1
|
Lipschitz JM, Perez-Rodriguez M, Majd M, Larsen E, Locascio J, Pike CK, Shanahan M, Burdick KE. Modafinil's effects on cognition and sleep quality in affectively-stable patients with bipolar disorder: a pilot study. Front Psychiatry 2023; 14:1246149. [PMID: 37732080 PMCID: PMC10507316 DOI: 10.3389/fpsyt.2023.1246149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Despite advances in the treatment of bipolar disorder (BD), most patients do not achieve complete inter-episode recovery and functional disability is common. During periods of relative remission, many patients continue to experience neurocognitive dysfunction, reduced daytime activity levels, and sleep disturbances. This 8-week, randomized, placebo-controlled pilot study evaluated the feasibility, safety and preliminary efficacy of the wake-promoting drug, modafinil (Provigil®), on neurocognitive functioning, daytime sleepiness, and sleep quality in affectively-stable BD patients. Methods Twelve individuals with affectively-stable BD were recruited and randomized to a flexible dose of modafinil (100 to 200 mg/day) or placebo, adjunctive to a therapeutic dose of a mood stabilizer. Weekly in-person visits tracked sleep quality and daytime sleepiness as well as side effects and mood symptoms. Neurocognitive functioning was assessed at baseline, week 4, and week 8. Results No serious adverse events were reported. Newly emergent side effects in the modafinil group included heart palpitations, itching, fatigue, and decreased energy. Two patients discontinued modafinil owing to side effects and one of these patients withdrew from the study. One patient discontinued placebo and was withdrawn from the study. Preliminary evaluations of clinical efficacy showed a marginally significant interaction between treatment group and time in two cognitive domains (speed of processing and verbal learning), indicating greater improvement in the modafinil group versus placebo. Additionally, there was a marginally significant effect of treatment group on daytime sleepiness, suggesting lower daytime sleepiness in the modafinil group versus placebo. Counterintuitively, we found a significant treatment group by time interaction effect on sleep quality, suggesting greater improvement in sleep quality in the placebo group versus the modafinil group. Discussion Results suggest that modafinil is a relatively safe medication for affectively-stable BD patients when given with adjunctive mood stabilizers. Results are suggestive of cognitive benefit and improved daytime sleepiness, but worse sleep quality in those patients prescribed modafinil. A fully powered clinical trial is warranted with specific attention to the characteristics of patients who are most likely to benefit from treatment with modafinil and other methodological lessons learned from this pilot. Clinical trial registration ClinicalTrials.gov, identifier NCT01965925.
Collapse
Affiliation(s)
- Jessica M. Lipschitz
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | | | - Marzieh Majd
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - Emmett Larsen
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Joseph Locascio
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
- Department of Neurology and Harvard Catalyst Biostatistical Group, Harvard Medical School, Boston, MA, United States
| | - Chelsea K. Pike
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Megan Shanahan
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
| | - Katherine E. Burdick
