1
|
Ciftel S, Mercantepe F, Mercantepe T, Ciftel E, Klisic A. Dexmedetomidine on the interplay of IL-6 and STAT3 pathways in adrenal gland damage-induced scalding burns in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:641-655. [PMID: 39042159 PMCID: PMC11787240 DOI: 10.1007/s00210-024-03300-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Scalding burns are a common form of thermal injury that often leads to systemic complications. Pro-inflammatory cytokines like interleukin-6 (IL-6) and the activation of signal transducer and activator of transcription 3 (STAT3) pathways have been linked to the pathophysiology of organ damage caused by burns. This study aimed to investigate the potential therapeutic effects of dexmedetomidine, an α2-adrenergic receptor agonist with anti-inflammatory properties, on the interplay of IL-6 and STAT3 pathways in adrenal gland damage following scalding burns in rats. Twenty-eight rats were divided randomly into four groups. Rats in group 1 (n=7, control) were given only 0.9% intraperitoneal (i.p.) NaCl. Rats in group 2 (n=7, DEX) were exposed to 25°C water for 17 s on day 1 and received 100 mcg/kg/day dexmedetomidine i.p. for 3 days; for rats in group 3 (n=7, Burn), boiling water of 94°C was applied inside for 17 s. Rats in group 4 (n=7, Burn+DEX) were exposed to 94°C water for 17 s and received 100 mcg/kg/day dexmedetomidine i.p. for 3 days. Adrenal gland tissues were histopathological examined, and STAT3, IL-6, and TUNEL staining were performed using immunohistochemically. Our results revealed that scalding burns increased IL-6 and STAT3 expression in the adrenal glands of rats. Histological analysis demonstrated that dexmedetomidine administration ameliorated adrenal gland damage and reduced inflammatory cell infiltration. Our findings suggest that dexmedetomidine protects the adrenal glands in scalding burns. This protection appears to be mediated, at least in part, by its modulation of IL-6 and STAT3 pathways.
Collapse
Affiliation(s)
- Serpil Ciftel
- Department of Endocrinology and Metabolism, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and Metabolism, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, 53010, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Enver Ciftel
- Department of Endocrinology and Metabolism, Sivas Numune Hospital, Sivas, Turkey
| | - Aleksandra Klisic
- University of Montenegro-Faculty of Medicine, Podgorica, Montenegro
- Center for Laboratory Diagnostics, Primary Health Care Center, Podgorica, Montenegro
| |
Collapse
|
2
|
Tao Z, Li P, Zhao X. Progress on the Mechanisms and Neuroprotective Benefits of Dexmedetomidine in Brain Diseases. Brain Behav 2024; 14:e70116. [PMID: 39482839 PMCID: PMC11527817 DOI: 10.1002/brb3.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024] Open
Abstract
INTRODUCTION Dexmedetomidine, a highly specific α2 agonist, has been extensively utilized in clinical sedation and surgical anesthesia since its introduction in 2000 due to its excellent sympatholytic, sedative, and analgesic effects. This review aimed to identify new approaches for the treatment of patients with brain disorders by thoroughly describing the mechanism of action of dexmedetomidine and examining its neuroprotective effects from the standpoints of basic and clinical research. METHODS The PubMed and Web of Science databases were searched using the keywords dexmedetomidine and related brain diseases, although relevant articles from the last decade were included for detailed summarization and analysis. RESULTS Dexmedetomidine has shown strong neuroprotective effects, such as protection of the blood-brain barrier, decreased neuronal death, maintained hemodynamic stability, and reduced postoperative agitation and cognitive dysfunction. Furthermore, dexmedetomidine has been shown to exert various neuroprotective effects, including anti-inflammatory and antioxidative stress effects, modulation of autophagy, and reduction of apoptosis in cerebral diseases. CONCLUSIONS Dexmedetomidine acts as a neuroprotective agent against brain diseases during all phases of treatment. However, clinical trials with larger sample sizes are required to optimize dosage and dosing strategies.
