1
|
Kucuk I, Küçükşahin ÖB, Yildirim M, Kabir MZ, Silah H, Celik I, Uslu B. Investigation of the molecular interaction between apraclonidine, an α2-adrenergic receptor agonist, and bovine serum albumin using fluorescence and molecular docking techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 326:125246. [PMID: 39423554 DOI: 10.1016/j.saa.2024.125246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/02/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Apraclonidine (APR) is a potent and selective α2-adrenergic receptor agonist used in the diagnosis of Horner's Syndrome, and the residuals of APR that accumulate in tissues of animals can cause central nervous and cardiovascular systems influences in humans. Therefore, to understand the influence of APR on human health, we examined the interaction of APR with the carrier protein in plasma, bovine serum albumin (BSA). The BSA fluorescence signal was quenched due to the APU-BSA complex formation and a weak binding affinity was estimated between APR and BSA. The inclusion of fluorescence, UV-vis absorption, molecular docking, and dynamics simulation techniques employed to broadly investigate the combination of APR with BSA at typical physiological conditions. The thermodynamic results revealed that enthalpy (ΔH0) and entropy (ΔS0) changes were computed as +11.14 kJ mol-1 and +97.56 J mol-1 K-1, respectively, which represented the binding is principally entropy-driven and the hydrophobic forces acting a significant role in the reaction. Analysis of synchronous and 3-D fluorescence signals revealed microenvironmental variations close to BSA's Trp and Tyr residues upon APR addition. Both the competitive site marker as well as molecular docking results detected that APR exhibited a stronger binding affinity towards Drug Site 2 (DS2) compared to Drug Site 1 (DS1).
Collapse
Affiliation(s)
- Ipek Kucuk
- Başkent University, Faculty of Pharmacy, Department of Analytical Chemistry, 06790 Etimesgut, Ankara, Turkiye; Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye
| | - Öykü Buket Küçükşahin
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Merve Yildirim
- Ankara University, The Graduate School of Health Sciences, 06110 Ankara, Turkiye; Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 38039 Kayseri, Turkiye
| | - Md Zahirul Kabir
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye
| | - Hülya Silah
- Bilecik Seyh Edebali University, Faculty of Science, Department of Chemistry, 11210 Bilecik, Turkiye.
| | - Ismail Celik
- Erciyes University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 38039 Kayseri, Turkiye.
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkiye.
| |
Collapse
|
2
|
Fatima S, Hussain I, Ahmed S, Afaq MA, Tabish M. Insight into the interaction of isochroman with bovine serum albumin: extensive experimental and computational investigations. J Biomol Struct Dyn 2024:1-15. [PMID: 38319026 DOI: 10.1080/07391102.2024.2310203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/19/2024] [Indexed: 02/07/2024]
Abstract
The way therapeutic compounds interact with serum protein provides valuable information on their pharmacokinetics, toxicity, effectiveness, and even their structural-related information. Isochroman (IC) is a phytochemical compound obtained from the leaves of Olea europea plant. The derivatives of IC have various pharmacological properties including antidepressants, antihistamines, antiinflammation, anticonvulsants, appetite depressants, etc. The binding of small molecules to bovine serum albumin (BSA) is useful to ensure their efficacy. Thus, in this study, we have found out the binding mode of IC with BSA using several spectroscopic and in silico studies. UV and fluorescence spectroscopy suggested the complex formation between IC and BSA with a binding constant of 103 M-1. IC resulted in fluorescence quenching in BSA through static mechanism. The microenvironmental and conformational changes in BSA were confirmed using synchronous and three-dimensional studies. Site marker experiment revealed the IC binding in site-III of BSA. The influence of vitamins, metals and β-cyclodextrin (β-CD) on binding constant of IC-BSA complex was also examined. Circular dichroism spectra showed that α-helical of BSA decreased upon interaction with IC. Computational and experimental results were complimentary with one another and assisted in determining the binding sites, nature of bonds and amino acids included in the IC-BSA complex formation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sana Fatima
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Irfan Hussain
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Shahbaz Ahmed
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Abuzar Afaq
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Tabish
- Department of Biochemistry, Faculty of Life Science, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|
3
|
Akbari V, Ghobadi S. Evaluation of the effect of phenylpropanoids on the binding of heparin to human serum albumin and glycosylated human serum albumin concerning anticoagulant activity: A comparison study. Int J Biol Macromol 2024; 257:128732. [PMID: 38092116 DOI: 10.1016/j.ijbiomac.2023.128732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
The nonenzymatic advanced glycation end products (AGEs) and the accumulation of AGEs are the two main factors associated with the long-term pathogenesis of diabetes. Human serum albumin (HSA) as the most abundant serum protein has a higher fortuity to be modified by nonenzymatic glycation. In this study, the interaction of three phenylpropanoids (caffeic acid (Caf), p-coumaric acid (Cou), and cinnamic acid (Cin)) toward HSA and glycosylated HSA (gHSA) was analyzed by multiple spectroscopic techniques combined with molecular docking. The formation of fibrils in HSA and gHSA was confirmed by the Thioflavin T (ThT) assay. The phenylpropanoids have shown anti-fibrillation properties in vitro. The obtained thermodynamic parameters indicated that hydrogen bonding and van der Waals forces are the main forces in the binding interaction, and the quenching mechanism of the protein fluorescence is static. Molecular docking results, as well as the in vitro results, showed that Caf, Cou, and Cin exhibit more stable interactions with HSA, respectively. In addition, molecular docking analysis showed that Caf and Cou interact well with K199. Given the critical role of K199 in HSA glycosylation in diabetic patients, this process inhibits the interaction of stabilizer compounds and thus accelerates gHSA aggregation.
