1
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
2
|
Jiang X, Huang H. The therapeutic potential of apigenin against atherosclerosis. Heliyon 2025; 11:e41272. [PMID: 39811295 PMCID: PMC11732486 DOI: 10.1016/j.heliyon.2024.e41272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
Apigenin is a natural flavonoid abundantly found in fruits, vegetables, and medicinal plants. It possesses protective effects against cancer, metabolic syndrome, dyslipidemia, etc. Atherosclerosis, a chronic immune-mediated inflammatory disease, is the underlying cause of coronary heart disease, stroke, and myocardial infarction. Numerous in vivo and in vitro studies have shown a protective effect of apigenin against atherosclerosis, attributed to its antioxidant and anti-inflammatory properties, as well as its antihypertensive effect and regulation of lipid metabolism. This study aimed to review the effects and mechanisms of apigenin against atherosclerosis for the first time. Apigenin displays encouraging results, and this review confirms the potential value of apigenin as a candidate medication for atherosclerosis.
Collapse
Affiliation(s)
- Xueqiang Jiang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
| | - Huimin Huang
- Sinopharm Dongfeng General Hospital, Hubei Clinical Research Center of Hypertension, Hubei University of Medicine, Shiyan, 442008, China
- Department of Pharmacy, Xi'an Jiaotong University, Xi'an, 710003, China
| |
Collapse
|
3
|
Yang S, Duan H, Zeng J, Yan Z, Niu T, Ma X, Zhang Y, Hu J, Zhang L, Zhao X. Luteolin modulates macrophage phenotypic switching via the AMPK-PPARγ pathway to alleviate ulcerative colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119157. [PMID: 39603400 DOI: 10.1016/j.jep.2024.119157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF), the dried flower bud or newly bloomed flower of Lonicera japonica Thunb., is widely used in Traditional Chinese medicine (TCM), exhibiting anti-inflammatory and immune-enhancing properties. Luteolin (Lut) is a major bioactive component of LJF, demonstrating a regulatory role in immune disorders. However, the specific role of Lut in regulating macrophage-mediated intestinal inflammation and its underlying molecular mechanisms have not yet been fully explored. AIM OF THE STUDY This study was designed to explore whether Lut alleviates Ulcerative colitis (UC) in mice and to elucidate its underlying mechanism in intestinal inflammation. MATERIALS AND METHODS Mice were administered Dextran sodium sulfate (DSS) for 7 d to establish a UC model, followed by oral administration of Lut (12.5, 25, and 50 mg/kg body weight). RNA-sequencing (RNA-Seq) was used to screen signaling pathways. RAW264.7 cells were cultured and treated with Lut (6.25, 12.5, and 25 μM) and lipopolysaccharide (LPS, 1 μg/mL) for 24 h. To examine the role of the AMP-activated protein kinase (AMPK)/Peroxisome proliferator-activated receptor γ (PPARγ) signaling pathway, the cells were treated with compound C (an AMPK inhibitor) and GW9662 (a PPARγ antagonist). RESULTS Lut suppressed the inflammation of DSS-induced colitis in vivo, attenuated DSS-induced clinical man-ifestations, reversed colon length reduction, and reduced histological injury. Lut induced a shift in the macrophage phenotype from classical (M1) to alternative (M2) by suppressing M1 marker gene expression and enhancing M2 marker gene expression following DSS or LPS induction. RNA-seq revealed that PPARγ was involved in the regulation of macrophages by Lut. Furthermore, the polarization effect of Lut on macrophages was shown to be mediated through the AMPK-PPARγ signaling pathway. CONCLUSION These findings indicate that Lut effectively ameliorates UC in mice through the activation of the AMPK-PPARγ signaling pathway, leading to the inhibition of macrophage M1 polarization and promotion of M2 polarization. This study provides insight into future research on the utilization of Lut-rich TCM dietary supplements as a prophylactic treatment strategy in the prevention of UC.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Hongwei Duan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Jianlin Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Zhenxing Yan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Tian Niu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Xiaofei Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Junjie Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China
| | - Lihong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
4
|
Huang M, Xie X, Yuan R, Xin Q, Ma S, Guo H, Miao Y, Hu C, Zhu Y, Cong W. The multifaceted anti-atherosclerotic properties of herbal flavonoids: A comprehensive review. Pharmacol Res 2025; 211:107551. [PMID: 39701504 DOI: 10.1016/j.phrs.2024.107551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
Atherosclerosis (AS) is a major etiological factor underpinning a spectrum of cardiovascular diseases, leading to cerebral infarction, coronary artery disease, and peripheral vascular disease. The chronic progression of AS, spanning from initial plaque formation to the occurrence of acute cardiovascular events, underscores the complexity of AS and the challenges it presents in terms of treatment. Currently, the clinical management of AS relies predominantly on statins and proprotein convertase subtilisin/kexin type 9 inhibitors, which primarily aim to reduce low-density lipoprotein levels and have demonstrated some therapeutic efficacy. Nevertheless, due to their potential side effects, there is a pressing need to actively investigate alternative treatment approaches. Researches on natural compounds derived from herbal medicines, such as flavonoids, hold significant promise in combating AS by regulating lipid metabolism, reducing oxidative stress and inflammation, inhibiting the proliferation of vascular smooth muscle cells, modulating autophagy and additional pathways. Various targets participate in these physiological processes, encompassing acyl-CoA: cholesterol acyltransferase (ACAT), ATP citrate lyase (ACLY), nuclear factor erythroid 2-related factor 2 (Nrf2), krüppel-like factor 2 (KLF2), NOD-like receptor protein 3 (NLRP3), transcription factor EB (TFEB) and so on. This comprehensive review endeavors to synthesize and analyse the most recent findings on herbal flavonoids, shedding light on their anti-atherosclerotic potential and the underlying protective mechanisms and related-targets, which might pave the way for the development of novel drug candidates or the optimization of flavonoid-based therapies.
Collapse
Affiliation(s)
- Meiwen Huang
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuena Xie
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Hongai Guo
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chunyu Hu
- Department of Teaching Quality Construction, Graduate School, China Academy of Chinese Medical Sciences, 100700, China
| | - Yizhun Zhu
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China
| | - Weihong Cong
- School of Pharmacy, Macau University of Science and Technology, Macau 999078, China; Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China.
| |
Collapse
|
5
|
Mahwish, Imran M, Naeem H, Hussain M, Alsagaby SA, Al Abdulmonem W, Mujtaba A, Abdelgawad MA, Ghoneim MM, El‐Ghorab AH, Selim S, Al Jaouni SK, Mostafa EM, Yehuala TF. Antioxidative and Anticancer Potential of Luteolin: A Comprehensive Approach Against Wide Range of Human Malignancies. Food Sci Nutr 2025; 13:e4682. [PMID: 39830909 PMCID: PMC11742186 DOI: 10.1002/fsn3.4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/25/2024] [Accepted: 11/30/2024] [Indexed: 01/22/2025] Open
Abstract
Luteolin is widely distributed phytochemical, a flavonoid, in kingdom plantae. Luteolin with potential antioxidant activity prevent ROS-induced damages and reduce oxidative stress which is mainly responsible in pathogenesis of many diseases. Several chemo preventive activities and therapeutic benefits are associated with luteolin. Luteolin prevents cancer via modulation of numerous pathways, that is, by inactivating proteins; such as procaspase-9, CDC2 and cyclin B or upregulation of caspase-9 and caspase-3, cytochrome C, cyclin A, CDK2, and APAF-1, in turn inducing cell cycle arrest as well as apoptosis. It also enhances phosphorylation of p53 and expression level of p53-targeted downstream gene. By Increasing BAX protein expression; decreasing VEGF and Bcl-2 expression it can initiate cell cycle arrest and apoptosis. Luteolin can stimulate mitochondrial-modulated functions to cause cellular death. It can also reduce expression levels of p-Akt, p-EGFR, p-Erk1/2, and p-STAT3. Luteolin plays positive role against cardiovascular disorders by improving cardiac function, decreasing the release of inflammatory cytokines and cardiac enzymes, prevention of cardiac fibrosis and hypertrophy; enhances level of CTGF, TGFβ1, ANP, Nox2, Nox4 gene expressions. Meanwhile suppresses TGFβ1 expression and phosphorylation of JNK. Luteolin helps fight diabetes via inhibition of alpha-glucosidase and ChE activity. It can reduce activity levels of catalase, superoxide dismutase, and GS4. It can improve blood glucose, insulin, HOMA-IR, and HbA1c levels. This review is an attempt to elaborate molecular targets of luteolin and its role in modulating irregularities in cellular pathways to overcome severe outcomes during diseases including cancer, cardiovascular disorders, diabetes, obesity, inflammation, Alzheimer's disease, Parkinson's disease, hepatic disorders, renal disorders, brain injury, and asthma. As luteolin has enormous therapeutic benefits, it could be a potential candidate in future drug development strategies.
