responses in serum may predict neurological outcomes in acute infection. To test the hypothesis that serum cytokine levels can provide biomarkers for phenotypic outcomes of acute disease, we compared cytokine levels at pre-injection, 4 days post-injection (d.p.i.), and 14 d.p.i. Each strain produced unique baseline cytokine levels and had distinct immune responses to the injection procedure itself. Thus, we eliminated the baseline responses to the injection procedure itself and identified cytokines and chemokines induced specifically by TMEV infection. Then, we identified strain-specific longitudinal cytokine profiles in serum during acute disease. Using stepwise regression analysis, we identified serum immune markers predictive for TMEV-induced neurological phenotypes of the acute phase, e.g., IL-9 for limb paralysis; and TNF-α, IL-1β, and MIP-1β for limb weakness. These findings indicate how temporal differences in immune responses are influenced by host genetic background and demonstrate the potential of serum biomarkers to track the neurological effects of viral infection.
Collapse
Affiliation(s)
- Aracely A. Pérez Gómez
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Moumita Karmakar
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Raymond J. Carroll
- Department of Statistics, College of Science, Texas A & M University, College Station, TX 77843, USA; (M.K.); (R.J.C.)
| | - Koedi S. Lawley
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Katia Amstalden
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Colin R. Young
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - David W. Threadgill
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Molecular and Cellular Medicine, Texas A & M Health Science Center, Texas A & M University, College Station, TX 77843, USA
| | - C. Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| | - Candice Brinkmeyer-Langford
- Interdisciplinary Faculty of Toxicology, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA;
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A & M University, College Station, TX 77843, USA; (K.S.L.); (K.A.); (C.R.Y.); (C.J.W.)
| |
Collapse
|
45
|
Jacob S, Kapadia R, Soule T, Luo H, Schellenberg KL, Douville RN, Pfeffer G. Neuromuscular Complications of SARS-CoV-2 and Other Viral Infections. Front Neurol 2022; 13:914411. [PMID: 35812094 PMCID: PMC9263266 DOI: 10.3389/fneur.2022.914411] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022] Open
Abstract
In this article we review complications to the peripheral nervous system that occur as a consequence of viral infections, with a special focus on complications of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We discuss neuromuscular complications in three broad categories; the direct consequences of viral infection, autoimmune neuromuscular disorders provoked by viral infections, and chronic neurodegenerative conditions which have been associated with viral infections. We also include discussion of neuromuscular disorders that are treated by immunomodulatory therapies, and how this affects patient susceptibility in the current context of the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 is associated with direct consequences to the peripheral nervous system via presumed direct viral injury (dysgeusia/anosmia, myalgias/rhabdomyolysis, and potentially mononeuritis multiplex) and autoimmunity (Guillain Barré syndrome and variants). It has important implications for people receiving immunomodulatory therapies who may be at greater risk of severe outcomes from COVID-19. Thus far, chronic post-COVID syndromes (a.k.a: long COVID) also include possible involvement of the neuromuscular system. Whether we may observe neuromuscular degenerative conditions in the longer term will be an important question to monitor in future studies.
Collapse
Affiliation(s)
- Sarah Jacob
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Ronak Kapadia
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Tyler Soule
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Honglin Luo
- Centre for Heart and Lung Innovation, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kerri L. Schellenberg
- Division of Neurology, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Renée N. Douville
- Division of Neurodegenerative Disorders, Department of Biology, Albrechtsen St. Boniface Research Centre, University of Winnipeg, Winnipeg, MB, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Medical Genetics, Alberta Child Health Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
46
|
Henderson RD, Kepp KP, Eisen A. ALS/FTD: Evolution, Aging, and Cellular Metabolic Exhaustion. Front Neurol 2022; 13:890203. [PMID: 35711269 PMCID: PMC9196861 DOI: 10.3389/fneur.2022.890203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) are neurodegenerations with evolutionary underpinnings, expansive clinical presentations, and multiple genetic risk factors involving a complex network of pathways. This perspective considers the complex cellular pathology of aging motoneuronal and frontal/prefrontal cortical networks in the context of evolutionary, clinical, and biochemical features of the disease. We emphasize the importance of evolution in the development of the higher cortical function, within the influence of increasing lifespan. Particularly, the role of aging on the metabolic competence of delicately optimized neurons, age-related increased proteostatic costs, and specific genetic risk factors that gradually reduce the energy available for neuronal function leading to neuronal failure and disease.