Collapse
Affiliation(s)
- Vali Akbari
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| | - Sirous Ghobadi
- Department of Biology, Faculty of Sciences, Razi University, Kermanshah, Iran.
| |
Collapse
|
4
|
Daksh S, Gond C, Kumar N, Kaur L, Ojha H, Deep S, Datta A. Binding studies of potential amyloid-β inhibiting chalcone derivative with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123362. [PMID: 37774582 DOI: 10.1016/j.saa.2023.123362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Chalcones (α-phenyl-β-benzoylethylene) and their natural-source derivatives have been investigated for their remarkable biological activities, like neuroprotective, anti-inflammatory, and anti-tumor properties. A triazole chalcone ligand (E)-3-(4-(dimethylamino)phenyl)-1-(4-((1-(2-(4-((E)-3-(4(dimethylamino)phenyl)acryloyl)phenoxy)ethyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)prop-2-en-1-one (L1) was synthesized by Cu(I)- catalysed click reaction. The mechanistic properties of L1 for therapy were evaluated by analyzing the binding interactions between L1 and bovine serum albumin (BSA) through photophysical and computational studies. The structural elucidation of ligand L1 was carried out by NMR and mass spectrometry. The Aβ inhibitory activity of L1 was studied by thioflavin T assay and transmission electron microscopy. The biomolecular interaction of L1 with bovine serum albumin was examined through multi-spectroscopic techniques in combination with in silico studies. UV-Visible absorption, fluorescence spectroscopy, circular dichroism, Förster resonance energy transfer, and three-dimensional fluorescence studies confirmed the formation of a BSA-L1 complex. The potential binding sites, mechanism of interactions, and variations in the environment of tyrosine and tryptophan amino acid residues of BSA were assessed at different temperatures. The binding constant for the Static quenching mechanism of intrinsic fluorescence of BSA was of the order of 105 M-1. The esterase enzyme activity assay in the presence of L1 revealed an increase in the protein enzyme activity. Molecular docking studies suggested L1 was predominantly bound to BSA by hydrogen bonds and Van der Waals forces.
Collapse
Affiliation(s)
- Shivani Daksh
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Chandraprakash Gond
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, Uttar Pradesh, India
| | - Nikhil Kumar
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India; Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India
| | - Lajpreet Kaur
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Himanshu Ojha
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz-Khas, New Delhi 110016, India.
| | - Anupama Datta
- Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Brig S. K. Mazumdar Marg, Delhi 110054, India.
| |
Collapse
|
5
|
Zhang Q, Ma Y, Liu H, Gu J, Sun X. Comparison of the Effects on Bovine Serum Albumin Induced by Different Forms of Vanadium. Biol Trace Elem Res 2023; 201:3088-3098. [PMID: 35915278 DOI: 10.1007/s12011-022-03373-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022]
Abstract
Various forms of vanadium coexist in vivo, and the behavior mechanism is different. An investigation of the separate and simultaneous binding of three vanadium forms with bovine serum albumin (BSA) was performed. VO(acac)2/NaVO3/VOSO4 bound to site I of BSA, and their binding constants were 4.26 × 105, 9.18 × 103, and 4.31 × 102 L mol-1 at 298 K, respectively. VO(acac)2 had the strongest binding ability to BSA and had the most influence on the secondary structure of BSA and the microenvironment of around amino acid residues. The effect of NaVO3 and VOSO4 coexistence on the binding of VO(acac)2 to BSA was therefore further investigated. Both NaVO3 and VOSO4 had an effect on the binding of VO(acac)2 and BSA, with NaVO3 having the most noticeable effect. NaVO3 interfered with the binding process of VO(acac)2 and BSA, increased the binding constant, and changed the binding forces between them. Competition and allosteric effect may be responsible for the change of binding process between VO(acac)2 and BSA in the presence of NaVO3/VOSO4.
Collapse
Affiliation(s)
- Qionghua Zhang
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Yanxuan Ma
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Hongrui Liu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China
| | - Jiali Gu
- College of Chemistry and Chemical Engineering, Bohai University, 19, Keji Rd., New Songshan District, Jinzhou, Liaoning Province, 121013, People's Republic of China.
| | - Xuekai Sun
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, People's Republic of China
| |
Collapse
|
6
|
Tian J, An M, Zhao X, Wang Y, Hasan M. Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS OMEGA 2023; 8:9031-9039. [PMID: 36936334 PMCID: PMC10018703 DOI: 10.1021/acsomega.2c07986] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Illuminating the use of nanomaterials, carbon quantum dots (CQDs) have transfigured the food safety arena because of their bright luminescence, optical properties, low toxicity, and enhanced biocompatibility. Therefore, fluorescent resonance energy transfer, photoinduced electron transfer, and an internal filtering effect mechanism allow precise detection of food additives, heavy metal ions, pathogenic bacteria, veterinary drug residues, and food nutrients. In this review, we describe the primal mechanism of CQD-based fluorescence sensors for food safety inspection. This is an abridged description of the nanodesign and future perspectives of more advanced CQD-based sensors for food safety analysis.