Collapse
Affiliation(s)
- Mahwish
- Institute of Food Science and NutritionUniversity of SargodhaSargodhaPakistan
| | - Muhammad Imran
- Department of Food Science and TechnologyUniversity of NarowalNarowalPakistan
| | - Hammad Naeem
- Department of Food Science and TechnologyMuhammad Nawaz Shareef University of AgricultureMultanPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical SciencesMajmaah UniversityAL‐MajmaahSaudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of MedicineQassim UniversityBuraidahSaudi Arabia
| | - Ahmed Mujtaba
- Department of Food Sciences and Technology, Faculty of Engineering and TechnologyHamdard University Islamabad campusIslamabadPakistan
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of PharmacyJouf UniversityAljoufSaudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of PharmacyAlMaarefa UniversityRiyadhSaudi Arabia
| | - Ahmed H. El‐Ghorab
- Department of Chemistry, College of ScienceJouf UniversitySakakaSaudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesJouf UniversitySakakaSaudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of MedicineKing Abdulaziz UniversityJeddahSaudi Arabia
| | - Ehab M. Mostafa
- Department of Pharmacognosy, College of PharmacyJouf UniversitySakakaSaudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys)Al‐Azhar UniversityCairoEgypt
| | - Tadesse Fenta Yehuala
- Faculty of Chemical and Food Engineering, Bahir Dar Institute of TechnologyBahir Dar UniversityBahir DarEthiopia
| |
Collapse
|
6
|
Zhao Y, Zhang J, Lu F, Xu W, Ma Q, Hu J. The therapeutic potential of Honeysuckle in cardiovascular disease: an anti-inflammatory intervention strategy. Am J Transl Res 2024; 16:7262-7277. [PMID: 39822489 PMCID: PMC11733370 DOI: 10.62347/njmj7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 01/19/2025]
Abstract
Honeysuckle is a conventional Chinese medicine with several therapeutic applications. With the advancement of modern scientific technologies, Honeysuckle's pharmacological effects and medicinal properties have been investigated more thoroughly. Studies demonstrate that the bioactive compounds in Honeysuckle possess anti-inflammatory effects via several mechanisms, protecting the cardiovascular system. This article provides a reference for the clinical use of Honeysuckle by reviewing research on the therapeutic impact of Honeysuckle and its active constituents on cardiovascular diseases, such as coronary atherosclerotic heart disease (CHD), myocardial ischemia-reperfusion (MI/R), acute myocardial infarction (AMI), hypertension, arrhythmia, and heart failure, through the inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Yue Zhao
- Changchun University of Chinese MedicineChangchun, Jilin, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Fei Lu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyang, Liaoning, China
| | - Weiming Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Qingxiao Ma
- China National Health Development Research CenterBeijing, China
| | - Jingqing Hu
- Changchun University of Chinese MedicineChangchun, Jilin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Tianjin University of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
7
|
Niemelä A, Giorgi L, Nouri S, Yurttaş B, Rauniyar K, Jeltsch M, Koivuniemi A. Gliflozins, sucrose and flavonoids are allosteric activators of lecithin-cholesterol acyltransferase. Sci Rep 2024; 14:26085. [PMID: 39478139 PMCID: PMC11525561 DOI: 10.1038/s41598-024-77104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/18/2024] [Indexed: 11/02/2024] Open
Abstract
Lecithin-cholesterol acyltransferase (LCAT) serves as a pivotal enzyme in preserving cholesterol homeostasis via reverse cholesterol transport, a process closely associated with the onset of atherosclerosis. Impaired LCAT function can lead to severe LCAT deficiency disorders for which no pharmacological treatment exists. LCAT-based therapies, such as small molecule positive allosteric modulators (PAMs), against LCAT deficiencies and atherosclerosis hold promise, although their efficacy against atherosclerosis remains challenging. Herein we utilized a quantitative in silico metric to predict the activity of novel PAMs and tested their potencies with in vitro enzymatic assays. As predicted, sodium-glucose cotransporter 2 (SGLT2) inhibitors (gliflozins), sucrose and flavonoids activate LCAT. This has intriguing implications for the mechanism of action of gliflozins, which are commonly used in the treatment of type 2 diabetes, and for the endogenous activation of LCAT. Our results underscore the potential of molecular dynamics simulations in rational drug design.
Collapse
Affiliation(s)
- Akseli Niemelä
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| | - Laura Giorgi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sirine Nouri
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Betül Yurttaş
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Khushbu Rauniyar
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Michael Jeltsch
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Artturi Koivuniemi
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
8
|
Ma Y, Song D, Yuan J, Hao W, Xi J, Yuan C, Cheng Z. Alisol A inhibits and stabilizes atherosclerotic plaques by protecting vascular endothelial cells. Front Pharmacol 2024; 15:1493948. [PMID: 39525632 PMCID: PMC11543447 DOI: 10.3389/fphar.2024.1493948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background and aims Dysfunction of endothelial cells represents a crucial aspect in the pathogenesis of atherosclerosis. The aim of this study was to explore the protective effects of alisol A on vascular endothelial cells and its possible mechanisms. Methods An atherosclerosis model was established by feeding ApoE-/- mice with high-fat chow. Alisol A (150 mg/kg/d) or atorvastatin (15 mg/kg/d) was administered, and the levels of blood lipids were evaluated. The effect of the drugs on atherosclerotic plaques was observed by staining the aorta with Sudan IV. In vitro experiments were conducted using human aortic endothelial cells (HAECs) to assess the effects of alisol A on cell proliferation, migration, tubulation, secretion, and cellular integrity by CCK-8 assay, wound healing assay, angiogenesis assay, NO secretion, and release of LDH. Transcriptomics and molecular docking were used to explore the mechanism of plaque inhibition and stabilization by alisol A. Results Alisol A significantly reduced the aortic plaque area in ApoE-/- mice fed with high-fat chow. In vitro, alisol A had a protective effect on HAECs, which was reflected in the inhibition of vascular endothelial cell proliferation, promotion of NO secretion by vascular endothelial cells, inhibition of vascular endothelial cell migration and angiogenesis, and the maintenance of cell membrane integrity. Therefore, alisol A inhibited and stabilized atherosclerotic plaques and slowed down the process of atherosclerosis. Transcriptomics studies showed 4,086 differentially expressed genes (DEGs) in vascular endothelial cells after alisol A treatment. Enrichment analysis indicated that many genes involved in TNF signaling pathway were differentially expressed, and inflammatory genes were suppressed. The molecular docking results verified the hypothesis that alisol A has a low binding energy after docking with TNF target, and TNF could be a potential target of alisol A. Conclusion Alisol A produced protection on vascular endothelial cells, achieving inhibition and stabilization of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yang Ma
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| | - Dingzhong Song
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| | - Jie Yuan
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| | - Wusi Hao
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| | - Jianqiang Xi
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| | - Chunping Yuan
- Shanghai Engineering Technology Research Center for Pharmaceutical Intelligent Equipment, Shanghai, China
| | - Zhihong Cheng
- China State Institute of Pharmaceutical Industry, National Advanced Medical Engineering Research Center, Shanghai, China
| |
Collapse
|
9
|
Wang R, Li X, Xu Y, Li Y, Zhang W, Guo R, Song J. Progress, pharmacokinetics and future perspectives of luteolin modulating signaling pathways to exert anticancer effects: A review. Medicine (Baltimore) 2024; 103:e39398. [PMID: 39183411 PMCID: PMC11346905 DOI: 10.1097/md.0000000000039398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Luteolin (3, 4, 5, 7-tetrahydroxyflavone) are natural flavonoids widely found in vegetables, fruits and herbs, with anti-tumor, anti-inflammatory and antioxidant effects, and also play an anti-cancer effect in various cancers such as lung, breast, prostate, and liver cancer, etc. Specifically, the anti-cancer mechanism includes regulation of various signaling pathways to induce apoptosis of tumor cells, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, regulation of immune function, synergistic anti-cancer drugs and regulation of reactive oxygen species levels of tumor cells. Specific anti-cancer mechanisms include regulation of various signaling pathways to induce apoptosis, inhibition of tumor cell proliferation and metastasis, anti-angiogenesis, reversal of epithelial-mesenchymal transition, regulation of immune function, synergism with anti-cancer drugs and regulation of reactive oxygen species levels in tumor cells. This paper integrates the latest cutting-edge research on luteolin and combines it with the prospect of future clinical applications, aiming to explore the mechanism of luteolin exerting different anticancer effects through the regulation of different signaling pathways, so as to provide a practical theoretical basis for the use of luteolin in clinical treatment and hopefully provide some reference for the future research direction of luteolin.