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Liu P, Tang W, Zhao D, Zhou P, Hu K. Active metabolites and potential mechanisms of Notopterygium incisum against obstructive sleep apnea Syndrome (OSAS): network analysis and experimental assessment. Front Pharmacol 2023; 14:1185100. [PMID: 37719850 PMCID: PMC10500596 DOI: 10.3389/fphar.2023.1185100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Notopterygium incisum K.C. Ting ex H.T. Chang, a synonym of Hansenia weberbaueriana (Fedde ex H. Wolff) Pimenov & Kljuykov, is an anti-inflammatory medicinal plant. Although abrnotopterol has been reported to be its primary active metabolite, the other metabolites and their mechanisms of action remain unclear. This study aims to investigate the potential mechanisms by which its active metabolites treat Obstructive Sleep Apnea Syndrome (OSAS) through network analysis and experimental assessment. Methods: The metabolites and potential targets of Notopterygium incisum were extracted from public databases. We searched for OSAS-related genes in the Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Cytoscape 3.9.0 was used to construct the drug-target-disease network and screen for hub genes. Human bronchial epithelial (HBE) cells were cultivated in normoxia and chronic intermittent hypoxia (CIH) medium for 24 h. Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and prostaglandin E2 (PGE2) were quantified using enzyme-linked immunosorbent assay (ELISA). Prostaglandin-endoperoxide synthase 2(PTGS2) mRNA was detected using RT-qPCR, while PTGS2 and nuclear factor-kappa B (NF-κB) proteins were identified using Western blot analysis. Co-Immunoprecipitation (CoIP) and Western blotting were utilized to evaluate the ubiquitination of PTGS2 in HBE cells. Results: Pterostilbene and notopterol, isolated from Notopterygium incisum, had potential therapeutic effects on OSAS. The PTGS2 and estrogen receptor alpha (ESR1) hub genes were associated with OSAS. The pathway enrichment analysis focuses on the NF-κB, apoptosis, and HIF-1A pathways. In response to CIH, pterostilbene and notopterol decreased IL-6, TNF-α, and PGE2 levels. The NF-κB pathway was activated by an increase in PTGS2 levels. Pterostilbene promoted proteasome-mediated ubiquitination of PTGS2 protein and reduced PTGS2 levels, inhibiting the NF-κB pathway. Conclusion: This study reveals the active metabolites of Notopterygium incisum and hub genes involved in treating OSAS, which provide a basis for the follow-up development and exploitation of the botanical drug.
Collapse
Affiliation(s)
- Peijun Liu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Respiratory and Critical Care Medicine, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Weihua Tang
- Department of Radiology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pan Zhou
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Hu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Slack RD, Ku T, Cao J, Giancola J, Bonifazi A, Loland CJ, Gadiano A, Lam J, Rais R, Slusher BS, Coggiano M, Tanda G, Newman AH. Structure-Activity Relationships for a Series of (Bis(4-fluorophenyl)methyl)sulfinyl Alkyl Alicyclic Amines at the Dopamine Transporter: Functionalizing the Terminal Nitrogen Affects Affinity, Selectivity, and Metabolic Stability. J Med Chem 2020; 63:2343-2357. [PMID: 31661268 PMCID: PMC9617638 DOI: 10.1021/acs.jmedchem.9b01188] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Atypical dopamine transporter (DAT) inhibitors have shown therapeutic potential in preclinical models of psychostimulant abuse. In rats, 1-(4-(2-((bis(4-fluorophenyl)methyl)sulfinyl)ethyl)-piperazin-1-yl)-propan-2-ol (3b) was effective in reducing the reinforcing effects of both cocaine and methamphetamine but did not exhibit psychostimulant behaviors itself. While further development of 3b is ongoing, diastereomeric separation, as well as improvements in potency and pharmacokinetics were desirable for discovering pipeline drug candidates. Thus, a series of bis(4-fluorophenyl)methyl)sulfinyl)alkyl alicyclic amines, where the piperazine-2-propanol scaffold was modified, were designed, synthesized, and evaluated for binding affinities at DAT, as well as the serotonin transporter and σ1 receptors. Within the series, 14a showed improved DAT affinity (Ki = 23 nM) over 3b (Ki = 230 nM), moderate metabolic stability in human liver microsomes, and a hERG/DAT affinity ratio = 28. While 14a increased locomotor activity relative to vehicle, it was significantly lower than activity produced by cocaine. These results support further investigation of 14a as a potential treatment for psychostimulant use disorders.