Collapse
Affiliation(s)
- Jixiang Tian
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minmei An
- Taian
Traditional Chinese Medicine Hospital, Taian 271000, China
| | - Xiaoang Zhao
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Murtaza Hasan
- Faculty
of Biological and Chemical Sciences, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
7
|
Roy H, Srungarapati S, Gade NJ, Gummadi A, Marry Karunasree BK, Dakkumalla M, Maddiboyina B. Citicoline loaded nanoemulsion enriched with D-alpha-Tocopherol acetate and protein: Formulation and in-silico study. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
How do the hydroxyl group number and position of polyphenols affect the foaming properties of ovalbumin? Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
9
|
Vinod SM, Murugan Sreedevi S, Krishnan A, Ravichandran K, Karthikeyan P, Kotteswaran B, Rajendran K. Complexity of the Role of Various Site-Specific and Selective Sudlow Binding Site Drugs in the Energetics and Stability of the Acridinedione Dye-Bovine Serum Albumin Complex: A Molecular Docking Approach. ACS OMEGA 2023; 8:5634-5654. [PMID: 36816669 PMCID: PMC9933201 DOI: 10.1021/acsomega.2c07111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Molecular docking (Mol.Doc) techniques were employed to ascertain the binding affinity of two resorcinol-based acridinedione dyes (ADR1 and ADR2) with the widely studied globular protein Bovine Serum Albumin (BSA) in the presence of site-selective binding drugs by Autodock Vina 4.2 software. Docking of various feasible conformers of ADR1 dye with BSA was found to be energetically more favored than ADR2 dye, even though both these dyes differ in the 9th position of the basic dye structure. Analysis of dyes with BSA establishes the location of dye in all of the binding sites of BSA, predominantly through conventional and nonconventional hydrogen-bonding (HB) interactions. The coexistence of hydrophobic interactions resulted in the stability of various conformers generated. The introduction of site I and site II (Sudlow site binding drugs) into ADR1-BSA and ADR2-BSA complexes effectively destabilizes the dye-protein complex; however, the drugs do not displace ADR dyes completely from their selective binding domains. Site II binding drugs effectively destabilize the binding ability of the dye-protein complex rather than site I drugs. However, docking of site I drug 3-carboxyl-4-methyl-5-propyl-2-furanpropanic acid (CMPF) largely destabilizes the ADR1-protein complex, whereas indomethacin (INDO) enhances the binding affinity of the ADR2-protein complex. Interestingly, simultaneous docking of ADR dyes to the BSA-drug complex results in larger stability of the protein-drug complex through HB interactions rather than hydrophobic interactions. Both ADR1 and ADR2 dyes predominantly occupy the Sudlow binding sites of BSA, and the introduction of either site I or site II binding drugs does not displace the dye efficiently from the corresponding binding sites, rather the drugs are effectively displaced toward other binding domains apart from their specific site-binding domains of BSA. Through Mol.Doc techniques, we authenticate that the interactions in host-guest complex systems involving competing ligands are established in depth, wherein the dye as well as the amino acid (AA) moieties in BSA act as both HB donor and acceptor sites apart from several hydrophobic interactions coexisting toward the stability.
Collapse
Affiliation(s)
- Seba Merin Vinod
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Sangeetha Murugan Sreedevi
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Anju Krishnan
- Department
of Chemistry, Sathyabama Institute of Science
and Technology, Kamaraj
Nagar, Semmancheri, Chennai 600119, Tamil Nadu, India
| | - Keerthiga Ravichandran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Pradeep Karthikeyan
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Bharath Kotteswaran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| | - Kumaran Rajendran
- Department
of Chemistry, Dwaraka Doss Goverdhan Doss
Vaishnav College (Autonomous) (Affiliated to University of Madras), 833, Gokul Bagh, E.V.R. Periyar
Road, Arumbakkam, Chennai 600106, Tamil Nadu, India
| |
Collapse
|
10
|
Rout D, Sharma S, Agarwala P, Upadhyaya AK, Sharma A, Sasmal DK. Interaction of Ibuprofen with Partially Unfolded Bovine Serum Albumin in the Presence of Ionic Micelles and Oligosaccharides at Different λ ex and pH: A Spectroscopic Analysis. ACS OMEGA 2023; 8:3114-3128. [PMID: 36713709 PMCID: PMC9878652 DOI: 10.1021/acsomega.2c06447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The interaction between the plasma protein bovine serum albumin (BSA) and the drug ibuprofen (IBU) has been investigated at three different pH values (7.4, 6.5, and 8.0) in the presence of oligosaccharides and surfactants. The interaction analysis of BSA with oligosaccharides and surfactants has also been studied in the absence of the drug ibuprofen. The results obtained give convenient and efficient access to understand the mechanism of binding of ibuprofen to BSA, and the major forces involved are found to be hydrophobic forces, hydrogen bonding and ionic interactions. In addition to that, the formation of inclusion complexes of ibuprofen with oligosaccharides (β-CD and 2-HP-β-CD) has been observed, which has depicted that due to the hydrophobic nature of ibuprofen, it becomes more soluble in the presence of oligosaccharides, but due to the larger size of the inclusion complexes, these could not be able to access the hydrophobic pocket of BSA where tryptophan-212 (Trp-212) resides. The binding interaction between BSA and ibuprofen is observed in the presence of surfactants (SDS and CTAB), which partially unfold the protein. Non-radiative fluorescence resonance energy transfer (FRET) from Trp and Tyr residues of BSA in the presence of an anionic surfactant SDS to ibuprofen has depicted that there is a possibility of drug binding even in the partially unfolded state of BSA protein. Furthermore, the distance between the protein and the drug has been calculated from the FRET efficiency, which gives a comprehensive overview of ibuprofen binding to BSA even in its partially denatured state. The hydrophobic drug binding to the partially unfolded serum albumin protein (BSA) supports the "necklace and bead structures" model and opens up a new direction of drug loading and delivery system, which will have critical therapeutic applications in the efficient delivery of pharmacologically prominent drugs.