Collapse
Affiliation(s)
- Zhenxing Tao
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
| | - Pengpeng Li
- Wuxi Medical SchoolJiangnan UniversityWuxiChina
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
| | - Xudong Zhao
- Department of NeurosurgeryJiangnan University Medical CenterWuxiChina
- Wuxi Neurosurgical InstituteWuxiChina
| |
Collapse
|
3
|
Deng F, Zhou B, Zhang S, Cai L. Dexmedetomidine-mediated improvement of perioperative neurocognitive disorders by miR-184-3p-mediated NLRP3. Brain Res 2024; 1842:149051. [PMID: 38830564 DOI: 10.1016/j.brainres.2024.149051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Perioperative neurocognitive disorders (PND) is a neurological complication in the perioperative period, which may lead to severe poor prognosis. Dexmedetomidine (Dex) is a commonly used sedative in the perioperative period. However, the effect of intraoperative anesthetic Dex on PND remains complicated and confusing. METHODS PND model was established using aged male mice, treated with Dex, and subjected to behavioral tests. The effect of Dex on pyroptosis was assessed by western blot, enzyme-linked immunosorbent assay and immunofluorescence. In addition, the miRNA expression profile of PND mice was identified by small RNA sequencing and performed PCR to detect miRNAs. Finally, the effect of miRNA on mice neuron pyroptosis was verified in vitro. RESULTS We found postoperative cognitive was declined in PND mice compared with control group, while preoperative injection of Dex improved short-term working memory and anxious exploration behavior, alleviated the cognitive impairment. Intriguingly, Dex ameliorated hippocampal inflammation and neuron pyroptosis in PND mice as evidenced by the reduced GSDMD, NLRP3, IL-1β and IL-18. The miRNA expression profile of PND mice hippocampus was disordered, including 5 miRNAs up-regulated and 17 miRNAs down-regulated, compared to the sham group. Dysregulated miRNAs were mainly enriched in biological functions related to neuronal development and signaling pathways related to pyroptosis. MiR-184-3p was the key miRNA, overexpression of miR-184-3p blocked the inhibitory effect of Dex on neuron pyroptosis, which was manifested as increased expression of GSDMD and NLRP3, increased inflammatory factors IL-1β and IL-18. CONCLUSIONS This study revealed that miR-184-3p may mediate NLRP3 to prevent the alleviating effect of Dex on PND, which provides a new potential way to improve the therapeutic intervention of PND.
Collapse
Affiliation(s)
- Fumou Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shenglan Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, China
| | - Lily Cai
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China..
| |
Collapse
|
4
|
Gatica S, Aravena C, Prado Y, Aravena D, Echeverría C, Santibanez JF, Riedel CA, Stehberg J, Simon F. Appraisal of the Neuroprotective Effect of Dexmedetomidine: A Meta-Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:163-181. [PMID: 37093427 DOI: 10.1007/978-3-031-26163-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Dexmedetomidine is an adrenergic receptor agonist that has been regarded as neuroprotective in several studies without an objective measure to it. Thus, the aim of this meta-analysis was to analyze and quantify the current evidence for the neuroprotective effects of dexmedetomidine in animals. The search was performed by querying the National Library of Medicine. Studies were included based on their language, significancy of their results, and complete availability of data on animal characteristics and interventions. Risk of bias was assessed using SYRCLE's risk of bias tool and certainty was assessed using the ARRIVE Guidelines 2.0. Synthesis was performed by calculating pooled standardized mean difference and presented in forest plots and tables. The number of eligible records included per outcome is the following: 22 for IL-1β, 13 for IL-6, 19 for apoptosis, 7 for oxidative stress, 7 for Escape Latency, and 4 for Platform Crossings. At the cellular level, dexmedetomidine was found protective against production of IL-1β (standardized mean difference (SMD) = - 4.3 [- 4.8; - 3.7]) and IL-6 (SMD = - 5.6 [- 6.7; - 4.6]), apoptosis (measured through TUNEL, SMD = - 6.0 [- 6.8; - 4.6]), and oxidative stress (measured as MDA production, SMD = - 2.0 [- 2.4; - 1.4]) exclusively in the central nervous system. At the organism level, dexmedetomidine improved behavioral outcomes measuring escape latency (SMD = - 2.4 [- 3.3; - 1.6]) and number of platform crossings (SMD = 9.1 [- 6.8; - 11.5]). No eligible study had high risk of bias and certainty was satisfactory for reproducibility in all cases. This meta-analysis highlights the complexity of adrenergic stimulation and sheds light into the mechanisms potentiated by dexmedetomidine, which could be exploited for improving current neuroprotective formulations.
Collapse
Affiliation(s)
- Sebastian Gatica
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
| | - Cristobal Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Yolanda Prado
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Diego Aravena
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Cesar Echeverría
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapo, Chile
| | - Juan F Santibanez
- Institute for Medical Research, National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Integrative Center for Biology and Applied Chemistry (CIBQA), Bernardo O'Higgins University, Santiago, Chile
| | - Claudia A Riedel
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Jimmy Stehberg
- Laboratory of Neurobiology, Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| | - Felipe Simon
- Laboratory of Integrative Physiopathology, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy, Santiago, Chile.
- Millennium Nucleus of Ion Channel-Associated Diseases, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Hu Y, Zhou H, Zhang H, Sui Y, Zhang Z, Zou Y, Li K, Zhao Y, Xie J, Zhang L. The neuroprotective effect of dexmedetomidine and its mechanism. Front Pharmacol 2022; 13:965661. [PMID: 36204225 PMCID: PMC9531148 DOI: 10.3389/fphar.2022.965661] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
Dexmedetomidine (DEX) is a highly selective α2 receptor agonist that is routinely used in the clinic for sedation and anesthesia. Recently, an increasing number of studies have shown that DEX has a protective effect against brain injury caused by traumatic brain injury (TBI), subarachnoid hemorrhage (SAH), cerebral ischemia and ischemia–reperfusion (I/R), suggesting its potential as a neuroprotective agent. Here, we summarized the neuroprotective effects of DEX in several models of neurological damage and examined its mechanism based on the current literature. Ultimately, we found that the neuroprotective effect of DEX mainly involved inhibition of inflammatory reactions, reduction of apoptosis and autophagy, and protection of the blood–brain barrier and enhancement of stable cell structures in five way. Therefore, DEX can provide a crucial advantage in neurological recovery for patients with brain injury. The purpose of this study was to further clarify the neuroprotective mechanisms of DEX therefore suggesting its potential in the clinical management of the neurological injuries.
