1
|
Mohamed AH, Alshammari MB, Aly AA, Sadek KU, Ahmad A, Aziz EA, El-Yazbi AF, El-Agroudy EJ, Abdelaziz ME. New imidazole-2-thiones linked to acenaphythylenone as dual DNA intercalators and topoisomerase II inhibitors: structural optimization, docking, and apoptosis studies. J Enzyme Inhib Med Chem 2024; 39:2311818. [PMID: 38488131 PMCID: PMC10946275 DOI: 10.1080/14756366.2024.2311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
In this article, a new series of 2-((3,5-disubstituted-2-thioxo-imidazol-1-yl)imino)acenaphthylen-1(2H)-ones were synthesized. Imidazole-2-thione with acenaphthylen-one gave a hybrid scaffold that integrated key structural elements essential for DNA damage via direct DNA intercalation and inhibition of the topoisomerase II enzyme. All the synthesized compounds were screened to detect their DNA damage using a terbium fluorescent probe. Results demonstrated that 4-phenyl-imidazoles 5b and 5e in addition to 4-(4-chlorophenyl)imidazoles 5h and 5j would induce detectable potent damage in ctDNA. The four most potent compounds as DNA intercalators were further evaluated for their antiproliferative activity against HepG2, MCF-7 and HCT-116 utilizing the MTT assay. The highest anticancer activity was recorded with compounds 5b and 5h against the breast cancer cell line MCF-7 which were 1.5- and 3- folds more active than doxorubicin, respectively. Therefore, imidazole-2-thione tethered acenaphthylenone derivatives can be considered as promising scaffold for the development of effective dual DNA intercalators and topoisomerase II inhibitors.
Collapse
Affiliation(s)
- Asmaa H. Mohamed
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Kamal U. Sadek
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharij, Saudi Arabia
| | - Eman A. Aziz
- Chemistry Department, Faculty of Science, Minia University, El-Minia, Egypt
| | - Amira F. El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Eman J. El-Agroudy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa E. Abdelaziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Cesca D, Arnold P, Kaldre D, Falivene F, Sladojevich F, Puentener K, Waldvogel SR. Anodic Desulfurization of Heterocyclic Thiones - A Synthesis to Imidazoles and Analogues. Org Lett 2024. [PMID: 39467169 DOI: 10.1021/acs.orglett.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
An electrochemical desulfurization of 2-mercapto-imidazoles to the corresponding imidazole is established. This novel anodic transformation is bromide-mediated and easy to conduct in the simplest electrochemical setup, consisting of an undivided cell, carbon electrodes, and constant current electrolysis. The method proved successful in 14 diverse examples of imidazoles and triazoles with up to a 97% yield. The scalability was proven in the multigram synthesis of a technically relevant N-heterocyclic carbene (NHC) ligand precursor.
Collapse
Affiliation(s)
- Davide Cesca
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Philip Arnold
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Dainis Kaldre
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Fabio Falivene
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Kurt Puentener
- Department of Process Chemistry & Catalysis, F. Hoffmann-La Roche Ltd, 4070 Basel, Switzerland
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Department of Electrosynthesis, Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Sucman NS, Ya Bilan D, Cojocari SV, Pogrebnoi VS, Stîngaci EP, Khripach VA, Zhabinskii VN, Tsybruk TV, Grabovec IP, Panibrat OV, Persoons L, Schols D, Froeyen M, Shova S, De Jonghe S, Macaev FZ. Steroidal 21-imidazolium salt derivatives: Synthesis and anticancer activity. Steroids 2024; 210:109475. [PMID: 39067611 DOI: 10.1016/j.steroids.2024.109475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Nitrogen-containing steroids are known as prostate cancer therapeutics. In this work, a series of pregnane derivatives bearing an imidazolium moiety were synthesized using Δ16-20-ketones as starting material. An improved approach for the construction of the 20-keto-21-heterocycle-substituted fragment involved the rearrangement of 16,17-epoxides with HCl, followed by reaction of the formed α-chloroketone with 1-substituted imidazoles. Binding affinity analysis of the imidazolium steroids and their synthetic intermediates to human CYP17A1 showed only type I (substrate-like) interactions. The strongest affinity was observed for 16α,17α-epoxy-5α-pregnan-20-on-3β-ol (Kd = 0.66 ± 0.05 µM). The steroid derivatives have been evaluated for antitumor activity against a range of prostate cancer cells as well as against various other solid tumor and hematologic cancer cell lines. All 21-imidazolium salts were active against the hormone-dependent prostate cancer line LNCaP. The most pronounced cytotoxicity in solid tumor and hematologic cancer cell lines was observed for intermediate product, 21-chloro-5α-pregn-16-en-20-on-3β-ol. Among the imidazolium salts, the derivatives with a single bond were more cytotoxic than their unsaturated congeners.