Collapse
Affiliation(s)
- Rui Wang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
- Medical School of Nantong University, Nantong, PR China
| | - Xia Li
- Department of General Medicine, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yanhan Xu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Yangyang Li
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Weisong Zhang
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Rongqi Guo
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| | - Jianxiang Song
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, PR China
| |
Collapse
|
10
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
11
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Liao G, Liu W, Dai Y, Shi X, Liu Y, Li D, Xu T. Beneficial effects of flavonoids on animal models of atherosclerosis: A systematic review and meta-analysis. iScience 2023; 26:108337. [PMID: 38026172 PMCID: PMC10665821 DOI: 10.1016/j.isci.2023.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/07/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Atherosclerosis is the main cause of cardiovascular diseases that seriously endanger human health. The existing treatment drugs are effective, but they have some side effects. Accumulating evidence suggests that flavonoids have attracted wide attention due to their multiple cardioprotective effects and fewer side effects. PubMed, Web of Science database, Embase, and Cochrane Library were searched for studies evaluating the effects of flavonoids against atherosclerosis. 119 studies published from August 1954 to April 2023 were included. Random-effects models were performed for synthesis. Compared with the control group, flavonoids significantly reduced longitudinal and cross-sectional plaque area. The findings indicated that flavonoids significantly reduced the concentrations of serum TC, TG, and LDL-C and increased serum HDL-C concentrations. Besides, flavonoids reduced the levels of circulating pro-inflammatory factors, including TNF-α, IL-1β, and IL-6, and increased the serum IL-10 level. This study provides evidence for the potential cardiovascular benefits of flavonoids.
Collapse
Affiliation(s)
- Gege Liao
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Wanlu Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Yiming Dai
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Xiangxiang Shi
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Liu
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Dongye Li
- Institute of Cardiovascular Disease Research, Xuzhou Medical University, Xuzhou, China
| | - Tongda Xu
- Department of Cardiology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Li Q, Chai Y, Li W, Guan L, Fan Y, Chen Y. Mechanism of Simiao Decoction in the treatment of atherosclerosis based on network pharmacology prediction and molecular docking. Medicine (Baltimore) 2023; 102:e35109. [PMID: 37682164 PMCID: PMC10489409 DOI: 10.1097/md.0000000000035109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
To explore the molecular mechanism of Simiao Decoction (SMD) intervening atherosclerosis (AS). The main components and potential mechanisms of SMD remain unknown. This study aims to initially clarify the potential mechanism of SMD in the treatment of AS based on network pharmacology and molecular docking techniques. The principal components and corresponding protein targets of SMD were searched on Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and the compound-target network was constructed by Cytoscape3.9.1. AS targets were searched on DrugBank, OMIM, and TTD databases. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a protein-protein interaction network. We further performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis on the targets. The molecular docking method was used to verify the interaction between core components of SMD and targets. We created the active compounds-targets network and the active compounds-AS-targets network based on the network database containing Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, DrugBank, OMIM, and TTD. We discovered that the therapy of AS with SMD involves 3 key substances-quercetin, kaempferol, and luteolin-as well as 5 crucial targets-ALB, AKT1, TNF, IL6, and TP53. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the shared targets involved a number of signaling pathways, including the advanced glycosylation end product-receptor of AGE signaling pathway in diabetic complications, Hepatitis B, Lipid and atherosclerosis, Chemical Carcinogenesis-Receptor Activation, and Pathways in Cancer. The molecular docking demonstrated that the binding energies of quercetin, kaempferol, and luteolin with 5 important targets were favorable. This study reveals the active ingredients and potential molecular mechanism of SMD in the treatment of AS, and provides a reference for subsequent basic research.
Collapse
Affiliation(s)
- Qian Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Yihui Chai
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Wen Li
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Liancheng Guan
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| | - Yizi Fan
- Chongqing High-tech Zone People’s Hospital, Chongqing City, China
| | - Yunzhi Chen
- Guizhou University of Traditional Chinese Medicine, Guiyang City, China
| |
Collapse
|
14
|
Xu Z, Shen M, Li L. Exploring the active components and mechanism of modified bazhen decoction in treatment of chronic cerebral circulation insufficiency based on network pharmacology and molecular docking. Medicine (Baltimore) 2023; 102:e34341. [PMID: 37478218 PMCID: PMC10662881 DOI: 10.1097/md.0000000000034341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/23/2023] [Indexed: 07/23/2023] Open
Abstract
Modified bazhen decoction (MBZD) is a classical Chinese medicine formula with potential efficacy in the treatment of chronic cerebral circulation insufficiency (CCCI), and its main components and potential mechanisms are still unclear. The study aimed to investigate the active ingredients and mechanism of action of MBZD in treating CCCI through network pharmacology combined with molecular docking. The chemical composition and targets of 11 Chinese herbs in MBZD were retrieved utilizing the traditional Chinese medicine systems pharmacology database and analysis platform platform, and the targets for CCCI were screened by Genecards, online mendelian inheritance in man, therapeutic target database, and comparative toxicogenomics database databases. The targets were genetically annotated with the Uniprot database. We created a compound-target network employing Cytoscape software and screened the core targets for the treatment of CCCI by CytoNCA clustering analysis; the AutoDock Vina program performed molecular docking study of crucial targets. One thousand one hundred ninety-one active compounds were obtained, 2210 corresponding targets were predicted, 4971 CCCI-related targets were obtained, and 136 intersecting genes were identified between them. The central core targets were IL6, MAPK14, signal transducer and activator of transcription 3, RELA, VEGFA, CCND1, CASP3, AR, FOS, JUN, EGFR, MAPK1, AKT1, MYC, and ESR1; gene ontology functional enrichment analysis yielded 911 gene ontology items (P < .01), while Kyoto Encyclopedia of Genes and Genomes pathway enrichment yielded 138 signal pathways (P < .01), primarily including oxidative reactions, vascular regulation, apoptosis, and PI3K-Akt signaling pathway. The molecular docking results showed that the core active component of MBZD had good binding with the main target. This research initially uncovered the mechanism of action of MBZD via multi-component-multi-target-multi-pathway for the treatment of CCCI, providing the theoretical basis for the clinical application of MBZD.
Collapse
Affiliation(s)
- Zhongbo Xu
- Emergency Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| | - Manyang Shen
- Graduate College, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lin Li
- Emergency Department, Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Wei M, Li F, Guo K, Yang T. Exploring the Active Compounds of Traditional Mongolian Medicine Baolier Capsule (BLEC) in Patients with Coronary Artery Disease (CAD) Based on Network Pharmacology Analysis, Molecular Docking and Experimental Validation. Drug Des Devel Ther 2023; 17:459-476. [PMID: 36819991 PMCID: PMC9938670 DOI: 10.2147/dddt.s395207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/28/2023] [Indexed: 02/15/2023] Open
Abstract
Objective Baolier Capsule (BLEC) is a Traditional Mongolian Medicine comprising fifteen herbs. This study aims to illustrate the synergistic mechanism of BLEC in the treatment of Coronary Artery Disease (CAD) by using network pharmacology method, molecular docking and experimental validation. Methods Searching and screening the active ingredients of different herbs in BLEC and target genes related to CAD in multiple databases. Subsequently, Protein-Protein Interactions Network (PPI-Net), gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment were used to identify the key targets. AutoDock was used to verify the binding ability between the active ingredient and key target through molecular docking. Reverse Transcription-Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR) was used to verify the effect of active ingredient of BLEC on the key target gene. Finally, effect of BLEC on the degree of blood lipids and atherosclerosis was validated by animal experiment. Results There are 144 active components and 80 CAD-related targets that are identified in BLEC in the treatment of CAD. What is more, 8 core genes were obtained by clustering and topological analysis of PPI-Net. Further, GO and KEGG analysis showed that fluid shear stress and atherosclerosis are the key pathways for BLEC to treat CAD. These results were validated by molecular docking method. In vitro, active compounds of BLEC (Quercetin, luteolin, kaempferol, naringenin, tanshinone IIA, β-carotene, 7-O-methylisomucronulatol, piperine, isorhamnetin and Xyloidone) can inhibit 8 core gene (AKT1, EGFR, FOS, MAPK1, MAPK14, STAT3, TP53 and VEGFA) expression. Moreover, BLEC not only improve blood lipid levels but also inhibit the development of atherosclerosis in ApoE-knockout mice. Conclusion Our research first revealed the basic pharmacological effects and related mechanisms of in the treatment of CAD. The predicted results provide some theoretical support for BLEC or its important active ingredients to treat CAD.