Collapse
Affiliation(s)
- Rachel D. Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Therese Ku
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Jianjing Cao
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - JoLynn Giancola
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Alessandro Bonifazi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Claus J. Loland
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Alexandra Gadiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Jenny Lam
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Rana Rais
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Barbara S. Slusher
- Department of Neurology, Johns Hopkins Drug Discovery, The Johns Hopkins University School of Medicine, 855 North Wolfe Street, Baltimore, MD 21205, United States
| | - Mark Coggiano
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Gianluigi Tanda
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, United States
| |
Collapse
|
4
|
Sahni AS, Carlucci M, Malik M, Prasad B. Management Of Excessive Sleepiness In Patients With Narcolepsy And OSA: Current Challenges And Future Prospects. Nat Sci Sleep 2019; 11:241-252. [PMID: 31695533 PMCID: PMC6815780 DOI: 10.2147/nss.s218402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 09/09/2019] [Indexed: 01/09/2023] Open
Abstract
Excessive daytime sleepiness (EDS) can be caused by insufficient sleep but is also a manifestation of medical or sleep disorders and a side effect of medications. It impacts quality of life and creates safety concerns in the home, at work, and on the roads. Screening questionnaires can be used to estimate EDS, but further evaluation is necessary. EDS is a common symptom of both narcolepsy and obstructive sleep apnea (OSA). Polysomnography and multiple sleep latency testing are used to diagnose these disorders. However, isolating the primary etiology of EDS can be challenging and may be multifactorial. Untreated OSA can show polysomnographic findings that are similar to narcolepsy. The effects of sleep deprivation and certain medications can also affect the polysomnographic results. These challenges can lead to misdiagnosis. In addition, narcolepsy and OSA can occur as comorbid disorders. If EDS persists despite adequate treatment for either disorder, a comorbid diagnosis should be sought. Thus, despite advances in clinical practice, appropriate management of these patients can be challenging. This review is focused on EDS due to OSA and narcolepsy and addresses some of the challenges with managing this patient population.
Collapse
Affiliation(s)
- Ashima S Sahni
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Melissa Carlucci
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Malik Malik
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Bharati Prasad
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
5
|
Borghol A, Aucoin M, Onor I, Jamero D, Hawawini F. Modafinil for the Improvement of Patient Outcomes Following Traumatic Brain Injury. INNOVATIONS IN CLINICAL NEUROSCIENCE 2018; 15:17-23. [PMID: 29707422 PMCID: PMC5906085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Objective: The authors sought to assess the literature evidence on the efficacy of modafinil use in patients with fatigue or excessive daytime sleepiness (EDS) secondary to traumatic brain injury (TBI). Method of Research: A literature search of Medline and PubMed was performed using the EBSCOhost database. Primary literature, observational studies, meta-analyses, case reports, and systematic reviews were assessed for content regarding modafinil and psychostimulant use in patients with TBI. Of the 23 articles collected, three randomized, controlled studies, three observational studies, one case report, and two systematic reviews gave a description of modafinil use in TBI patients. Results and Conclusion: Modafinil is a central nervous system stimulant with well-established effectiveness in the treatment of narcolepsy and shift-work sleep disorder. There is conflicting evidence about the benefits of modafinil in the treatment of fatigue and EDS secondary to TBI. One randomized, controlled study states that modafinil does not significantly improve patient wakefulness, while another concludes that modafinil corrects EDS but not fatigue. An observational study provides evidence that modafinil increases alertness in fatigued patients with past medical history of brainstem diencephalic stroke or multiple sclerosis. Modafinil appears to have the potential to improve wakefulness in patients with TBI. A prospective, double-blinded, randomized, crossover trial of modafinil for the management of fatigue in ischemic stroke patients is currently being conducted, and further studies demonstrating consistent results are needed before making a conclusive decision.