Collapse
Affiliation(s)
- Yijun Hu
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- Graduate School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong Zhou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Huanxin Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunlong Sui
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhen Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yuntao Zou
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kunquan Li
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Yunyi Zhao
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jiangbo Xie
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Lunzhong Zhang
- Neurology Department, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
- *Correspondence: Lunzhong Zhang,
| |
Collapse
|
6
|
Li G, Zhou J, Wei J, Liu B. Dexmedetomidine Ameliorated Cognitive Dysfunction Induced by Intestinal Ischemia Reperfusion in Mice with Possible Relation to the Anti-inflammatory Effect Through the Locus Coeruleus Norepinephrine System. Neurochem Res 2022; 47:3440-3453. [PMID: 35945306 PMCID: PMC9546995 DOI: 10.1007/s11064-022-03706-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cognitive impairment is a common central nervous system complication that occurs following surgery or organs damage outside the nervous system. Neuroinflammation plays a key role in the molecular mechanisms of cognitive impairment. Dexmedetomidine alleviates neuroinflammation and reduces cognitive dysfunction incidence; however, the mechanism by which dexmedetomidine alleviates cognitive dysfunction remains unclear. This study evaluated the effect of dexmedetomidine on attenuation of early cognitive impairment induced by intestinal ischemia–reperfusion in mice and examined whether the locus coeruleus norepinephrine (LCNE) system participates in the anti-inflammatory effect of dexmedetomidine. The superior mesenteric artery was clamped for 45 min to induce intestinal ischemia reperfusion injury. Dexmedetomidine alone or combined with DSP-4, a selective locus coeruleus noradrenergic neurotoxin, was used for pretreatment. Postoperative cognition was assessed using the Morris water maze. Serum and hippocampal levels of IL-1β, TNF-α, norepinephrine (NE), and malondialdehyde (MDA) were assessed by enzyme-linked immunosorbent assay. Immunofluorescence, immunohistochemistry, and hematoxylin and eosin staining were used to evaluate the expression of tyrosine hydroxylase (TH) in the locus coeruleus, hippocampal microglia, and intestinal injury. Pretreatment with dexmedetomidine alleviated intestinal injury and decreased the serum and hippocampal levels of NE, IL-1β, TNF-α, and MDA at 24 h after intestinal ischemia reperfusion, decreased TH-positive neurons in the locus coeruleus, and ameliorated cognitive impairment. Similarly, DSP-4 pre-treatment alleviated neuroinflammation and improved cognitive function. Furthermore, α2-adrenergic receptor antagonist atipamezole or yohimbine administration diminished the neuroprotective effects and improved cognitive function with dexmedetomidine. Therefore, dexmedetomidine attenuated early cognitive dysfunction induced by intestinal ischemia–reperfusion injury in mice, which may be related to its anti-inflammatory effects through the LCNE system.
Collapse
Affiliation(s)
- Gang Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Zhou
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jicheng Wei
- Department of Anesthesiology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bin Liu
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Liu H, Li J, Jiang L, He J, Zhang H, Wang K. Dexmedetomidine pretreatment alleviates cerebral ischemia/reperfusion injury by inhibiting neuroinflammation through the JAK2/STAT3 pathway. Braz J Med Biol Res 2022; 55:e12145. [PMID: 35858000 PMCID: PMC9296126 DOI: 10.1590/1414-431x2022e12145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022] Open
Abstract
Dexmedetomidine (DEX) is known to provide neuroprotection against cerebral
ischemia and reperfusion injury (CIRI), but the exact mechanisms remain unclear.
This study was conducted to investigate whether DEX pretreatment conferred
neuroprotection against CIRI by inhibiting neuroinflammation through the
JAK2/STAT3 signaling pathway. Middle cerebral artery occlusion (MCAO) was
performed to establish a cerebral ischemia/reperfusion (I/R) model.
Specific-pathogen-free male Sprague-Dawley rats were randomly divided into Sham,
I/R, DEX, DEX+IL-6, and AG490 (a selective inhibitor of JAK2) groups. The Longa
score, TTC staining, and HE staining were used to evaluate brain damage. ELISA
was used to exam levels of TNF-α. Western blotting was used to assess the levels
of JAK2, phosphorylated-JAK2 (p-JAK2), STAT3, and phosphorylated-STAT3
(p-STAT3). Our results suggested that both pretreatment with DEX and AG490
decreased the Longa score and cerebral infarct areas following cerebral I/R.