Collapse
Affiliation(s)
| | - Kasper Planeta Kepp
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Andrew Eisen
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
47
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
48
|
Pai V, Trivedi CR, Pai B, Swaminathan SK. T1 hyperintensity in the spinal cord: A diagnostic marker of amyotrophic lateral sclerosis? J Clin Imaging Sci 2022; 12:20. [PMID: 35510239 PMCID: PMC9062945 DOI: 10.25259/jcis_24_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/12/2022] [Indexed: 12/05/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a rare, devastating motor neuron disease characterized by the degeneration of upper and lower motor neurons causing muscular weakness, paralysis, and eventual death. MRI plays a supportive role in the diagnosis; its primary role is to exclude other clinical mimics. Some of the imaging features associated with ALS include hypointense signal along the motor cortices on susceptibility or T2*-weighted imaging and hyperintensity along the corticospinal tracts (CST) within the cerebral hemispheres, brainstem, and spinal cord on the T2 weighted imaging. In this report, we discuss the value of T1 hyperintensity along the CST, especially in the spinal cord.
Collapse
Affiliation(s)
- Vivek Pai
- Division of Neuroradiology, Joint Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Chintan R Trivedi
- Department of Radiology, Apollo Hospitals-Navi Mumbai, Mumbai, Maharashtra, India
| | - Bhujang Pai
- Department of Radiology, SevenHills Hospital, Mumbai, Maharashtra, India
| | | |
Collapse
|
49
|
Fateh HR, Askary-Kachoosangy R, Shirzad N, Akbarzadeh-Baghban A, Fatehi F. The effect of energy conservation strategies on fatigue, function, and quality of life in adults with motor neuron disease: Randomized controlled trial. CURRENT JOURNAL OF NEUROLOGY 2022; 21:83-90. [PMID: 38011426 PMCID: PMC9860213 DOI: 10.18502/cjn.v21i2.10491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/02/2022] [Indexed: 11/29/2023]
Abstract
Background: Fatigue is one of the most frequent complaints in patients with motor neuron diseases (MNDs), with a significant impact on the quality of life (QOL). There is lack of enough evidence for current pharmacological or non-pharmacological treatments of fatigue in this population to be applied in clinical setting. Energy conservation strategies are one of the key interventions for fatigue management in chronic diseases. We aimed to investigate the effect of applying these techniques in the fatigue management of patients with MND. Methods: This randomized controlled trial (RCT) study was carried out on 28 patients with MND. Participants were randomly assigned to either the intervention or control group. In addition to routine treatment, patients in the intervention group participated in 3 weekly 1-hour energy conservation programs provided by an experienced occupational therapist. The Fatigue Severity Scale (FSS) score, 36-Item Short Form Survey (SF-36), and Canadian Occupational Performance Measure (COPM) were measured at baseline, immediately after the last intervention session, and one month later. Results: FSS and COPM significantly changed after the course in the intervention group (P < 0.001 and P = 0.001, respectively). Both FSS and COPM improved significantly toward the final assessment only in the intervention group. The SF-36 changes were not significant in each of the groups. Conclusion: According to the findings of the present study, using energy conservation strategies could lead to better mid-term fatigue management and occupational performance improvement, but it did not improve QOL in patients with MND.
Collapse
Affiliation(s)
- Hamid Reza Fateh
- Department of Physical Medicine and Rehabilitation, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Reihaneh Askary-Kachoosangy
- Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Shirzad
- Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Akbarzadeh-Baghban
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biostatistics, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Iranian Center of Neurological Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Bottero V, Santiago JA, Quinn JP, Potashkin JA. Key Disease Mechanisms Linked to Amyotrophic Lateral Sclerosis in Spinal Cord Motor Neurons. Front Mol Neurosci 2022; 15:825031. [PMID: 35370543 PMCID: PMC8965442 DOI: 10.3389/fnmol.2022.825031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no modifying treatments available. The molecular mechanisms underpinning disease pathogenesis are not fully understood. Recent studies have employed co-expression networks to identify key genes, known as “switch genes”, responsible for dramatic transcriptional changes in the blood of ALS patients. In this study, we directly investigate the root cause of ALS by examining the changes in gene expression in motor neurons that degenerate in patients. Co-expression networks identified in ALS patients’ spinal cord motor neurons revealed 610 switch genes in seven independent microarrays. Switch genes were enriched in several pathways, including viral carcinogenesis, PI3K-Akt, focal adhesion, proteoglycans in cancer, colorectal cancer, and thyroid hormone signaling. Transcription factors ELK1 and GATA2 were identified as key master regulators of the switch genes. Protein-chemical network analysis identified valproic acid, cyclosporine, estradiol, acetaminophen, quercetin, and carbamazepine as potential therapeutics for ALS. Furthermore, the chemical analysis identified metals and organic compounds including, arsenic, copper, nickel, and benzo(a)pyrene as possible mediators of neurodegeneration. The identification of switch genes provides insights into previously unknown biological pathways associated with ALS.
Collapse
Affiliation(s)
- Virginie Bottero
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
| | | | | | - Judith A. Potashkin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, Center for Neurodegenerative Diseases and Therapeutics, Discipline of Cellular and Molecular Pharmacology, North Chicago, IL, United States
- *Correspondence: Judy A. Potashkin
| |
Collapse
|