Collapse
Affiliation(s)
- Amne Borghol
- Drs. Borghol, Onor, and Jamero are with the College of Pharmacy at Xavier University of Louisiana in New Orleans, Louisiana
- Dr. Aucoin is with the Woman's Hospital in Baton Rouge, Louisiana
- Dr. Hawawini is with the Geriatric and Extended Care Service at Southeast Louisiana Veterans Health Care System in New Orleans, Louisiana
| | - Michael Aucoin
- Drs. Borghol, Onor, and Jamero are with the College of Pharmacy at Xavier University of Louisiana in New Orleans, Louisiana
- Dr. Aucoin is with the Woman's Hospital in Baton Rouge, Louisiana
- Dr. Hawawini is with the Geriatric and Extended Care Service at Southeast Louisiana Veterans Health Care System in New Orleans, Louisiana
| | - Ifeanyichukwu Onor
- Drs. Borghol, Onor, and Jamero are with the College of Pharmacy at Xavier University of Louisiana in New Orleans, Louisiana
- Dr. Aucoin is with the Woman's Hospital in Baton Rouge, Louisiana
- Dr. Hawawini is with the Geriatric and Extended Care Service at Southeast Louisiana Veterans Health Care System in New Orleans, Louisiana
| | - Dana Jamero
- Drs. Borghol, Onor, and Jamero are with the College of Pharmacy at Xavier University of Louisiana in New Orleans, Louisiana
- Dr. Aucoin is with the Woman's Hospital in Baton Rouge, Louisiana
- Dr. Hawawini is with the Geriatric and Extended Care Service at Southeast Louisiana Veterans Health Care System in New Orleans, Louisiana
| | - Fadi Hawawini
- Drs. Borghol, Onor, and Jamero are with the College of Pharmacy at Xavier University of Louisiana in New Orleans, Louisiana
- Dr. Aucoin is with the Woman's Hospital in Baton Rouge, Louisiana
- Dr. Hawawini is with the Geriatric and Extended Care Service at Southeast Louisiana Veterans Health Care System in New Orleans, Louisiana
| |
Collapse
|
6
|
Wolff A, Joshi RK, Ekström J, Aframian D, Pedersen AML, Proctor G, Narayana N, Villa A, Sia YW, Aliko A, McGowan R, Kerr AR, Jensen SB, Vissink A, Dawes C. A Guide to Medications Inducing Salivary Gland Dysfunction, Xerostomia, and Subjective Sialorrhea: A Systematic Review Sponsored by the World Workshop on Oral Medicine VI. Drugs R D 2017; 17:1-28. [PMID: 27853957 PMCID: PMC5318321 DOI: 10.1007/s40268-016-0153-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Medication-induced salivary gland dysfunction (MISGD), xerostomia (sensation of oral dryness), and subjective sialorrhea cause significant morbidity and impair quality of life. However, no evidence-based lists of the medications that cause these disorders exist. OBJECTIVE Our objective was to compile a list of medications affecting salivary gland function and inducing xerostomia or subjective sialorrhea. DATA SOURCES Electronic databases were searched for relevant articles published until June 2013. Of 3867 screened records, 269 had an acceptable degree of relevance, quality of methodology, and strength of evidence. We found 56 chemical substances with a higher level of evidence and 50 with a moderate level of evidence of causing the above-mentioned disorders. At the first level of the Anatomical Therapeutic Chemical (ATC) classification system, 9 of 14 anatomical groups were represented, mainly the alimentary, cardiovascular, genitourinary, nervous, and respiratory systems. Management strategies include substitution or discontinuation of medications whenever possible, oral or systemic therapy with sialogogues, administration of saliva substitutes, and use of electro-stimulating devices. LIMITATIONS While xerostomia was a commonly reported outcome, objectively measured salivary flow rate was rarely reported. Moreover, xerostomia was mostly assessed as an adverse effect rather than the primary outcome of medication use. This study may not include some medications that could cause xerostomia when administered in conjunction with others or for which xerostomia as an adverse reaction has not been reported in the literature or was not detected in our search. CONCLUSIONS We compiled a comprehensive list of medications with documented effects on salivary gland function or symptoms that may assist practitioners in assessing patients who complain of dry mouth while taking medications. The list may also prove useful in helping practitioners anticipate adverse effects and consider alternative medications.
Collapse
Affiliation(s)
- Andy Wolff
- Tel-Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Saliwell Ltd, 65 Hatamar St, 60917, Harutzim, Israel.