Collapse
Affiliation(s)
- Mengqiu Wei
- Intensive Care Unit, Zhongshan City People’s Hospital, Zhongshan, 528400, People’s Republic of China
| | - Fengjin Li
- Department of Gynecology, Longyan First Affiliated Hospital of Fujian Medical University, Longyan, 36400, People’s Republic of China
| | - Kai Guo
- Department of Cardiology, Guangdong Second Provincial General Hospital, Guangzhou, 510000, People’s Republic of China,Department of Emergency, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, People’s Republic of China,Correspondence: Kai Guo; Tianxiao Yang, Email ;
| | - Tianxiao Yang
- Department of Cardiology, Shandong University Zibo Central Hospital, Zibo, 255000, People’s Republic of China
| |
Collapse
|
16
|
Zhi W, Liu Y, Wang X, Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115749. [PMID: 36181983 DOI: 10.1016/j.jep.2022.115749] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Atherosclerosis (AS) is a common systemic disease with increasing morbidity and mortality worldwide. Traditional Chinese medicine (TCM) with characteristics of multiple pathways and targets, presents advantages in the diagnosis and treatment of atherosclerosis. AIM OF THE STUDY With the modernization of TCM, the active ingredients and molecular mechanisms of TCM for AS treatment have been gradually revealed. Therefore, it is necessary to examine the existing studies on TCM therapies aimed at regulating AS over the past two decades. MATERIALS AND METHODS Using "atherosclerosis" and "Traditional Chinese medicine" as keywords, all relevant TCM literature published in the last 10 years was collected from electronic databases (such as Elsevier, Springer, PubMed, CNKI, and Web of Science), books and papers until March 2022, and the critical information was statistically analyzed. RESULTS In this review, we highlighted extracts of 8 single herbs, a total of 41 single active ingredients, 20 TCM formulae, and 25 patented drugs, which were described with chemical structure, source, model, efficacy and potential mechanism. CONCLUSION We summarized the cytopathological basis for the development of atherosclerosis involving vascular endothelial cells, macrophages and vascular smooth muscle cells, and categorically elaborated the medicinal TCM used for AS, all of which provide the current evidence on the better management of atherosclerosis by TCM.
Collapse
Affiliation(s)
- Wenbing Zhi
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China
| | - Xiumei Wang
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China.
| | - Hong Zhang
- Shaanxi Academy of Traditional Chinese Medicine (Shaanxi Traditional Chinese Medicine Hospital), Xi'an, 710003, PR China.
| |
Collapse
|
17
|
Huang L, Kim MY, Cho JY. Immunopharmacological Activities of Luteolin in Chronic Diseases. Int J Mol Sci 2023; 24:ijms24032136. [PMID: 36768462 PMCID: PMC9917216 DOI: 10.3390/ijms24032136] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Flavonoids have been shown to have anti-oxidative effects, as well as other health benefits (e.g., anti-inflammatory and anti-tumor functions). Luteolin (3', 4', 5,7-tetrahydroxyflavone) is a flavonoid found in vegetables, fruits, flowers, and herbs, including celery, broccoli, green pepper, navel oranges, dandelion, peppermint, and rosemary. Luteolin has multiple useful effects, especially in regulating inflammation-related symptoms and diseases. In this paper, we summarize the studies about the immunopharmacological activity of luteolin on anti-inflammatory, anti-cardiovascular, anti-cancerous, and anti-neurodegenerative diseases published since 2018 and available in PubMed or Google Scholar. In this review, we also introduce some additional formulations of luteolin to improve its solubility and bioavailability.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| | - Jae Youl Cho
- Department of Biocosmetics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Correspondence: (M.-Y.K.); (J.Y.C.); Tel.:+82-2-820-0458 (M.-Y.K.); +82-31-290-7868 (J.Y.C.)
| |
Collapse
|
18
|
Chen Y, Gan Y, Yu J, Ye X, Yu W. Key ingredients in Verbena officinalis and determination of their anti-atherosclerotic effect using a computer-aided drug design approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1154266. [PMID: 37077636 PMCID: PMC10106644 DOI: 10.3389/fpls.2023.1154266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Lipid metabolism disorders may considerably contribute to the formation and development of atherosclerosis (AS). Traditional Chinese medicine has received considerable attention in recent years owing to its ability to treat lipid metabolism disorders using multiple components and targets. Verbena officinalis (VO), a Chinese herbal medicine, exhibits anti-inflammatory, analgesic, immunomodulatory, and neuroprotective effects. Evidence suggests that VO regulates lipid metabolism; however, its role in AS remains unclear. In the present study, an integrated network pharmacology approach, molecular docking, and molecular dynamics simulation (MDS) were applied to examine the mechanism of VO against AS. Analysis revealed 209 potential targets for the 11 main ingredients in VO. Further, 2698 mechanistic targets for AS were identified, including 147 intersection targets between VO and AS. Quercetin, luteolin, and kaempferol were considered key ingredients for the treatment of AS based on a potential ingredient target-AS target network. GO analysis revealed that biological processes were primarily associated with responses to xenobiotic stimuli, cellular responses to lipids, and responses to hormones. Cell components were predominantly focused on the membrane microdomain, membrane raft, and caveola nucleus. Molecular functions were mainly focused on DNA-binding transcription factor binding, RNA polymerase II-specific DNA-binding transcription factor binding, and transcription factor binding. KEGG pathway enrichment analysis identified pathways in cancer, fluid shear stress, and atherosclerosis, with lipid and atherosclerosis being the most significantly enriched pathways. Molecular docking revealed that three key ingredients in VO (i.e., quercetin, luteolin, and kaempferol) strongly interacted with three potential targets (i.e., AKT1, IL-6, and TNF-α). Further, MDS revealed that quercetin had a stronger binding affinity for AKT1. These findings suggest that VO has beneficial effects on AS via these potential targets that are closely related to the lipid and atherosclerosis pathways. Our study utilized a new computer-aided drug design to identify key ingredients, potential targets, various biological processes, and multiple pathways associated with the clinical roles of VO in AS, which provides a comprehensive and systemic pharmacological explanation for the anti-atherosclerotic activity of VO.
Collapse
Affiliation(s)
- Yuting Chen
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yuanyuan Gan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Jingxuan Yu
- Clinical Medical College, Changsha Medical University, Changsha, Hunan, China
| | - Xiao Ye
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, Xianning, Hubei, China
- *Correspondence: Wei Yu,
| |
Collapse
|
19
|
Li H, Gao L, Shao H, Li B, Zhang C, Sheng H, Zhu L. Elucidation of active ingredients and mechanism of action of hawthorn in the prevention and treatment of atherosclerosis. J Food Biochem 2022; 46:e14457. [PMID: 36200679 DOI: 10.1111/jfbc.14457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 01/14/2023]
Abstract
Hawthorn (HT), a functional food and medicinal herb for centuries in China, has potential preventive and therapeutic effects on atherosclerosis (AS). However, the mechanisms and active ingredients of HT in the prevention and treatment of AS are unclear. This study aimed to reveal active components and mechanism of HT in the prevention and treatment of AS using UHPLC-Q-Exactive Orbitrap MS and network pharmacology. A total of 50 compounds were identified by UHPLC-Q-Exactive Orbitrap MS. Six core targets and six active compounds were obtained by network pharmacology. Apigenin, luteolin, chrysin, quercetin, oleanic acid, and corosolic acid were the active components in the prevention and treatment of AS, and core targets included SRC, HSP90AA1, MAPK3, EGFR, HRAS, and AKT1. The key signaling pathways involved are MAPK, HIF-1, NF-kappa B, PI3K-Akt, TNF, Rap1, Ras, and VEGF signaling pathways. Further molecular docking results indicated that the six active compounds had strong hydrogen bonding ability with the six core targets. On the molecular level, HT may regulate AS by controlling cell survival and proliferation, reducing the levels of enzymes HMG-CoA reductase and lipoprotein lipase and inhibiting inflammatory response. PRACTICAL APPLICATIONS: HT can serve as "medicine-food homology" for dietary supplement and exert potential preventive and therapeutic effects on AS. However, the mechanisms of HT in the prevention and treatment of AS are unclear. This study describes a rapid method of detecting and identifying the components and mechanism of HT based on LC-MS and network pharmacology, which provides a theoretical and scientific support for further application of HT and guidance for the research of other herbal medicines.