After treatment with IL-6, the effects of DEX on abrogating these pathological
changes were reduced. HE staining revealed that I/R-induced neuronal
pathological changes were attenuated by DEX application, consistent with the
AG490 group. However, these effects of DEX were abolished by IL-6. Furthermore,
TNF-α levels were significantly increased in the I/R group, accompanied by an
increase in the levels of the p-JAK2 and p-STAT3. DEX and AG490 pretreatment
down-regulated the expressions of TNF-α, p-JAK2, and p-STAT3. In contrast, the
down-regulation of TNF-α, p-JAK2, and p-STAT3 induced by DEX was reversed by
IL-6. Collectively, our results indicated that DEX pretreatment conferred
neuroprotection against CIRI by inhibiting neuroinflammation via negatively
regulating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Huan Liu
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China.,College of Postgraduate, Hebei North University, Zhangjiakou, Hebei, China
| | - Jianli Li
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Li Jiang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Jinhua He
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Huanhuan Zhang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Keyan Wang
- Department of Anesthesiology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Xiong J, Quan J, Qin C, Wang X, Dong Q, Zhang B. Remifentanil pretreatment attenuates brain nerve injury in response to cardiopulmonary bypass by blocking AKT/NRF2 signal pathway. Immunopharmacol Immunotoxicol 2022; 44:574-585. [PMID: 35485905 DOI: 10.1080/08923973.2022.2069577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVE This study aimed to explore the effect and mechanism of remifentanil on cardiopulmonary bypass (CPB)-induced cerebral nerve injury. METHODS After pretreating with remifentanil, or dexmedetomidine (DEX), SD rats were subjected to the CPB for 2 h. The data of body temperature, blood gas and mean arterial pressure (MAP) and hematocrit (HCT) were recorded at different time points. The cerebral tissue water content of rats was determined and immunohistochemical (IHC) and H&E assays on the hippocampal CA1 region of rats was performed. The levels of interleukin (IL)-6, IL-10, soluble protein-100β (S100β) and neuron-specific enolase (NSE) were analyzed by ELISA, and those of the indexes for oxidative stress (malondialdehyde (MDA) and superoxide dismutase (SOD)) were detected by the commercial kits. Morris water maze was used to evaluate the learning and memory abilities. Western blot/qRT-PCR were used to detect the protein/mRNA expressions in hippocampus. RESULTS CPB increased the levels/expressions of IL-6, IL-10, S100β, NSE, MDA, cleaved caspase-3, Bax and decreased those of Bcl-2, SOD, p-AKT, HO-1, in serum and parietal cortex tissue, with increased brain water content, lesions in the hippocampal CA1 area, swimming distance, brain nerve injury and decreased escape latency, retention time on platform and times of crossing the platform of rats. The preconditioning of remifentanil or DEX partially attenuated CPB-induced injury and -decreased expressions on p-AKT and HO-1, while further promoting CPB-induced expression of nuclear Nrf2 expression and inhibiting that of cytoplasm Nrf2. CONCLUSION This paper demonstrates that remifentanil preconditioning could partially attenuate CPB-induced brain nerve injury of rats.
Collapse
Affiliation(s)
- Jijun Xiong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China.,Department of Neurology, People's Hospital of Guilin, Gunlin, Guangxi Province, China
| | - Jie Quan
- Department of Neurology, People's Hospital of Guilin, Gunlin, Guangxi Province, China
| | - Chaosheng Qin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Xiaogang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Qinghua Dong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| | - Bingdong Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Province, China
| |
Collapse
|
9
|
Jia T, Xing Z, Wang And H, Li G. Protective effect of dexmedetomidine on intestinal mucosal barrier function in rats after cardiopulmonary bypass. Exp Biol Med (Maywood) 2021; 247:498-508. [PMID: 34878923 DOI: 10.1177/15353702211062509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiopulmonary bypass can result in damage to the intestines, leading to the occurrence of systemic inflammatory response syndrome. Dexmedetomidine is reported to confer anti-inflammatory properties. Here, the purpose of this study is to investigate the effect of dexmedetomidine on the intestinal mucosa barrier damage in a rat model of cardiopulmonary bypass. It was observed that cardiopulmonary bypass greatly decreased the levels of hemodynamic parameters than SHAM group, whereas dexmedetomidine pretreatment in a cardiopulmonary bypass model rat prevented this reduction. Also, it showed that compared with control animals, cardiopulmonary bypass caused obvious mucosal damage, which was attenuated in dexmedetomidine + cardiopulmonary bypass group. The above findings were in line with that of dexmedetomidine pretreatment, which increased the expression of tight junction proteins, but it decreased the levels of DAO, D-LA, FABP2, and endotoxin. Moreover, the results demonstrated that due to pre-administration of dexmedetomidine, the level of pro-inflammatory factors was decreased, while the level of anti-inflammatory cytokine was increased. Also, it showed that dexmedetomidine suppressed TLR4/JAK2/STAT3 pathway that was activated by cardiopulmonary bypass. Together, these results revealed that dexmedetomidine pretreatment relieves intestinal microcirculation, attenuates intestinal damage, and inhibits the inflammatory response of cardiopulmonary bypass model rats, demonstrating that in CPB-induced damage of intestinal mucosal barrier function, dexmedetomidine pretreatment plays a protective role by inactivating TLR4/JAK2/STAT3-mediated inflammatory pathway.