| | - Revan Kumar Joshi
- Department of Oral Medicine and Radiology, DAPMRV Dental College, Bangalore, India
| | - Jörgen Ekström
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Göteborg, Sweden
| | | | - Anne Marie Lynge Pedersen
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gordon Proctor
- Mucosal and Salivary Biology Division, Dental Institute, King's College London, London, UK
| | - Nagamani Narayana
- Department of Oral Biology, University of Nebraska Medical Center (UNMC) College of Dentistry, Lincoln, NE, USA
| | - Alessandro Villa
- Division of Oral Medicine and Dentistry, Department of Oral Medicine Infection and Immunity, Brigham and Women's Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | - Ying Wai Sia
- McGill University, Faculty of Dentistry, Montreal, QC, Canada
| | - Ardita Aliko
- Faculty of Dental Medicine, University of Medicine, Tirana, Albania
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Siri Beier Jensen
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Arjan Vissink
- Department of Oral and Maxillofacial Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Colin Dawes
- Department of Oral Biology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
7
|
Nishimura Y, Okabe S, Sasagawa S, Murakami S, Ashikawa Y, Yuge M, Kawaguchi K, Kawase R, Tanaka T. Pharmacological profiling of zebrafish behavior using chemical and genetic classification of sleep-wake modifiers. Front Pharmacol 2015; 6:257. [PMID: 26578964 PMCID: PMC4630575 DOI: 10.3389/fphar.2015.00257] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/19/2015] [Indexed: 01/05/2023] Open
Abstract
Sleep-wake states are impaired in various neurological disorders. Impairment of sleep-wake states can be an early condition that exacerbates these disorders. Therefore, treating sleep-wake dysfunction may prevent or slow the development of these diseases. Although many gene products are likely to be involved in the sleep-wake disturbance, hypnotics and psychostimulants clinically used are limited in terms of their mode of action and are not without side effects. Therefore, there is a growing demand for developing new hypnotics and psychostimulants with high efficacy and few side effects. Toward this end, animal models are indispensable for use in genetic and chemical screens to identify sleep-wake modifiers. As a proof-of-concept study, we performed behavioral profiling of zebrafish treated with chemical and genetic sleep-wake modifiers. We were able to demonstrate that behavioral profiling of zebrafish treated with hypnotics or psychostimulants from 9 to 10 days post-fertilization was sufficient to identify drugs with specific modes of action. We were also able to identify behavioral endpoints distinguishing GABA-A modulators and hypocretin (hcrt) receptor antagonists and between sympathomimetic and non-sympathomimetic psychostimulants. This behavioral profiling can serve to identify genes related to sleep-wake disturbance associated with various neuropsychiatric diseases and novel therapeutic compounds for insomnia and excessive daytime sleep with fewer adverse side effects.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| | - Shiko Okabe
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Shota Sasagawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Soichiro Murakami
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Yoshifumi Ashikawa
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Mizuki Yuge
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Koki Kawaguchi
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Reiko Kawase
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan
| | - Toshio Tanaka
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine Tsu, Japan ; Mie University Medical Zebrafish Research Center Tsu, Japan ; Department of Systems Pharmacology, Mie University Graduate School of Medicine Tsu, Japan ; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute Tsu, Japan ; Department of Bioinformatics, Mie University Life Science Research Center Tsu, Japan
| |
Collapse
|
8
|
Carlton R, Lunacsek O, Regan T, Carroll CA. Healthcare costs among patients with excessive sleepiness associated with obstructive sleep apnea, shift work disorder, or narcolepsy. AMERICAN HEALTH & DRUG BENEFITS 2014; 7:334-40. [PMID: 25558302 PMCID: PMC4280525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 07/07/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Excessive daytime sleepiness affects nearly 20% of the general population and is associated with many medical conditions, including shift work disorder (SWD), obstructive sleep apnea (OSA), and narcolepsy. Excessive sleepiness imposes a significant clinical, quality-of-life, safety, and economic burden on society. OBJECTIVE To compare healthcare costs for patients receiving initial therapy with armodafinil or with modafinil for the treatment of excessive sleepiness associated with OSA, SWD, or narcolepsy. METHODS A retrospective cohort analysis of medical and pharmacy claims was conducted using the IMS LifeLink Health Plan Claims Database. Patients aged ≥18 years who had a pharmacy claim for armodafinil or for modafinil between June 1, 2009, and February 28, 2012, and had 6 months of continuous eligibility before the index prescription date, as well as International Classification of Diseases, Ninth Revision diagnosis for either OSA (327.23), SWD (327.36), or narcolepsy (347.0x) were included in the study. Patients were placed into 1 of 2 treatment cohorts based on their index prescription and followed for 1 month minimum and 34 months maximum. The annualized all-cause costs were calculated by multiplying the average per-month medical and pharmacy costs for each patient by 12 months. The daily average consumption (DACON) for armodafinil or for modafinil was calculated by dividing the total units dispensed of either drug by the prescription days supply. RESULTS A total of 5693 patients receiving armodafinil and 9212 patients receiving modafinil were included in this study. A lower DACON was observed for armodafinil (1.04) compared with modafinil (1.47). The postindex mean medical costs were significantly lower for the armodafinil cohort compared with the modafinil cohort after adjusting for baseline differences ($11,363 vs $13,775, respectively; P = .005). The mean monthly drug-specific pharmacy costs were lower for the armodafinil cohort compared with the modafinil cohort ($166 vs $326, respectively; P <.001). In addition, lower total healthcare costs were observed for the armodafinil cohort compared with the modafinil cohort after correcting for baseline differences ($18,309 vs $23,530, respectively; P <.001). CONCLUSION As shown in this analysis, armodafinil may have real-world DACON advantages and may be associated with lower overall healthcare costs compared with modafinil.