Collapse
Affiliation(s)
- Huan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huili Shao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bingqian Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
20
|
Zhou P, Zhao XN, Ma YY, Tang TJ, Wang SS, Wang L, Huang JL. Virtual screening analysis of natural flavonoids as trimethylamine (TMA)-lyase inhibitors for coronary heart disease. J Food Biochem 2022; 46:e14376. [PMID: 35945702 DOI: 10.1111/jfbc.14376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Coronary heart disease (CHD) is defined by atherosclerosis, which can result in stenosis or blockage of the arterial cavity, leading to ischemic cardiac diseases such as angina and myocardial infarction. Accumulating evidence indicates that the gut microbiota plays a vital role in the beginning and progression of CHD. The gut microbial metabolite, trimethylamine-N-oxide (TMAO), is intimately linked to the pathophysiology of CHD. TMAO is formed when trimethylamine (TMA) is converted by flavin-containing monooxygenases in the hepatocytes. Therefore, inhibition of TMA production is essential to reduce TMAO levels. Flavonoids may reduce the risk of death from cardiovascular disease. In this article, we reviewed and evaluated twenty-two flavonoids for the therapy of CHD based on their inhibition of TMA-lyase by molecular docking. Docking results revealed that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had a good binding effect with TMA-lyase. This indicates that these chemicals were the most active and could be used as lead compounds for structural modification in the future. PRACTICAL APPLICATIONS: Flavonoids are a large class of polyphenolic compounds found in fruits, vegetables, flowers, tea, and herbal medicines, which are inexorably metabolized and transformed into bioactive metabolites by α-rhamnosidase, β-glucuronidase, β-glucosidase, and nitroreductase produced by the gut microbiota, which plays a beneficial role in the prevention and treatment of cardiovascular diseases. Because flavonoids protect the cardiovascular system and regulate the gut microbiota, and the gut microbiota is directly connected to TMAO, thus, reducing TMAO levels involves blocking the transition of TMA to TMAO, which may be performed by reducing TMA synthesis. Molecular docking results found that baicalein, fisetin, acacetin, and myricetin in flavonoid aglycones, and baicalin, naringin, and hesperidin in flavonoid glycosides had good binding effects on TMA-lyase, which were the most active and could be used as lead compounds for structural modification.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Xiao-Ni Zhao
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yao-Yao Ma
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Tong-Juan Tang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shu-Shu Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Liang Wang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| | - Jin-Ling Huang
- Department of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, People's Republic of China.,Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, People's Republic of China
| |
Collapse
|
21
|
Muruganathan N, Dhanapal AR, Baskar V, Muthuramalingam P, Selvaraj D, Aara H, Shiek Abdullah MZ, Sivanesan I. Recent Updates on Source, Biosynthesis, and Therapeutic Potential of Natural Flavonoid Luteolin: A Review. Metabolites 2022; 12:1145. [PMID: 36422285 PMCID: PMC9696498 DOI: 10.3390/metabo12111145] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/27/2023] Open
Abstract
Nature gives immense resources that are beneficial to humankind. The natural compounds present in plants provide primary nutritional values to our diet. Apart from food, plants also provide chemical compounds with therapeutic values. The importance of these plant secondary metabolites is increasing due to more studies revealing their beneficial properties in treating and managing various diseases and their symptoms. Among them, flavonoids are crucial secondary metabolite compounds present in most plants. Of the reported 8000 flavonoid compounds, luteolin is an essential dietary compound. This review discusses the source of the essential flavonoid luteolin in various plants and its biosynthesis. Furthermore, the potential health benefits of luteolins such as anti-cancer, anti-microbial, anti-inflammatory, antioxidant, and anti-diabetic effects and their mechanisms are discussed in detail. The activity of luteolin and its derivatives are diverse, as they help to prevent and control many diseases and their life-threatening effects. This review will enhance the knowledge and recent findings regarding luteolin and its therapeutic effects, which are certainly useful in potentially utilizing this natural metabolite.
Collapse
Affiliation(s)
- Nandakumar Muruganathan
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Anand Raj Dhanapal
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
- Centre for Plant Tissue Culture & Central Instrumentation Laboratory, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | - Venkidasamy Baskar
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju 52725, Republic of Korea
| | - Dhivya Selvaraj
- Department of Computer Science and Engineering CSE-AI, Amrita School of Engineering, Chennai 601103, Tamil Nadu, India
| | - Husne Aara
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India
| | | | - Iyyakkannu Sivanesan
- Department of Bioresources and Food Science, Institute of Natural Science and Agriculture, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
22
|
Song X, Wang X, Wang D, Zheng Z, Li J, Li Y. Natural drugs targeting inflammation pathways can be used to treat atherosclerosis. Front Pharmacol 2022; 13:998944. [PMID: 36386165 PMCID: PMC9663817 DOI: 10.3389/fphar.2022.998944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
Atherosclerosis (AS) is the chronic gradual degradation of arteries in combination with inflammation. Currently, the main research focus has been on interactions between inflammatory cells, inflammatory mediators, and immune mechanisms, while some studies have reported natural drugs were exerting a critical role against AS, whereas the usage of natural drugs was always limited by various factors such as poor penetration across biological barriers, low bioavailability, and unclear mechanisms. Herein, we reviewed the potential targets for inflammation against AS, discussed the underlying mechanisms of natural drugs for AS, particularly highlighted the dilemma of current research, and finally, offered perspectives in this field.
Collapse
Affiliation(s)
- Xiayinan Song
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Danyang Wang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
| | - Zhenzhen Zheng
- Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Jie Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| | - Yunlun Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine Jinan, Jinan, China
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Jie Li, Yunlun Li,
| |
Collapse
|
23
|
Zhang Z, Wang J, Lin Y, Chen J, Liu J, Zhang X. Nutritional activities of luteolin in obesity and associated metabolic diseases: an eye on adipose tissues. Crit Rev Food Sci Nutr 2022; 64:4016-4030. [PMID: 36300856 DOI: 10.1080/10408398.2022.2138257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Obesity is characterized by excessive body fat accumulation and is a high-risk factor for metabolic comorbidities, including type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular disease. In lean individuals, adipose tissue (AT) is not only an important regulatory organ for energy storage and metabolism, but also an indispensable immune and endocrine organ. The sustained energy imbalance induces adipocyte hypotrophy and hyperplasia as well as AT remodeling, accompanied by chronic low-grade inflammation and adipocytes dysfunction in AT, ultimately leading to systemic insulin resistance and ectopic lipid deposition. Luteolin is a natural flavonoid widely distributed in fruits and vegetables and possesses multifold biological activities, such as antioxidant, anticancer, and anti-inflammatory activities. Diet supplementation of this flavonoid has been reported to inhibit AT lipogenesis and inflammation as well as the ectopic lipid deposition, increase AT thermogenesis and systemic energy expenditure, and finally improve obesity and associated metabolic diseases. The purpose of this review is to reveal the nutritional activities of luteolin in obesity and its complications with emphasis on its action on AT energy metabolism, immunoregulation, and endocrine intervention.
Collapse
Affiliation(s)
- Zhixin Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jiahui Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Yan Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Juan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Jian Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
- Engineering Research Center of Bioprocess, Ministry of Education, Hefei University of Technology, Hefei, Anhui, China
| | - Xian Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| |
Collapse
|
24
|
Sun T, Quan W, Peng S, Yang D, Liu J, He C, Chen Y, Hu B, Tuo Q. Network Pharmacology-Based Strategy Combined with Molecular Docking and in vitro Validation Study to Explore the Underlying Mechanism of Huo Luo Xiao Ling Dan in Treating Atherosclerosis. Drug Des Devel Ther 2022; 16:1621-1645. [PMID: 35669282 PMCID: PMC9166517 DOI: 10.2147/dddt.s357483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Huo Luo Xiao Ling Dan (HLXLD), a famous Traditional Chinese Medicine (TCM) classical formula, possesses anti-atherosclerosis (AS) activity. However, the underlying molecular mechanisms remain obscure. Aim The network pharmacology approach, molecular docking strategy, and in vitro validation experiment were performed to explore the potential active compounds, key targets, main signaling pathways, and underlying molecular mechanisms of HLXLD in treating AS. Methods Several public databases were used to search for active components and targets of HLXLD, as well as AS-related targets. Crucial bioactive ingredients, potential targets, and signaling pathways were acquired through bioinformatics analysis. Subsequently, the molecular docking strategy and molecular dynamics simulation were carried out to predict the affinity and stability of active compounds and key targets. In vitro cell experiment was performed to verify the findings from bioinformatics analysis. Results A total of 108 candidate compounds and 321 predicted target genes were screened. Bioinformatics analysis suggested that quercetin, dihydrotanshinone I, pelargonidin, luteolin, guggulsterone, and β-sitosterol may be the main ingredients. STAT3, HSP90AA1, TP53, and AKT1 could be the key targets. MAPK signaling pathway might play an important role in HLXLD against AS. Molecular docking and molecular dynamics simulation results suggested that the active compounds bound well and stably to their targets. Cell experiments showed that the intracellular accumulation of lipid and increased secretory of TNF-α, IL-1β, and MCP-1 in ox-LDL treated RAW264.7 cells, which can be significantly suppressed by pretreating with dihydrotanshinone I. The up-regulation of STAT3, ERK, JNK, and p38 phosphorylation induced by ox-LDL can be inhibited by pretreating with dihydrotanshinone I. Conclusion Our findings comprehensively demonstrated the active compounds, key targets, main signaling pathways, and underlying molecular mechanisms of HLXLD in treating AS. These findings would provide a scientific basis for the study of the complex mechanisms underlying disease and drug action.