Collapse
|
11
|
Designing three digital logic circuits based on two-component molecular systems of a combination of BSA and N, N′-bis(salicylidene) - ethylenediamine. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2022.140238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Li W, Chen S, Hong X, Fang M, Zong W, Li X, Wang J. The molecular interaction of three haloacetic acids with bovine serum albumin and the underlying mechanisms. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
13
|
Khan FI, Rehman MT, Sameena F, Hussain T, AlAjmi MF, Lai D, Khan MKA. Investigating the binding mechanism of topiramate with bovine serum albumin using spectroscopic and computational methods. J Mol Recognit 2022; 35:e2958. [PMID: 35347772 DOI: 10.1002/jmr.2958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/10/2022]
Abstract
Various spectroscopic techniques involving fluorescence spectroscopy, circular dichroism (CD), and computational approaches were used to elucidate the molecular aspects of interaction between the antiepileptic drug topiramate and the multifunctional transport protein bovine serum albumin (BSA) under physiological conditions. Topiramate quenched BSA fluorescence in a static quenching mode, according to the Stern-Volmer quenching constant (Ksv ) data derived from fluorescence spectroscopy for the topiramate-BSA complex. The binding constant was also used to calculate the binding affinity for the topiramate-BSA interaction. Fluorescence and circular dichroism experiments demonstrate that the protein's tertiary structure is affected by the microenvironmental alterations generated by topiramate binding to BSA. To establish the exact binding site, interacting residues, and interaction forces involved in the binding of topiramate to BSA, molecular modeling and simulation approaches were used. According to the MMPBSA calculations, the average binding energy between topiramate and BSA is -421.05 kJ/mol. Topiramate was discovered to have substantial interactions with BSA, changing the structural dynamic and Gibbs free energy landscape patterns.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Fathima Sameena
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| | - Tabish Hussain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, Saudi Arabia
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Md Khurshid Alam Khan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and technology, GST Road, Vandalur, Chennai
| |
Collapse
|
14
|
Djeujo FM, Ragazzi E, Urettini M, Sauro B, Cichero E, Tonelli M, Froldi G. Magnolol and Luteolin Inhibition of α-Glucosidase Activity: Kinetics and Type of Interaction Detected by In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2022; 15:ph15020205. [PMID: 35215317 PMCID: PMC8880268 DOI: 10.3390/ph15020205] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 02/04/2022] [Indexed: 02/01/2023] Open
Abstract
Magnolol and luteolin are two natural compounds recognized in several medicinal plants widely used in traditional medicine, including type 2 diabetes mellitus. This research aimed to determine the inhibitory activity of magnolol and luteolin on α-glucosidase activity. Their biological profile was studied by multispectroscopic methods along with inhibitory kinetic analysis and computational experiments. Magnolol and luteolin decreased the enzymatic activity in a concentration-dependent manner. With 0.075 µM α-glucosidase, the IC50 values were similar for both compounds (~ 32 µM) and significantly lower than for acarbose (815 μM). Magnolol showed a mixed-type antagonism, while luteolin showed a non-competitive inhibition mechanism. Thermodynamic parameters suggested that the binding of magnolol was predominantly sustained by hydrophobic interactions, while luteolin mainly exploited van der Waals contacts and hydrogen bonds. Synchronous fluorescence revealed that magnolol interacted with the target, influencing the microenvironment around tyrosine residues, and circular dichroism explained a rearrangement of the secondary structure of α-glucosidase from the initial α-helix to the final conformation enriched with β-sheet and random coil. Docking studies provided support for the experimental results. Altogether, the data propose magnolol, for the first time, as a potential α-glucosidase inhibitor and add further evidence to the inhibitory role of luteolin.
Collapse
Affiliation(s)
- Francine Medjiofack Djeujo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Miriana Urettini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Beatrice Sauro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
| | - Elena Cichero
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| | - Michele Tonelli
- Department of Pharmacy, University of Genova, 16128 Genova, Italy;
| | - Guglielmina Froldi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy; (F.M.D.); (E.R.); (M.U.); (B.S.)
- Correspondence: (E.C.); (G.F.); Tel.: +39-049-827-5092 (G.F.); Fax: +39-049-827-5093 (G.F.)