Collapse
Affiliation(s)
- Rashad Carlton
- Assistant Director, Global Health Economics and Outcomes Research, Xcenda, Palm Harbor, FL
| | - Orsolya Lunacsek
- Associate Director, Applied Data Analytics, Xcenda, Palm Harbor, FL
| | - Timothy Regan
- Executive Director, Strategic Accounts, Xcenda, Palm Harbor, FL
| | | |
Collapse
|
9
|
Rao RN, Ramachandra B, Santhakumar K. Evaluation of (R)-(−)-α-methoxy phenyl acetic acid as a chiral shift reagent for resolution and determination of R and S enantiomers of modafinil in bulk drugs and formulations by 1H NMR spectroscopy. Chirality 2012; 24:339-44. [DOI: 10.1002/chir.22002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Accepted: 12/15/2011] [Indexed: 11/10/2022]
|
10
|
Newman JL, Negus SS, Lozama A, Prisinzano TE, Mello NK. Behavioral evaluation of modafinil and the abuse-related effects of cocaine in rhesus monkeys. Exp Clin Psychopharmacol 2010; 18:395-408. [PMID: 20939643 PMCID: PMC3079571 DOI: 10.1037/a0021042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Modafinil is a central nervous system stimulant used to promote wakefulness, and it is being evaluated clinically as an agonist medication for treating stimulant abuse. This is the first report of the effects of modafinil on the abuse-related effects of cocaine in nonhuman primates. The behavioral effects of modafinil were examined in three studies. First, the discriminative stimulus effects of modafinil (3.2-32 mg/kg) were evaluated in rhesus monkeys (Macaca mulatta) trained to discriminate either low (0.18 mg/kg, IM) or high (0.4 mg/kg, IM) doses of cocaine from saline. Modafinil dose-dependently substituted for cocaine in 6 of 7 monkeys. In the second study, the effects of chronically administered modafinil (32-56 mg/kg/day, IV) on food- and cocaine-maintained (0.001-0.1 mg/kg/inj) operant responding were examined. Modafinil was administered 3 times/hr for 23 hr/day to ensure stable drug levels. Chronic treatment with 32 mg/kg/day modafinil selectively reduced responding maintained by intermediate and peak reinforcing doses of cocaine, but responding maintained by higher doses of cocaine was unaffected. Food-maintained behavior did not change during chronic modafinil treatment. In a third study, modafinil (32 and 56 mg/kg/day, IV) was examined in a reinstatement model. Modafinil transiently increased responding during extinction. These findings indicate that modafinil shares discriminative stimulus effects with cocaine and selectively reduces responding maintained by reinforcing doses of cocaine. In addition, modafinil reinstated cocaine-seeking behavior, which may reflect its cocaine-like discriminative stimulus effects. These data support clinical findings and indicate that these preclinical models may be useful for predicting the effectiveness of agonist medications for drug abuse treatment.
Collapse
Affiliation(s)
- Jennifer L Newman
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|