Collapse
Affiliation(s)
- Taoli Sun
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Wenjuan Quan
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Sha Peng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Dongmei Yang
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Jiaqin Liu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People’s Republic of China
| | - Chaoping He
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yu Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Bo Hu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Qinhui Tuo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- The First hospital of Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
| |
Collapse
|
25
|
Li RL, Wang LY, Liu S, Duan HX, Zhang Q, Zhang T, Peng W, Huang Y, Wu C. Natural Flavonoids Derived From Fruits Are Potential Agents Against Atherosclerosis. Front Nutr 2022; 9:862277. [PMID: 35399657 PMCID: PMC8987282 DOI: 10.3389/fnut.2022.862277] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis, as a chronic inflammatory response, is one of the main causes of cardiovascular diseases. Atherosclerosis is induced by endothelial cell dysfunction, migration and proliferation of smooth muscle cells, accumulation of foam cells and inflammatory response, resulting in plaque accumulation, narrowing and hardening of the artery wall, and ultimately leading to myocardial infarction or sudden death and other serious consequences. Flavonoid is a kind of natural polyphenol compound widely existing in fruits with various structures, mainly including flavonols, flavones, flavanones, flavanols, anthocyanins, isoflavones, and chalcone, etc. Because of its potential health benefits, it is now used in supplements, cosmetics and medicines, and researchers are increasingly paying attention to its role in atherosclerosis. In this paper, we will focus on several important nodes in the development of atherosclerotic disease, including endothelial cell dysfunction, smooth muscle cell migration and proliferation, foam cell accumulation and inflammatory response. At the same time, through the classification of flavonoids from fruits, the role and potential mechanism of flavonoids in atherosclerosis were reviewed, providing a certain direction for the development of fruit flavonoids in the treatment of atherosclerosis drugs.
Collapse
Affiliation(s)
- Ruo-Lan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ling-Yu Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuqin Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hu-Xinyue Duan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Wei Peng,
| | - Yongliang Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Yongliang Huang,
| | - Chunjie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chunjie Wu,
| |
Collapse
|
26
|
Tao Y, Zhu F, Pan M, Liu Q, Wang P. Pharmacokinetic, Metabolism, and Metabolomic Strategies Provide Deep Insight Into the Underlying Mechanism of Ginkgo biloba Flavonoids in the Treatment of Cardiovascular Disease. Front Nutr 2022; 9:857370. [PMID: 35399672 PMCID: PMC8984020 DOI: 10.3389/fnut.2022.857370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/21/2022] [Indexed: 12/18/2022] Open
Abstract
Ginkgo biloba, known as the "living fossil," has a long history of being used as botanical drug for treating cardiovascular diseases and the content of flavonoids as high as 24%. More than 110 different kinds of flavonoids and their derivatives have been separated from G. biloba, including flavones, flavonols, biflavonoids, catechins, and their glycosides, etc., all of which display the ability to dilate blood vessels, regulate blood lipids, and antagonize platelet activating factor, and protect against ischemic damage. At present, many types of preparations based on G. biloba extract or the bioactive flavonoids of it have been developed, which are mostly used for the treatment of cardiovascular diseases. We herein review recent progress in understanding the metabolic regulatory processes and gene regulation of cellular metabolism in cardiovascular diseases of G. biloba flavonoids. First, we present the cardioprotective flavonoids of G. biloba and their possible pharmacological mechanism. Then, it is the pharmacokinetic and liver and gut microbial metabolism pathways that enable the flavonoids to reach the target organ to exert effect that is analyzed. In the end, we review the possible endogenous pathways toward restoring lipid metabolism and energy metabolism as well as detail novel metabolomic methods for probing the cardioprotective effect of flavonoids of G. biloba.
Collapse
Affiliation(s)
- Yi Tao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | | | | | | | - Ping Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Syahputra RA, Harahap U, Dalimunthe A, Nasution MP, Satria D. The Role of Flavonoids as a Cardioprotective Strategy against Doxorubicin-Induced Cardiotoxicity: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041320. [PMID: 35209107 PMCID: PMC8878416 DOI: 10.3390/molecules27041320] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin is a widely used and promising anticancer drug; however, a severe dose-dependent cardiotoxicity hampers its therapeutic value. Doxorubicin may cause acute and chronic issues, depending on the duration of toxicity. In clinical practice, the accumulative toxic dose is up to 400 mg/m2 and increasing the dose will increase the probability of cardiac toxicity. Several molecular mechanisms underlying the pathogenesis of doxorubicin cardiotoxicity have been proposed, including oxidative stress, topoisomerase beta II inhibition, mitochondrial dysfunction, Ca2+ homeostasis dysregulation, intracellular iron accumulation, ensuing cell death (apoptosis and necrosis), autophagy, and myofibrillar disarray and loss. Natural products including flavonoids have been widely studied both in cell, animal, and human models which proves that flavonoids alleviate cardiac toxicity caused by doxorubicin. This review comprehensively summarizes cardioprotective activity flavonoids including quercetin, luteolin, rutin, apigenin, naringenin, and hesperidin against doxorubicin, both in in vitro and in vivo models.
Collapse
Affiliation(s)
- Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Correspondence: (R.A.S.); (U.H.)
| | - Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - M. Pandapotan Nasution
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| | - Denny Satria
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan 20155, Indonesia; (M.P.N.); (D.S.)
| |
Collapse
|
28
|
Zhang F, Liu P, He Z, Zhang L, He X, Liu F, Qi J. Crocin ameliorates atherosclerosis by promoting the reverse cholesterol transport and inhibiting the foam cell formation via regulating PPARγ/LXR-α. Cell Cycle 2022; 21:202-218. [PMID: 34978526 PMCID: PMC8837240 DOI: 10.1080/15384101.2021.2015669] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Crocin (CRO) is feasible in alleviating atherosclerosis (AS), the mechanism of which was therefore explored in the study. High-fat diet (HFD)-induced apolipoprotein E-deficient (ApoE−/−) mice and lysophosphatidic acid (LPA)-treated macrophages received CRO treatment. Treated macrophage viability was determined via MTT assay. In both murine and macrophage, the lipid level and total Cholesterol/Cholesteryl l Ester (TC/CE) levels were quantified by oil-red-O staining and ELISA, respectively. Lipid droplet, aortic plaque formation and collagen deposition were detected via Oil-red-O staining, hematoxylin–eosin staining and Masson staining, respectively. Liver X Receptor-α (LXR-α), Peroxisome Proliferator-Activated Receptor γ (PPARγ), CD68, PCSK9, CD36, ATP Binding Cassette Subfamily A Member 1 (ABCA1), phosphorylated (p)-AKT, and AKT expressions were detected via Western blot, the former three also being detected using Immunohistochemistry and the first being measured by qRT-PCR. CRO decreased HFD-induced weight gain, ameliorated the abnormal serum lipid levels of HFD-treated mice, and inhibited aortic plaque formation and lipid deposition, and increased collagen fibers, with upregulated high-density lipoprotein-cholesterol (HDL-C) and downregulated TC and low-density lipoprotein-cholesterol (LDL-C). CRO alleviated the HFD-induced upregulations of CD68, PCSK9 and CD36 as well as downregulations of PPARγ/LXR-α, ABCA1 and AKT phosphorylation. In LPA-treated macrophages, CRO alone exerted no effect on the viability yet inhibited the lipid droplets formation and downregulated TC/CE levels. Silent LXR-α reversed the effect of CRO on the lipid droplets formation and levels of lipid metabolism-related factors. CRO ameliorated AS by inhibiting foam cells formation and promoting reverse cholesterol transport via PPARγ/LXR-α.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Peng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Zhaopeng He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Like Zhang
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Xinqi He
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Feng Liu
- Department of Vascular Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, China
| | - Jinsheng Qi
- School of Basic Medicine, Hebei Medical University, Shijiazhuang City, Hebei Province, China
| |
Collapse
|
29
|
Paving Luteolin Therapeutic Potentialities and Agro-Food-Pharma Applications: Emphasis on In Vivo Pharmacological Effects and Bioavailability Traits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1987588. [PMID: 34594472 PMCID: PMC8478534 DOI: 10.1155/2021/1987588] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/30/2021] [Indexed: 11/25/2022]
Abstract
Luteolin is a naturally occurring secondary metabolite belonging to the class of flavones. As many other natural flavonoids, it is often found in combination with glycosides in many fruits, vegetables, and plants, contributing to their biological and pharmacological value. Many preclinical studies report that luteolin present excellent antioxidant, anticancer, antimicrobial, neuroprotective, cardioprotective, antiviral, and anti-inflammatory effects, and as a consequence, various clinical trials have been designed to investigate the therapeutic potential of luteolin in humans. However, luteolin has a very limited bioavailability, which consequently affects its biological properties and efficacy. Several drug delivery strategies have been developed to raise its bioavailability, with nanoformulations and lipid carriers, such as liposomes, being the most intensively explored. Pharmacological potential of luteolin in various disorders has also been underlined, but to some of them, the exact mechanism is still poorly understood. Given the great potential of this natural antioxidant in health, this review is aimed at providing an extensive overview on the in vivo pharmacological action of luteolin and at stressing the main features related to its bioavailability, absorption, and metabolism, while essential steps determine its absolute health benefits and safety profiles. In addition, despite the scarcity of studies on luteolin bioavailability, the different drug delivery formulations developed to increase its bioavailability are also listed here.