| |
Collapse
|
15
|
Nagtilak M, Pawar S, Labade S, Khilare C, Sawant S. Study of the binding interaction between bovine serum albumin and carbofuran insecticide: Multispectroscopic and molecular docking techniques. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Wani TA, Alsaif NA, Alanazi MM, Bakheit AH, Khan AA, Zargar S. Binding of colchicine and ascorbic acid (vitamin C) to bovine serum albumin: An in-vitro interaction study using multispectroscopic, molecular docking and molecular dynamics simulation study. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117542] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Self-assembled DNA nanotrains for targeted delivery of mithramycin dimers coordinated by different metal ions: Effect of binding affinity on drug loading, release and cytotoxicity. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Menezes TM, Neto AMDS, Gubert P, Neves JL. Effects of human serum albumin glycation on the interaction with the tyrosine kinase inhibitor pazopanib unveiled by multi-spectroscopic and bioinformatic tools. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Tkachuk Z, Melnichuk N, Nikolaiev RO, Szutkowski K, Zhukov I. The Natural Oligoribonucleotides Functionalized by D-Mannitol Affected Interactions of Hemagglutinin with Glycan Receptor Indicating Anti-Influenza Activity. MEMBRANES 2021; 11:membranes11100757. [PMID: 34677523 PMCID: PMC8538433 DOI: 10.3390/membranes11100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/05/2022]
Abstract
Hemagglutinin (HA), the class I influenza A virus protein is responsible for the attachment of virus particles to the cell by binding to glycan receptors, subsequent virion internalization, and cell entry. Consequently, the importance of HA makes it a primary target for the development of anti-influenza drugs. The natural oligoribonucleotides (ORNs) as well as their derivatives functionalized with D-mannitol (ORNs-D-M) possess anti-influenza properties in vitro and in vivo due to interaction with HA receptor sites. This activity suppresses the viral infection in host cells. In the present work, the complexes of ORNs and ORNs-D-M with HA protein were studied by agglutination assay, fluorescence spectroscopy, as well as molecular docking simulations. Acquired experimental data exhibited a decrease in HA titer by 32 times after incubation with the ORNs-D-M for 0.5–24 h. Quenching fluorescence intensity of the HA suggests that titration by ORNs and ORNs-D-M probably leads to changes in the HA structure. Detailed structural data were obtained with the molecular docking simulations performed for ORNs and ORNs-D-M ligands containing three and six oligoribonucleotides. The results reveal that a majority of the ORNs and ORNs-D-M bind in a non-specific way to the receptor-binding domain of the HA protein. The ligand’s affinity to the hemagglutinin was estimated at the micromolar level. Presented experimental data confirmed that both natural ORNs and functionalized ORNs-D-M inhibit the interactions between HA and glycan receptors and demonstrate anti-influenza activity.
Collapse
Affiliation(s)
- Zenoviy Tkachuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (N.M.); (R.O.N.)
- “Biocell” Subsidiary Company of Biocell Laboratories Inc. (USA), Klovskiy Uzviz 17, 03680 Kyiv, Ukraine
- Correspondence: (Z.T.); (I.Z.); Tel.: +38-067-728-0418 (Z.T.); +48-22-592-2048 (I.Z.)
| | - Nataliia Melnichuk
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (N.M.); (R.O.N.)
| | - Roman O. Nikolaiev
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 03680 Kyiv, Ukraine; (N.M.); (R.O.N.)
| | - Kosma Szutkowski
- NanoBioMediacal Centre, Adam Mickiewicz University, Ul. Wszechnicy Piastowskiej 3, 61-614 Poznan, Poland;
| | - Igor Zhukov
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Ul. Pawińskiego 5a, 02-106 Warsaw, Poland
- Correspondence: (Z.T.); (I.Z.); Tel.: +38-067-728-0418 (Z.T.); +48-22-592-2048 (I.Z.)
| |
Collapse
|
20
|
|
21
|
Raajaraman BR, Sheela NR, Muthu S. Spectroscopic, quantum computational, molecular docking and biological parameters of 4-phenylbutyrophenone: a neuroleptic agent. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
22
|
Patel V, Shah J, Gupta AK. Design and In-silico study of bioimaging fluorescence Graphene quantum dot-Bovine serum albumin complex synthesized by diimide-activated amidation. Comput Biol Chem 2021; 93:107543. [PMID: 34252797 DOI: 10.1016/j.compbiolchem.2021.107543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/01/2022]
Abstract
Graphene quantum dot possesses advantageous characteristics like tunable fluorescence, nanometer size, low cytotoxicity, high biocompatibility enabling them as an ideal material for fluorescence bio-imaging. It exhibits a unique characteristic of DNA cleavage activity enhancer, gene/drug carrier, and anticancer targeting applications. In this article, we discussed the preparation of graphene quantum dot through the bottom-up method. Carbodiimide-activated amidation reactions were used for the functionalization of graphene quantum dot with Bovine Serum Albumin. Fluorescence spectroscopy data showed that the graphene quantum dot has size-dependent fluorescence emission. TEM and AFM studies showed that the size of graphene quantum dot was around 20 nm with narrow size distribution. Carbodiimide-activated amidation conjugation was successful in binding the protein onto graphene quantum dot and these conjugates were characterized by DLS, FTIR, fluorescence spectroscopy, and agarose gel electrophoresis. We also studied the structural-based in-silico molecular dynamic simulation by AutoDock, PyRx, and Discovery Studio Visualizer. Based on the virtual screening analysis and higher negative energy incorporation, it is observed that graphene quantum dot conjugated with bovine serum albumin quickly and formed is highly stable complex, which makes them a potential candidate for future applications in the field of bio-imaging, bio-sensing, gene/drug delivery, and tumor theragnostic.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India.