Collapse
Affiliation(s)
- Tong Jia
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Zhen Xing
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Huijuan Wang And
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| | - Guoli Li
- Anesthesiology Department, The First Affiliated Hospital of Hebei North University, Zhangjiakou 075000, P. R. China
| |
Collapse
|
10
|
Kiryachkov YY, Bosenko SA, Muslimov BG, Petrova MV. Dysfunction of the Autonomic Nervous System and its Role in the Pathogenesis of Septic Critical Illness (Review). Sovrem Tekhnologii Med 2021; 12:106-116. [PMID: 34795998 PMCID: PMC8596275 DOI: 10.17691/stm2020.12.4.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Indexed: 12/05/2022] Open
Abstract
Dysfunction of the autonomic nervous system (ANS) of the brain in sepsis can cause severe systemic inflammation and even death. Numerous data confirmed the role of ANS dysfunction in the occurrence, course, and outcome of systemic sepsis. The parasympathetic part of the ANS modifies the inflammation through cholinergic receptors of internal organs, macrophages, and lymphocytes (the cholinergic anti-inflammatory pathway). The sympathetic part of ANS controls the activity of macrophages and lymphocytes by influencing β2-adrenergic receptors, causing the activation of intracellular genes encoding the synthesis of cytokines (anti-inflammatory beta2-adrenergic receptor interleukin-10 pathway, β2AR–IL-10). The interaction of ANS with infectious agents and the immune system ensures the maintenance of homeostasis or the appearance of a critical generalized infection. During inflammation, the ANS participates in the inflammatory response by releasing sympathetic or parasympathetic neurotransmitters and neuropeptides. It is extremely important to determine the functional state of the ANS in critical conditions, since both cholinergic and sympathomimetic agents can act as either anti- or pro-inflammatory stimuli.
Collapse
Affiliation(s)
- Y Y Kiryachkov
- Head of the Department of Surgical and Resuscitation Technologies; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - S A Bosenko
- Anesthesiologist; Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| | - B G Muslimov
- Deputy Chief Physician for Anesthesiology and Intensive Care; Konchalovsky Central City Hospital, 2, Bldg 1, Kashtanovaya Alley, Zelenograd, Moscow, 124489, Russia
| | - M V Petrova
- Professor, Deputy Director Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25, Bldg 2, Petrovka St., Moscow, 107031, Russia
| |
Collapse
|
11
|
Zhu H, Ren A, Zhou K, Chen Q, Zhang M, Liu J. Impact of Dexmedetomidine Infusion on Postoperative Acute Kidney Injury in Elderly Patients Undergoing Major Joint Replacement: A Retrospective Cohort Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4695-4701. [PMID: 33173279 PMCID: PMC7646437 DOI: 10.2147/dddt.s278342] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022]
Abstract
Purpose Postoperative acute kidney injury (AKI) is a frequent complication in elderly patients that increases morbidity and mortality. Approximately 1.7 million people die from AKI worldwide every year. Dexmedetomidine (Dex) is often used as an adjunct to multimodal analgesia. Our study investigated whether Dex could safely decrease the incidence of AKI in elderly patients undergoing major joint replacement. Methods A single-center retrospective study was conducted in patients aged >65 years undergoing major joint replacement. Propensity score–matching analysis was used, and a total of 1,006 patients were matched successfully. The primary outcome was the incidence of postoperative AKI. Secondary outcomes included perioperative adverse complications, opioid consumption, time to extubation, and length of hospital stay. Results Among the 1,006 patients included, postoperative AKI occurred in 9.3% (n=94). The Dex group (perioperative Dex infusion) had lower incidence of postoperative AKI than the control group (7.2% vs 11.5%, P=0.017). Compared with the control group, the Dex group had less opioid consumption (P<0.05), reduced time to extubation (P=0.004), and shorter length of hospital stay (P=0.001). The Dex group also showed higher incidence of bradycardia (20.1% vs 15.1%, P=0.038). There were no differences in intraoperative hypotension (19.5% vs 17.5%), postoperative nausea and vomiting (4.2% vs 5.4%), time in PACU (45.0±6.4 vs 45.5±6.2 minutes), or rate of ICU admission (9.7% vs 11.1%) between the Dex group and control group (All P>0.05). Conclusion This retrospective study showed Dex infusion in elderly patients undergoing major joint replacement was associated with lower incidence of postoperative AKI, less opioid consumption, and shorter extubation time and hospital stay. However, the Dex group had higher incidence of bradycardia. We found no statistical differences in other perioperative adverse complications between the groups.