Collapse
|
30
|
Kirenol Inhibits B[a]P-Induced Oxidative Stress and Apoptosis in Endothelial Cells via Modulation of the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5585303. [PMID: 33981385 PMCID: PMC8088375 DOI: 10.1155/2021/5585303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/18/2021] [Accepted: 04/15/2021] [Indexed: 12/20/2022]
Abstract
Atherosclerosis is a persistent inflammatory disorder specified by the dysfunction of the arteries, the world's leading cause of cardiovascular diseases. We sought to determine the effectiveness of KRL in B[a]P-induced oxidative stress and programmed cell death in endothelial cells. Western blotting, real-time PCR, DCFH2-DA, and TUNEL staining were performed to detect pPI3K, pAKT, Nrf2, HO-1, NQO-1, Bcl2, Bax, and caspase-3 on the HUVECs. Through the pretreatment of KRL, a drastic enhancement was observed in the cell viability of HUVECs, whereas DNA damage and generation of reactive oxygen species induced by B[a]P was suppressed. KRL's potential use as an antioxidant was observed to have a direct correlation with an antioxidant gene's augmented expression and the nuclear translocation activation of Nrf2, even during the event when B[a]P was found to be absent. In addition, this study proved that the signaling cascades of PI3K/AKT mediated Nrf2 translocation. Activation of suppressed nuclear Nrf2 and reduced antioxidant genes across cells interacting with an LY294002 confirmed this phenomenon. In addition, knockdown of Nrf2 by Nrf2-siRNA transfection abolished the protective effects of KRL on HUVECs cells against oxidative damage. Finally, the expression of apoptotic proteins also supported the hypothesis that KRL may inhibit endothelial dysfunction. This study showed that KRL potentially prevents B[a]P-induced redox imbalance in the vascular endothelium by inducing the Nrf2 signaling via the PI3K/AKT pathway.
Collapse
|
31
|
Zuo W, Liu N, Zeng Y, Xiao Z, Wu K, Yang F, Li B, Song Q, Xiao Y, Liu Q. Luteolin Ameliorates Experimental Pulmonary Arterial Hypertension via Suppressing Hippo-YAP/PI3K/AKT Signaling Pathway. Front Pharmacol 2021; 12:663551. [PMID: 33935785 PMCID: PMC8082250 DOI: 10.3389/fphar.2021.663551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 12/17/2022] Open
Abstract
Luteolin is a flavonoid compound with a variety of pharmacological effects. In this study, we explored the effects of luteolin on monocrotaline (MCT) induced rat pulmonary arterial hypertension (PAH) and underlying mechanisms. A rat PAH model was generated through MCT injection. In this model, luteolin improved pulmonary vascular remodeling and right ventricular hypertrophy, meanwhile, luteolin could inhibit the proliferation and migration of pulmonary artery smooth muscle cells induced by platelet-derived growth factor-BB (PDGF-BB) in a dose-dependent manner. Moreover, our results showed that luteolin could downregulate the expression of LATS1 and YAP, decrease YAP nuclear localization, reduce the expression of PI3K, and thereby restrain the phosphorylation of AKT induced by PDGF-BB. In conclusion, luteolin ameliorated experimental PAH, which was at least partly mediated through suppressing HIPPO-YAP/PI3K/AKT signaling pathway. Therefore, luteolin might become a promising candidate for treatment of PAH.
Collapse
Affiliation(s)
- Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Na Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Yunhong Zeng
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Zhenghui Xiao
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Fan Yang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Biao Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Qingqing Song
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Yunbin Xiao
- Department of Cardiology, Hunan Children's Hospital, Hunan, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| |
Collapse
|
32
|
Wang X, Ding X, Yan J, Lu Z, Cao H, Ni X, Ying Y. STAT5 inhibitor attenuates atherosclerosis via inhibition of inflammation: the role of STAT5 in atherosclerosis. Am J Transl Res 2021; 13:1422-1431. [PMID: 33841667 PMCID: PMC8014372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipids, which occurs preferentially in the branches or curved areas of the middle and large arteries, contributing to increased morbidity and mortality of cardiovascular disease. Recently, it has been reported that STAT5 and its regulated immune response are closely related to non-tumor diseases. However, the role of STAT5 in the development of atherosclerosis remains unknown. In this study, atherosclerosis was induced by high-fat diet (HFD) in ApoE-/- mice, and STAT5-IN-1, a STAT5 inhibitor, was orally given. Macrophages stimulated by oxLDL were used as cell models in vitro. The effects of STAT5-IN-1 in ApoE-/- mice induced by HFD were assessed, and the underlying mechanisms were investigated by siRNA-induced gene silencing. The results revealed that treatment with STAT5 inhibitor significantly attenuated atherosclerosis in ApoE-/- mice induced by HFD via decreasing inflammation. Furthermore, it was demonstrated that inhibiting STAT5 could decrease oxLDL-induced inflammation. In summary, STAT5-IN-1 may be a potential drug for the treatment of atherosclerosis, and targeting STAT5 has the ability to be a potential therapeutic strategy for reducing atherosclerosis.
Collapse
Affiliation(s)
- Xiaodong Wang
- Sino-German Joint Research Center of Vascular Surgery, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, China
- Department of Vascular Surgery, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Xiaoji Ding
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Jin Yan
- Department of Vascular Surgery, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Ziying Lu
- Department of Vascular Surgery, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Haoyang Cao
- Department of Vascular Surgery, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Xiaolong Ni
- Department of Vascular Surgery, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| | - Yin Ying
- Department of Pharmacy, Zhejiang Academy of Traditional Chinese MedicineHangzhou 310012, Zhejiang, China
- Department of Pharmacy, Tongde Hospital of Zhejiang ProvinceHangzhou 310012, Zhejiang, China
| |
Collapse
|
33
|
Li B, Du P, Du Y, Zhao D, Cai Y, Yang Q, Guo Z. Luteolin alleviates inflammation and modulates gut microbiota in ulcerative colitis rats. Life Sci 2021; 269:119008. [PMID: 33434535 DOI: 10.1016/j.lfs.2020.119008] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease related to intestinal dysbiosis. Luteolin has been reported to reduce inflammation. However, it remains unclear whether luteolin ameliorates UC and regulates gut microbiota. In this study, we investigated the effects of luteolin on colonic structure and inflammation of dextran sulfate sodium (DSS)-induced rats using hematoxylin-eosin staining, immunohistochemistry and enzyme-linked immunosorbent assay and evaluated the effects of luteolin on gut microbiota using 16S rDNA sequencing. We found that luteolin treatment significantly reduced colonic damage, and inhibited colonic inflammation in UC rats, evidenced by the decreased levels of NF-κB, IL-17 and IL-23 in UC rats and the increased level of PPAR-γ. In addition, the 16S rDNA sequencing analysis revealed that luteolin treatment could alter diversity and composition of gut microbiota in UC rats. Lactobacillus, Bacteroides, Roseburia and Butyricicoccus were dominant genera in the luteolin group. Luteolin treatment reduced DSS-induced increased ratios of Lactobacillus and Prevotella_9. Furthermore, KEGG analysis revealed that gut microbiota was mainly related to DNA repair and recombination proteins, ribosome, purine metabolism, peptidases, and pyrimidine metabolism. In conclusion, our results revealed that luteolin could alleviate DSS-induced colitis in rats, and gut microbiota had the potential to serve as promising biomarkers for uncovering the mechanism by which luteolin improved UC.
Collapse
Affiliation(s)
- Bolin Li
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Pengli Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yao Du
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Danyang Zhao
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yanru Cai
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qian Yang
- Department of Gastroenterology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| | - Zijing Guo
- Department of Hematology, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang, Hebei, China.
| |
Collapse
|
34
|
Franza L, Carusi V, Nucera E, Pandolfi F. Luteolin, inflammation and cancer: Special emphasis on gut microbiota. Biofactors 2021; 47:181-189. [PMID: 33507594 DOI: 10.1002/biof.1710] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Luteolin belongs to the family of flavonoids, which have anti-inflammatory functions, potentially useful in a clinical context, particularly for patients suffering from cancer, neuropsychiatric disorders, inflammatory bowel conditions. This peculiarity has been used for centuries in traditional Chinese medicine, for many different diseases. Its anti-inflammatory effects might be particularly relevant in cancer, with some studies reporting anti-angiogenesis, anti-metastatic, and apoptotic effects on cancer cells by luteolin and other flavonoids. In this article, we analyze the anti-inflammatory role of luteolin, discussing the pathways it may act on. We will then discuss the possible role of microbiota in inflammatory modulation by luteolin. Finally, the possible therapeutic applications of luteolin's anti-inflammatory properties will be analyzed, with a particular focus on cancer.