| | - Ajay Kumar Gupta
- Department of Research and Development, Ganpat University, Mehsana, Gujarat, India
| |
Collapse
|
23
|
Meng D, Zhou H, Xu J, Zhang S. Studies on the interaction of salicylic acid and its monohydroxy substituted derivatives with bovine serum albumin. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Modulation of α-synuclein fibrillation by plant metabolites, daidzein, fisetin and scopoletin under physiological conditions. Int J Biol Macromol 2021; 182:1278-1291. [PMID: 33991558 DOI: 10.1016/j.ijbiomac.2021.05.071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/11/2022]
Abstract
The aggregation of α-synuclein is linked to neurological disorders, and of these, Parkinson's disease (PD) is among the most widely studied. In this background, we have investigated here the effects of three α, β-unsaturated carbonyl based plant metabolites, daidzein, fisetin and scopoletin on α-Syn aggregation. The ThT and light scattering kinetics studies establish that these compounds have ability to inhibit α-Syn fibrillation to different extents; this is confirmed by TEM studies. It is pertinent to note here that daidzein and scopoletin have been predicted to be able to cross the blood brain barrier. ANS binding assays demonstrate that the compounds interfere in the hydrophobic interactions. The tyrosine quenching, molecular docking and MD simulation studies showed that the compounds bind with α-Syn and provide structural rigidity which delays onset of structural transitions, which is confirmed by CD spectroscopy. The results obtained here throw light on the mechanisms underlying inhibition of α-Syn fibrillation by these compounds. Thus, the current work has significant therapeutic implications for identifying plant based potent therapeutic molecules for PD and other synucleinopathies, an area which needs extensive exploration.
Collapse
|
25
|
Spectroscopic and molecular docking investigation of the binding of a bioactive mercaptobenzimidazole-functionalized Schiff base to human serum albumin. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01585-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
A potential anticancer dihydropyrimidine derivative and its protein binding mechanism by multispectroscopic, molecular docking and molecular dynamic simulation along with its in-silico toxicity and metabolic profile. Eur J Pharm Sci 2021; 158:105686. [DOI: 10.1016/j.ejps.2020.105686] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/17/2022]
|
27
|
Karami K, Jamshidian N, Zakariazadeh M, Momtazi-Borojeni AA, Abdollahi E, Amirghofran Z, Shahpiri A, Nasab AK. Experimental and theoretical studies of Palladium-hydrazide complexes' interaction with DNA and BSA, in vitro cytotoxicity activity and plasmid cleavage ability. Comput Biol Chem 2021; 91:107435. [PMID: 33493981 DOI: 10.1016/j.compbiolchem.2021.107435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/10/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022]
Abstract
New palladium complexes with general formula trans-[Pd(L)2(OAc)2] (1,2), (L = Benzhydrazide and 2-Furoic hydrazide) have been synthesized and characterized with various methods including elemental analysis, FT-IR, 1HNMR and mass spectroscopy. Afterward their interactions with bovine serum albumin and calf thymus deoxyribonucleic acid have been investigated by UV-vis absorption, fluorescence emission and circular dichroism spectroscopy. Also, site-selective replacement experiments with site probes have been carried out. Analysis of fluorescence spectrum indicated static quenching mechanism. Spectroscopic measurements for DNA binding showed the groove binding to DNA for both complexes. Furthermore, cytotoxicity studies of complexes and cis-platin have been done against colon carcinoma (CT26) and breast cancer (4T1) cell lines. Evaluation of complexes (1) and (2) on induction of apoptosis in CT26 cells has been done. Finally, plasmid cleavage ability of (1) and (2) was investigated by gel electrophoresis that indicate the more activity of (1) than (2).
Collapse
Affiliation(s)
- Kazem Karami
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/ 83111, Iran.
| | - Nasrin Jamshidian
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156/ 83111, Iran.
| | - Mostafa Zakariazadeh
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| | - Amir Abbas Momtazi-Borojeni
- Halal Research Center of IRI, FDA, Tehran, Iran; Nanotechnology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Medical Immunology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Amirghofran
- Immunology Department and Autoimmune Diseases Research Center. Shiraz University of Medical Sciences, Shiraz. Iran
| | - Azar Shahpiri
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Akram Kazemi Nasab
- Department of Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| |
Collapse
|
28
|
Shahabadi N, Farhadi R. Multispectroscopic and molecular docking studies on DNA binding of guaifenesin drug. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:317-335. [PMID: 33463400 DOI: 10.1080/15257770.2021.1872793] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The interaction mechanism of guaifenesin drug; (RS)-3-(2-methoxyphenoxy)propane-1,2-diol; and calf thymus DNA was characterized by multiple spectroscopic and molecular docking approaches. The changes in drug electronic absorption with increasing DNA concentration and also the observed significant quenching of guaifenesin emission in the presence of DNA proved the complex formation between guaifenesin and DNA during the interactions. Both the binding constant and thermodynamic parameters for the interaction have been calculated in 283, 298, and 310 K at pH 7.4. The results Δ H 0 = 17.87 kJ/mol and Δ S 0 = 143.31 J/mol.K confirmed the role of hydrophobic force in the guaifenesin-DNA interaction. Circular dichroism study showed that guaifenesin causes decrease in the negative band of CT-DNA and at the same time the positive band increases which indicated the transition of DNA conformation from B to A. KI quenching experiment specifies that guaifenesin binds to DNA via nonintercalative mode. The competitive studies based on known Hoechst 33258 and methylene blue probes proved the groove binding mode in guaifenesin-DNA adduct. Further, full agreement of molecular docking simulation with the experimental results of binding constant and interaction mode, support high accuracy of the results.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Faculty of Chemistry, Department of Inorganic Chemistry, Razi University, Kermanshah, Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Farhadi
- Faculty of Chemistry, Department of Inorganic Chemistry, Razi University, Kermanshah, Iran
| |
Collapse
|
29
|
Kang J, Kang AM. Comment on "Physicochemical stimuli as tuning parameters to modulate the structure and stability of nanostructured lipid carriers and release kinetics of encapsulated antileprosy drugs" by R. Kanwar, M. Gradzielski, S. Prevost, G. Kaur, M. S. Appavou and S. K. Mehta, J. Mater. Chem. B, 2019, 7, 6539. J Mater Chem B 2020; 8:10205-10208. [PMID: 33125021 DOI: 10.1039/d0tb01160f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a recent article [R. Kanwar et al., J. Mater. Chem. B, 2019, 7(42), 6539-6555], the authors characterized the interactions between drug-loaded nanostructured lipid carriers and bovine serum albumin using thermodynamics. They found that the interactions are spontaneous and driven by entropy. In this present paper, we report our analysis of these results in terms of equilibrium thermodynamics to show that the binding reactions exhibit enthalpy-entropy compensation. Our findings may prove useful for designing nanostructured lipid carriers.