Collapse
Affiliation(s)
- He Zhu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Aolin Ren
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Kang Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Qiuchong Chen
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Mengjun Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| | - Jindong Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, People's Republic of China
| |
Collapse
|
12
|
Feng P, Zhang A, Su M, Cai H, Wang X, Zhang Y. Dexmedetomidine inhibits apoptosis of astrocytes induced by oxygen-glucose deprivation via targeting JAK/STAT3 signal pathway. Brain Res 2020; 1750:147141. [PMID: 33017590 DOI: 10.1016/j.brainres.2020.147141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE There is an increasing interest concerning the contribution of astrocytes to the intrinsic bioremediation of ischemic brain injury. The aim of this work was to disclose the effects and mechanism of dexmedetomidine (DEX) on the apoptosis of astrocytes under oxygen glucose deprivation (OGD) condition. METHODS Primary cultured astrocytes separated from Sprague-Dawley (SD) rats were subjected to OGD treatment. Astrocytes were transfected with si-JMJD3 or pcDNA3.1-JMJD3 and then treated with DEX or JAK/STAT inhibitor (WP1066) before cell apoptosis was detected by TUNEL apoptosis kit. Western blot was applied to assess the level of apoptosis-related proteins Caspase-3, Bax and Bcl-2. Astrocyte cell viability was assessed by measuring the lactate dehydrogenase (LDH) level using a LDH assay kit. RESULTS Astrocytes received OGD treatment had increased LDH and elevated apoptotic rate (P < 0.05). DEX could suppress OGD induced cytotoxic effect on astrocytes, as evidenced by decreased LDH release and suppressed cell apoptosis rate (P < 0.05). Meanwhile, DEX and WP1066 treatment were also found to inhibit the phosphorylation level of STAT1 and STAT3 (P < 0.05), indicating the DEX could suppress the activation of JAK/STAT signal pathway. JMJD3 overexpression in astrocytes could suppress the anti-apoptotic function of WP1066 in OGD treated astrocytes and hamper the protective effect of DEX in cell apoptosis (P < 0.05), suggesting that DEX and JAK/STAT signal pathway inhibits OGD induced apoptosis in astrocytes by down-regulating JMJD3. CONCLUSION DEX protects astrocytes against apoptosis via inhibiting JAK2/STAT3 signal pathway and downregulating JMJD3 expression in vitro.
Collapse
Affiliation(s)
- Pengjiu Feng
- Department of Anesthesiology, the Third Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, PR China.
| | - Aimin Zhang
- Department of Pain, the Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, PR China
| | - Ming Su
- Department of Anesthesiology, the Third Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, PR China
| | - Hai Cai
- Department of Anesthesiology, the Third Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, PR China
| | - Xiaogang Wang
- Department of Anesthesiology, the Third Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, PR China
| | - Yan Zhang
- Department of Neurology, the Third Affiliated Hospital of Guangxi University of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, PR China
| |
Collapse
|
13
|
Xiong J, Quan J, Qin C, Wang X, Dong Q, Zhang B. Dexmedetomidine Exerts Brain-Protective Effects Under Cardiopulmonary Bypass Through Inhibiting the Janus Kinase 2/Signal Transducers and Activators of Transcription 3 Pathway. J Interferon Cytokine Res 2019; 40:116-124. [PMID: 31834821 DOI: 10.1089/jir.2019.0110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain injury is a major complication resulted from cardiopulmonary bypass (CPB). Dexmedetomidine (DEX) has potential brain-protective effects; however, the mechanism is unclear. The aim of this study is to investigate the effect of DEX on brain injury in CPB rats and its mechanism. The levels of interleukin-6 (IL-6), interleukin-10 (IL-10), S100β, and neuron-specific enolase (NSE) were measured by enzyme-linked immunosorbent assay. The hippocampus CA1 region in rats was observed by hematoxylin-eosin staining. Western blot and quantitative real-time polymerase chain reaction were performed to detect related proteins and mRNA expressions in the hippocampus tissues. We found that after CPB, the neuron cells in hippocampus CA1 region of rats were randomly arranged, and that the levels of IL-6, IL-10, S100β, NSE, Cleaved Caspase-3, and Bax were upregulated, while Bal-2 level was downregulated. However, after DEX treatment, the neuron cells arranged in an orderly manner, and the levels of IL-6, IL-10, S100β, NSE, Cleaved Caspase-3, and Bax were downregulated, but Bal-2 level was upregulated. DEX suppressed Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) pathway activated by CPB, ameliorated CPB-induced brain injury in rats by reducing inflammatory response, and inhibited neuronal apoptosis. The brain-protective effect of DEX may be related to the inhibition of the activation of JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Jijun Xiong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Quan
- Department of Neurology, Guilin People's Hospital, Guilin, Guangxi, China
| | - Chaosheng Qin
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaogang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Qinghua Dong
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bingdong Zhang
- Department of Anesthesiology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Ding J, Chen Y, Gao Y. Effect of propofol, midazolam and dexmedetomidine on ICU patients with sepsis and on arterial blood gas. Exp Ther Med 2019; 18:4340-4346. [PMID: 31772630 PMCID: PMC6862072 DOI: 10.3892/etm.2019.8091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Effects of propofol, midazolam and dexmedetomidine on patients with sepsis in intensive care unit (ICU) and on arterial blood gas (ABG) were studied. In total 429 ICU patients with sepsis, admitted to Renji Hospital, School of Medicine, Shanghai Jiaotong University from May 2015 to January 2019, were selected as research subjects for a prospective analysis. All patients received basic treatment, such as anti-infection treatment, correction of shock and improvement of microcirculation. One hundred and fifty-two patients who were treated with propofol for sedation served as group A, 146 patients who were treated with midazolam for sedation served as group B, and 131 patients who were treated with dexmedetomidine for sedation served as group C. The three groups of patients were compared in terms of diastolic blood pressure (DBP), systolic blood pressure (SBP), heart rate (HR), arterial partial pressure of oxygen (PaO2), arterial partial pressure of carbon dioxide (PaCO2), cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) before and after treatment. APACHE II score was used to evaluate the sedative effects. The wake-up time of the patients, the length of ICU stay and the adverse reactions were recorded. There was no significant difference among groups A, B and C in terms of HR, SBP, DBP, PaO2, PaCO2, cTnT, CK-MB and APACHE II score before treatment, and SBP, DBP, cTnT and HR after treatment (P>0.050). After treatment, there was no significant difference between groups A and B with respect to CK-MB and APACHE II score (P>0.050). The wake-up time in group A was significantly longer than that in groups B and C (P<0.001). In conclusion, propofol, midazolam and dexmedetomidine are effective and safe in the sedative treatment of ICU patients with sepsis, but dexmedetomidine has the best effect on protecting blood pressure and cardiac functions, which is worthy of use in the clinic.