Collapse
Affiliation(s)
- Laura Franza
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Carusi
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Eleonora Nucera
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Franco Pandolfi
- Immunology and Allergy, Internal Medicine Department, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
35
|
De Stefano A, Caporali S, Di Daniele N, Rovella V, Cardillo C, Schinzari F, Minieri M, Pieri M, Candi E, Bernardini S, Tesauro M, Terrinoni A. Anti-Inflammatory and Proliferative Properties of Luteolin-7-O-Glucoside. Int J Mol Sci 2021; 22:1321. [PMID: 33525692 PMCID: PMC7865871 DOI: 10.3390/ijms22031321] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids display a broad range of structures and are responsible for the major organoleptic characteristics of plant-derived foods and beverages. Recent data showed their activity, and in particular of luteolin-7-O-glucoside (LUT-7G), in reduction of oxidative stress and inflammatory mechanisms in different physiological systems. In this paper, we tried to elucidate how LUT-7G could exert both antioxidant and anti-inflammatory effects in endothelial cells cultured in vitro. Here, we showed that LUT-7G is able to inhibit the STAT3 pathway, to have an antiproliferative action, and an important antioxidant property in HUVEC cells. These properties are exerted by the flavone in endothelial through the transcriptional repression of a number of inflammatory cytokines and their receptors, and by the inhibition of ROS generation. ROS and STAT3 activation has been correlated with the production of oxysterols and other hydroxylated fatty acids, and they have been recognized important as players of atherogenesis and cardiocirculatory system diseases. The analysis of the general production pathway of these hydroxylated species, showed a strong decrease of cholesterol hydroxylated species such as 7-alpha-hydroxicholesterol, 7-beta-hydroxicholesterol by the treatment with LUT-7G. This confirms the anti-inflammatory properties of LUT-7G also in the endothelial district, showing for the first time the molecular pathway that verify previous postulated cardiovascular benefits of this flavone.
Collapse
Affiliation(s)
- Alessandro De Stefano
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicola Di Daniele
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Valentina Rovella
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Carmine Cardillo
- Department of Clinical Sciences and Translational Medicine, Cattolica University of Rome, Via Montpellier, 1, 00133 Rome, Italy;
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Francesca Schinzari
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
- Laboratory of Biochemistry, IDI-IRCCS Fondazione Luigi Maria Monti, Via Monti di Creta 104, 00167 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Manfredi Tesauro
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| |
Collapse
|
36
|
Xiong H, Dong Z, Lou G, Gan Q, Wang J, Huang Q. Analysis of the mechanism of Shufeng Jiedu capsule prevention and treatment for COVID-19 by network pharmacology tools. Eur J Integr Med 2020; 40:101241. [PMID: 33520015 PMCID: PMC7836709 DOI: 10.1016/j.eujim.2020.101241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Introduction The novel coronavirus pneumonia that broke out in 2019 has become a global epidemic. According to the diagnosis and treatment plan issued in China and the existing clinical data, Shufeng Jiedu (SFJD) Capsule can be effectively used in the treatment of COVID-19 patients. This study aimed to explore its mechanism of action by network pharmacology and molecular docking technology. Methods The Chinese Medicine System Pharmacology Analysis Platform (TCMSP), a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM), the Encyclopedia of Traditional Chinese Medicine (ETCM) and related literature records were used to search the composition and main active compounds of SFJD, and to screen out the targets of drug components. Disease-associated genes were obtained by the Human Gene Database (GeneCards), the Human Online Mendelian Inheritance Platform (OMIM) and the DisGeNET database, and the co-targeted genes/proteins as targets of both SFJD and COVID-19 were selected by the Comparative Toxicogenomics Database (CTD). Co-targeted genes/proteins were analyzed by STRING, the Database for Annotation, Visualization and Integrated Discovery (DAVID) and Reactome for proteins to protein interaction (PPI), pathway and GO (gene ontology) enrichment, and predicted by AutoDock for their high-precision docking simulation. In addition, the therapeutic effect for SFJD treatment on COVID-19 was validated by the Chinese medicine anti-novel coronavirus pneumonia drug effect prediction and analysis platform (TCMCOVID). Results Screening resulted in 163 compounds and 463 targeted genes. The PPI core network contains 76 co-targeted proteins. The Reactome pathways were enriched in signaling by interleukins, immune system, etc. Finally, 6 key proteins of TNF, IL-10, IL-2, IL-6, STAT1 and CCL2 were selected and successfully docked with 4 active ingredients of quercetin, luteolin, wogonin and kaempferol. Conclusion SFJD may play a role in the prevention and treatment of COVID-19 through multiple active compounds acting on multiple targets and then multiple pathways.
Collapse
Affiliation(s)
- Haijun Xiong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhaowei Dong
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guanhua Lou
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingxia Gan
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jin Wang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinwan Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Treatment with Luteolin Improves Lipopolysaccharide-Induced Periodontal Diseases in Rats. Biomedicines 2020; 8:biomedicines8100442. [PMID: 33096800 PMCID: PMC7590181 DOI: 10.3390/biomedicines8100442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontitis is a dental disease that produces the progressive destruction of the bone surrounding the tooth. Especially, lipopolysaccharide (LPS) is involved in the deterioration of the alveolar bone, inducing the release of pro-inflammatory mediators, which cause periodontal tissue inflammation. Luteolin (Lut), a molecule of natural origin present in a large variety of fruits and vegetables, possess beneficial properties for human health. On this basis, we investigated the anti-inflammatory properties of Lut in a model of periodontitis induced by LPS in rats. Animal model predicted a single intragingival injection of LPS (10 μg/μL) derived from Salmonella typhimurium. Lut administration, was performed daily at different doses (10, 30, and 100 mg/kg, orally), starting from 1 h after the injection of LPS. After 14 days, the animals were sacrificed, and their gums were processed for biochemical analysis and histological examinations. Results showed that Lut (30 and 100 mg/kg) was equally able to reduce alveolar bone loss, tissue damage, and neutrophilic infiltration. Moreover, Lut treatment reduced the concentration of collagen fibers, mast cells degranulation, and NF-κB activation, as well as the presence of pro-inflammatory enzymes and cytokines. Therefore, Lut implementation could represent valid support in the pharmacological strategy for periodontitis, thus improving the well-being of the oral cavity.
Collapse
|
38
|
Luteolin Suppresses Sepsis-Induced Cold-Inducible RNA-Binding Protein Production and Lung Injury in Neonatal Mice. Shock 2020; 55:268-273. [PMID: 32694396 DOI: 10.1097/shk.0000000000001624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ABSTRACT Neonatal sepsis is a life-threatening inflammatory condition. Extracellular cold-inducible RNA-binding protein (CIRP), a proinflammatory mediator, plays a critical role in the pathogenesis of sepsis-induced lung injury in neonates. Luteolin, a polyphenolic flavonoid, has potent anti-inflammatory properties. However, the effects of luteolin on CIRP production and neonatal sepsis-induced lung injury remained unknown. We therefore hypothesize that treatment with luteolin suppresses CIRP production and attenuates lung injury in neonatal sepsis. To study this, sepsis was induced in C57BL/6J mouse pups (5-7 days) by intraperitoneal cecal slurry injection (CSI). One hour after CSI, luteolin (10 mg/kg body weight) or vehicle (normal saline) was administered through intraperitoneal injection. CIRP mRNA and protein were determined and lung injury was assessed at 10 h after CSI. Our results showed that administration of luteolin decreased CIRP mRNA and protein, improved lung architecture, reduced lung edema, and apoptosis after CSI. To examine the direct effect of luteolin on CIRP production, peritoneal macrophages were isolated from neonatal mice and stimulated with 100 ng/mL LPS with or without the presence of luteolin. The result indicates that luteolin directly inhibited LPS-induced CIRP production in neonatal macrophages. In addition, luteolin also downregulated hypoxia-inducible factor-1α (HIF-1α) and NOD-like receptor 3 (NLRP3) expression in septic neonates and in LPS-stimulated neonatal macrophages. In conclusion, administration of luteolin suppresses CIRP production and attenuates lung injury in neonatal sepsis. The beneficial effect of luteolin may be related to downregulation of HIF-1α and NLRP3 expression in neonatal macrophages. Luteolin may be developed as an adjunctive therapy for neonatal sepsis.
Collapse
|
39
|
Phenolic Compounds Exerting Lipid-Regulatory, Anti-Inflammatory and Epigenetic Effects as Complementary Treatments in Cardiovascular Diseases. Biomolecules 2020; 10:biom10040641. [PMID: 32326376 PMCID: PMC7226566 DOI: 10.3390/biom10040641] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is the main process behind cardiovascular diseases (CVD), maladies which continue to be responsible for up to 70% of death worldwide. Despite the ongoing development of new and potent drugs, their incomplete efficacy, partial intolerance and numerous side effects make the search for new alternatives worthwhile. The focus of the scientific world turned to the potential of natural active compounds to prevent and treat CVD. Essential for effective prevention or treatment based on phytochemicals is to know their mechanisms of action according to their bioavailability and dosage. The present review is focused on the latest data about phenolic compounds and aims to collect and correlate the reliable existing knowledge concerning their molecular mechanisms of action to counteract important risk factors that contribute to the initiation and development of atherosclerosis: dyslipidemia, and oxidative and inflammatory-stress. The selection of phenolic compounds was made to prove their multiple benefic effects and endorse them as CVD remedies, complementary to allopathic drugs. The review also highlights some aspects that still need clear scientific explanations and draws up some new molecular approaches to validate phenolic compounds for CVD complementary therapy in the near future.
Collapse
|