Collapse
Affiliation(s)
- Jonghoon Kang
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA.
| | | |
Collapse
|
30
|
Khan S, Naseem I. Unravelling the interaction of a phosphodiesterase inhibitor, aminophylline with human serum albumin: implication of photoilluminated riboflavin upon binding. J Biomol Struct Dyn 2020; 38:4056-4065. [DOI: 10.1080/07391102.2019.1671223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Saniyya Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Imrana Naseem
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
31
|
Tanzadehpanah H, Bahmani A, Hosseinpour Moghadam N, Gholami H, Mahaki H, Farmany A, Saidijam M. Synthesis, anticancer activity, and β‐lactoglobulin binding interactions of multitargeted kinase inhibitor sorafenib tosylate (SORt) using spectroscopic and molecular modelling approaches. LUMINESCENCE 2020; 36:117-128. [DOI: 10.1002/bio.3929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/01/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Hamid Tanzadehpanah
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Asrin Bahmani
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | | | - Hamid Gholami
- Department of Biochemistry, School of Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Hanie Mahaki
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry Hamadan University of Medical Sciences Hamadan Iran
| | - Massoud Saidijam
- Research Center for Molecular Medicine Hamadan University of Medical Sciences Hamadan Iran
| |
Collapse
|
32
|
Wani TA, Alsaif N, Bakheit AH, Zargar S, Al-Mehizia AA, Khan AA. Interaction of an abiraterone with calf thymus DNA: Investigation with spectroscopic technique and modelling studies. Bioorg Chem 2020; 100:103957. [DOI: 10.1016/j.bioorg.2020.103957] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 01/11/2023]
|
33
|
Wani TA, Bakheit AH, Zargar S, Rizwana H, Al-Majed AA. Evaluation of competitive binding interaction of neratinib and tamoxifen to serum albumin in multidrug therapy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117691. [PMID: 31699587 DOI: 10.1016/j.saa.2019.117691] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/13/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
Co-administration of two drugs to obtain a therapeutic goal is a common practice clinically and for effective use of drug therapy. However, the co-administration can sometimes cause adverse effects due to pharmacokinetic drug interactions. Breast Cancer treatment regimen include tyrosine kinase inhibitor neratinib (NRB) and/or tamoxifen (TMX). In this study neratinib and tamoxifen interaction with bovine serum albumin (BSA) and human serum albumin (HSA) individually and in combination using fluorescence spectroscopy was studied. The aim of this study was to find out whether there is a possibility of either of the two drugs interfering in the plasma protein binding of the other drug. Subdomain IIA of both the BSA and HSA was found to bind tamoxifen and neratinib. The λex = 280 nm and 295 nm were used for the analysis of neratinib-SA, tamoxifen-SA, neratinib: SA in presence of constant concentration of tamoxifen and similarly tamoxifen-SA in presence of constant concentration of neratinib. The interaction study of the binary and the ternary systems suggest that neratinib doesn't affect the interaction between SA and tamoxifen. In contrast, the interaction between neratinib and SA was affected by tamoxifen. The binding constant and quenching constant values suggest that tamoxifen dislodges neratinib from its serum albumin complex whereas neratinib doesn't affect the interaction between SA and tamoxifen. Thus, it was concluded from the results the study that during simultaneous administration of neratinib and tamoxifen, their competition for the SA binding sites should be taken into account.