Collapse
Affiliation(s)
- Jia Ding
- Department of Intensive Care Unit, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Yuwen Chen
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| | - Yuan Gao
- Department of Intensive Care Unit, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, P.R. China
| |
Collapse
|
15
|
Zhang H, Sha J, Feng X, Hu X, Chen Y, Li B, Fan H. Dexmedetomidine ameliorates LPS induced acute lung injury via GSK-3β/STAT3-NF-κB signaling pathway in rats. Int Immunopharmacol 2019; 74:105717. [PMID: 31254953 DOI: 10.1016/j.intimp.2019.105717] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/12/2019] [Accepted: 06/21/2019] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) is a serious complication of sepsis and an important cause of death in intensive care. Studies have shown that DEX can inhibit inflammation. However, the anti-inflammatory effect and protective mechanism of DEX in lipopolysaccharide (LPS) induced ALI are still unclear. ALI model was established by intraperitoneal injection of LPS (10 mg/kg) in Sprague-Dawley (SD) male rats. Firstly, at 4, 6, 8, 12 and 24 h after LPS treatment, lung injury including pathologic histology, lung edema, and inflammation were detected. The optimal time point for lung injury was determined to be 12 h, at which time DEX was added to further test. Furthermore, STAT3 inhibitor (NSC74859) and GSK-3β inhibitor (SB216763) were added to verify the role of STAT3, GSK-3β and NF-κB in ameliorated ALI. Our results show that DEX pretreatment significantly decreased lung Wet-to-Dry weight (W/D) ratio and MPO activity and ameliorated LPS induced lung histopathological alterations. In addition, we confirmed that DEX can increased the phosphorylation of STAT3 and GSK-3β, and inhibit the phosphorylation of nuclear factor-κB (NF-κB) p65 in the inflammatory response induced by LPS. What's more, NSC74859 inhibited the phosphorylation of STAT3 and reversed the protect effect of DEX on LPS. SB216763 inhibited the phosphorylation of NF-κB and reversed the damage effect of LPS and plays the same anti-inflammatory effect as DEX. In summary, our data demonstrated that DEX can ameliorate ALI induced by LPS through GSK-3β/STAT3-NF-κB pathway.
Collapse
Affiliation(s)
- Huayun Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jichen Sha
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiujing Feng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xueyuan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongping Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggang Fan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin 150030, China.
| |
Collapse
|
16
|
Alam A, Hana Z, Jin Z, Suen KC, Ma D. Surgery, neuroinflammation and cognitive impairment. EBioMedicine 2018; 37:547-556. [PMID: 30348620 PMCID: PMC6284418 DOI: 10.1016/j.ebiom.2018.10.021] [Citation(s) in RCA: 230] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 12/25/2022] Open
Abstract
Trauma experienced during surgery can contribute to the development of a systemic inflammatory response that can cause multi-organ dysfunction or even failure. Post-surgical neuroinflammation is a documented phenomenon that results in synaptic impairment, neuronal dysfunction and death, and impaired neurogenesis. Various pro-inflammatory cytokines, such as TNFα, maintain a state of chronic neuroinflammation, manifesting as post-operative cognitive dysfunction and post-operative delirium. Furthermore, elderly patients with post-operative cognitive dysfunction or delirium are three times more likely to experience permanent cognitive impairment or dementia. We conducted a narrative review, considering evidence extracted from various databases including Pubmed, MEDLINE and EMBASE, as well as journals and book reference lists. We found that further pre-clinical and well-powered clinical studies are required to delineate the precise pathogenesis of post-operative delirium and cognitive dysfunction. Despite the burden of post-operative neurological sequelae, clinical studies investigating therapeutic agents, such as dexmedetomidine, ibuprofen and statins, have yielded conflicting results. In addition, evidence supporting novel therapeutic avenues, such as nicotinic and HMGB-1 targeting and remote ischaemic pre-conditioning, is limited and necessitates further investigation.