Collapse
Affiliation(s)
- Tanveer A Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia; Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, PO Box 22452, Riyadh, 11451, Saudi Arabia
| | - Humaira Rizwana
- Department of Microbiology and Botany, College of Science, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman A Al-Majed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
34
|
Wani TA, Bakheit AH, Zargar S, Bhat MA, Al-Majed AA. Molecular docking and experimental investigation of new indole derivative cyclooxygenase inhibitor to probe its binding mechanism with bovine serum albumin. Bioorg Chem 2019; 89:103010. [DOI: 10.1016/j.bioorg.2019.103010] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/21/2019] [Accepted: 05/21/2019] [Indexed: 01/28/2023]
|
35
|
Mousavi SF, Fatemi MH. Probing the binding mechanism of capecitabine to human serum albumin using spectrometric methods, molecular modeling, and chemometrics approach. Bioorg Chem 2019; 90:103037. [PMID: 31212179 DOI: 10.1016/j.bioorg.2019.103037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/27/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Capecitabine as a prodrug of 5-Fluorouracil plays an important role in the treatment of breast and gastrointestinal cancers. Herein, in view of the importance of this drug in chemotherapy, interaction mechanism between Capecitabine (CAP) and human serum albumin (HSA) as a major transport protein in the blood circulatory system has been investigated by using a combination of spectroscopic and molecular modeling methods. The fluorescence spectroscopic results revealed that capecitabine could effectively quench the intrinsic fluorescence of HSA through a static quenching mechanism. Evaluation of the thermodynamic parameters suggested that the binding process was spontaneous while hydrogen bonds and van der Waals forces played a major role in this interaction. The value of the binding constant (Kb = 1.820 × 104) suggested a moderate binding affinity between CAP and HSA which implies its easy diffusion from the circulatory system to the target tissue. The efficiency of energy transfer and the binding distance between the donor (HSA) and acceptor (CAP) were determined according to forster theory of nonradiation energy transfer as 0.410 and 4.135 nm, respectively. Furthermore, UV-Vis spectroscopic results confirmed that the interaction was occurred between HSA and CAP and caused conformational and micro-environmental changes of HSA during the interaction. Multivariate curve resolution-alternating least square (MCR-ALS) methodology as an efficient chemometric tool was used to separate the overlapped spectra of the species. The MCR-ALS result was exploited to estimate the stoichiometry of interaction and to provide concentration and structural information about HSA-CAP interactions. Molecular docking studies suggested that CAP binds mainly to the subdomain IIA of HSA, which were compatible with those obtained by experimental data. Finally, molecular dynamics simulation (MD) was performed on the best docked complex by considering the permanence and flexibility of HSA-CAP complex in the binding site. MD result showed that CAP could steadily bind to HSA in the site I based on the formation of hydrogen bond and π-π stacking interaction in addition to hydrophobic force.
Collapse
Affiliation(s)
- S Fatemeh Mousavi
- Chemometrics Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | | |
Collapse
|
36
|
Alanazi MM, Almehizia AA, Bakheit AH, Alsaif NA, Alkahtani HM, Wani TA. Mechanistic interaction study of 5,6-Dichloro-2-[2-(pyridin-2-yl)ethyl]isoindoline-1,3-dione with bovine serum albumin by spectroscopic and molecular docking approaches. Saudi Pharm J 2019; 27:341-347. [PMID: 30976176 PMCID: PMC6438701 DOI: 10.1016/j.jsps.2018.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 11/29/2022] Open
Abstract
A synthesized and promising biologically hypoglycemic compound 5,6-Dichloro-2-[2-(pyridin-2-yl)ethyl]isoindoline-1,3-dione (5e) was studied for its binding to a model protein (bovine serum albumin; BSA) by spectroscopic and molecular simulation approaches. Fluorescence studies revealed that 5e quenched BSA's intrinsic fluorescence by static quenching. The experiments were performed at three different temperatures and the quenching constants and binding constants were evaluated. Stern-Volmer constant (Ksv) values decreased from 1.36 × 104 to 1.20 × 104 as the temperature increased suggesting static quenching involvement in the interaction. Decreased binding constants from 1.70 × 104 to 4.57 × 103 at higher temperatures indicated instability of the complex at rising temperatures. Site I (subdomain IIA) of BSA was found to interact with 5e. The thermodynamic results showed the binding interaction was spontaneous and enthalpy driven. The secondary structure alterations in BSA due to interaction with 5e were studied by UV-visible, synchronous fluorescence, and three-dimensional fluorescence spectra. The results indicate the 5e binds effectively to the BSA and thus, this study can be useful in further exploring the pharmacokinetics and pharmacodynamics of 5e.
Collapse
Affiliation(s)
- Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum, Sudan
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
37
|
Sood D, Kumar N, Rathee G, Singh A, Tomar V, Chandra R. Mechanistic Interaction Study of Bromo-Noscapine with Bovine Serum Albumin employing Spectroscopic and Chemoinformatics Approaches. Sci Rep 2018; 8:16964. [PMID: 30446713 PMCID: PMC6240080 DOI: 10.1038/s41598-018-35384-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/16/2018] [Indexed: 01/28/2023] Open
Abstract
Bromo-Noscapine (BrNs) is a tubulin-binding cytotoxic agent with significant activity against breast and lung cancer. The mechanistic interaction insight into the binding of bovine serum albumin (BSA) with BrNs can provide critical information about the pharmacodynamics and pharmacokinetics properties. Here, various spectroscopic techniques and computational methods were employed to understand the dynamics of BrNs and BSA interaction. The intrinsic fluorescence of BSA was quenched by BrNs through a static quenching procedure. The stoichiometry of BrNs-BSA complex was 1:1 and binding constant of the complex was in the order of 103 M−1 at 298 K. Based on thermodynamic analysis, it was deduced that binding process of the BrNs with BSA was spontaneous and exothermic, and the major forces between BrNs and BSA were van der waals forces and hydrogen bonding. Moreover, results of FT-IR, CD, UV spectra concluded significant conformational change in BSA on binding with BrNs. The in vitro findings were further confirmed by in silico assays. Molecular docking showed strong interactions with score of −8.08 kcal/mol. Molecular dynamics simulation analysis also suggested the stable binding with lower deviation in RMSD and RMSF values through persistent long simulation run. This study suggests optimal efficiency of diffusion of the BrNs into the bloodstream for the treatment of cancer.
Collapse
Affiliation(s)
- Damini Sood
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Neeraj Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Garima Rathee
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Vartika Tomar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India. .,Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, Delhi, 110007, India.
| |
Collapse
|