Collapse
Affiliation(s)
- Azeem Alam
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Zac Hana
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Zhaosheng Jin
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Ka Chun Suen
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Daqing Ma
- Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
17
|
Liu C, Fu Q, Mu R, Wang F, Zhou C, Zhang L, Yu B, Zhang Y, Fang T, Tian F. Dexmedetomidine alleviates cerebral ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress dependent apoptosis through the PERK-CHOP-Caspase-11 pathway. Brain Res 2018; 1701:246-254. [PMID: 30201260 DOI: 10.1016/j.brainres.2018.09.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Dexmedetomidine (Dex) has the neuroprotective effect on cerebral ischemia-reperfusion injury (CIRI). But the mechanism is not yet clear. In this study, we established a model of middle cerebral artery occlusion (MCAO) and treated primary cortical neurons with oxygen glucose deprivation (OGD), followed by Dex treatment. Neurological protection of Dex was then assessed by neurological deficit score, brain edema, TTC staining, TUNEL assay, Western blot analysis, immunohistochemistry, and RT-PCR. The results showed that Dex significantly reduced the neurological deficit score, brain edema and cerebral infarction area due to CIRI. After Dex treatment, the expression levels of ER stress-related apoptosis pathway proteins (GRP78, p-PERK, CHOP and Cleaved-caspase-3) were significantly decreased and the apoptosis of brain cells was also significantly reduced. Immunohistochemistry showed that expression and nuclear localization of CHOP decreased significantly after the application of Dex. The downstream apoptotic protein caspase-11 mediated by PERK-CHOP was also markedly inhibited by Dex. In conclusion, our results suggested that Dex reduced ER stress-induced apoptosis after CIRI. Its protective mechanism may be related to PERK-CHOP-Caspase-11 dependent signaling pathway.
Collapse
Affiliation(s)
- Chong Liu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Qiang Fu
- Department of Critical Care Medicine, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| | - Rong Mu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fang Wang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Chunjing Zhou
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Li Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Baojin Yu
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Yang Zhang
- Department of Anaesthesiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Tao Fang
- Central Laboratory, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Fengshi Tian
- Department of Cardiology, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China.
| |
Collapse
|
18
|
Kofke WA, Ren Y, Augoustides JG, Li H, Nathanson K, Siman R, Meng QC, Bu W, Yandrawatthana S, Kositratna G, Kim C, Bavaria JE. Reframing the Biological Basis of Neuroprotection Using Functional Genomics: Differentially Weighted, Time-Dependent Multifactor Pathogenesis of Human Ischemic Brain Damage. Front Neurol 2018; 9:497. [PMID: 29997569 PMCID: PMC6028620 DOI: 10.3389/fneur.2018.00497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/07/2018] [Indexed: 12/18/2022] Open
Abstract
Background: Neuroprotection studies are generally unable to demonstrate efficacy in humans. Our specific hypothesis is that multiple pathophysiologic pathways, of variable importance, contribute to ischemic brain damage. As a corollary to this, we discuss the broad hypothesis that a multifaceted approach will improve the probability of efficacious neuroprotection. But to properly test this hypothesis the nature and importance of the multiple contributing pathways needs elucidation. Our aim is to demonstrate, using functional genomics, in human cardiac surgery procedures associated with cerebral ischemia, that the pathogenesis of perioperative human ischemic brain damage involves the function of multiple variably weighted proteins involving several pathways. We then use these data and literature to develop a proposal for rational design of human neuroprotection protocols. Methods: Ninety-four patients undergoing deep hypothermic circulatory arrest (DHCA) and/or aortic valve replacement surgery had brain damage biomarkers, S100β and neurofilament H (NFH), assessed at baseline, 1 and 24 h post-cardiopulmonary bypass (CPB) with analysis for association with 92 single nucleotide polymorphisms (SNPs) (selected by co-author WAK) related to important proteins involved in pathogenesis of cerebral ischemia. Results: At the nominal significance level of 0.05, changes in S100β and in NFH at 1 and 24 h post-CPB were associated with multiple SNPs involving several prospectively determined pathophysiologic pathways, but were not individually significant after multiple comparison adjustments. Variable weights for the several evaluated SNPs are apparent on regression analysis and, notably, are dissimilar related to the two biomarkers and over time post CPB. Based on our step-wise regression model, at 1 h post-CPB, SOD2, SUMO4, and GP6 are related to relative change of NFH while TNF, CAPN10, NPPB, and SERPINE1 are related to the relative change of S100B. At 24 h post-CPB, ADRA2A, SELE, and BAX are related to the relative change of NFH while SLC4A7, HSPA1B, and FGA are related to S100B. Conclusions: In support of the proposed hypothesis, association SNP data suggest function of specific disparate proteins, as reflected by genetic variation, may be more important than others with variation at different post-insult times after human brain ischemia. Such information may support rational design of post-insult time-sensitive multifaceted neuroprotective therapies.
Collapse
Affiliation(s)
- William A Kofke
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Yue Ren
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - John G Augoustides
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Katherine Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics Abramson Cancer Center Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Robert Siman
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Qing Cheng Meng
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Sukanya Yandrawatthana
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Guy Kositratna
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, United States
| | - Cecilia Kim
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Joseph E Bavaria
- Department of Surgery, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|