Collapse
Affiliation(s)
- Natalia S Sucman
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Dmitri Ya Bilan
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Sergiu V Cojocari
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Vsevolod S Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Eugenia P Stîngaci
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| | - Vladimir A Khripach
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Vladimir N Zhabinskii
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Tatsiana V Tsybruk
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Irina P Grabovec
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus
| | - Olesya V Panibrat
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Kuprevich Str., 5/2, 220141 Minsk, Belarus.
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Mathy Froeyen
- Laboratory of Medicinal Chemistry, Rega Institute for Medical Research, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Herestraat 49, P.O. Box 1030, B-3000 Leuven, Belgium.
| | - Sergiu Shova
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, Aleea Grigore GhicaVoda 41-A, Iasi 700487, Romania.
| | - Steven De Jonghe
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, P.O. Box 1043, B-3000 Leuven, Belgium.
| | - Fliur Z Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, Moldova State University, Academiei Str., 3, MD-2028 Chișinău, Moldova.
| |
Collapse
|
4
|
Al-Ghamdi HA, Almughem FA, Alshabibi MA, Bakr AA, Alshehri AA, Aodah AH, Al Zahrani NA, Tawfik EA, Damiati LA. Synthesis and Biological Evaluation of Novel Imidazole Derivatives as Antimicrobial Agents. Biomolecules 2024; 14:1198. [PMID: 39334964 PMCID: PMC11429776 DOI: 10.3390/biom14091198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024] Open
Abstract
Imidazole derivatives are considered potential chemical compounds that could be therapeutically effective against several harmful pathogenic microbes. The chemical structure of imidazole, with a five-membered heterocycle, three carbon atoms, and two double bonds, tends to show antibacterial activities. In the present study, novel imidazole derivatives were designed and synthesized to be evaluated as antimicrobial agents owing to the low number of attempts to discover new antimicrobial agents and the emerging cases of antimicrobial resistance. Two imidazole compounds were prepared and evaluated as promising candidates regarding in vitro cytotoxicity against human skin fibroblast cells and antimicrobial activity against several bacterial strains. The synthesized imidazole derivatives were chemically identified using nuclear magnetic resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR). The results demonstrated a relatively high cell viability of one of the imidazole derivatives, i.e., HL2, upon 24 and 48 h cell exposure. Both derivatives were able to inhibit the growth of the tested bacterial strains. This study provides valuable insight into the potential application of imidazole derivatives for treating microbial infections; however, further in vitro and in vivo studies are required to confirm their safety and effectiveness.
Collapse
Affiliation(s)
- Huda A Al-Ghamdi
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Fahad A Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Manal A Alshabibi
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Abrar A Bakr
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Abdullah A Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Alhassan H Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Nourah A Al Zahrani
- Department of Chemistry, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Essam A Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11451, Saudi Arabia
| | - Laila A Damiati
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| |
Collapse
|
5
|
Deng JL, Huang LF, Bian ZY, Feng XY, Qi RY, Dong WX, Gao JM, Tang JJ. A new neuroprotective candidate TJ1 targeting amyloidogenesis in 5xFAD Alzheimer's disease mice. Int Immunopharmacol 2024; 138:112653. [PMID: 38996664 DOI: 10.1016/j.intimp.2024.112653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
As one of the main pathmechanisms of Alzheimer's disease (AD), amyloid-β (Aβ) is widely considered to be the prime target for the development of AD therapy. Recently, imidazolylacetophenone oxime ethers or esters (IOEs) have shown neuroprotective effects against neuronal cells damage, suggesting their potential use in the prevention and treatment of AD. Thirty IOEs compounds from our lab in-house library were constructed and screened for the inhibitory effects on Aβ42-induced cytotoxicity. Among them, TJ1, as a new IOEs hit, preliminarily showed the effect on inhibiting Aβ42-induced cytotoxicity. Furthermore, the inhibitory effects of TJ1 on Aβ42 aggregation were tested by ThT assays and TEM. The neuroprotective effects of TJ1 were evaluated in Aβ42-stimulated SH-SY5Y cells, LPS-stimulated BV-2 cells, and H2O2- and RSL3-stimulated PC12 cells. The cognitive improvement of TJ1 was assessed in 5xFAD (C57BL/6J) transgenic mouse. These results showed that TJ1 had strong neuroprotective effects and high blood-brain barrier (BBB) permeability without obvious cytotoxicity. TJ1 impeded the self-accumulation process of Aβ42 by acting on Aβ oligomerization and fibrilization. Besides, TJ1 reversed Aβ-, H2O2- and RSL3-induced neuronal cell damage and decreased neuroinflammation. In 5xFAD mice, TJ1 improved cognitive impairment, increased GSH level, reduced the level of Aβ42 and Aβ plaques, and attenuated the glia reactivation and inflammatory response in the brain,. Taken together, our results demonstrate that TJ1 improves cognitive impairments as a new neuroprotective candidate via targeting amyloidogenesis, which suggests the potential of TJ1 as a treatment for AD.
Collapse
Affiliation(s)
- Jia-Le Deng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Lan-Fang Huang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Zhao-Yuan Bian
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Ruo-Yu Qi
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wei-Xuan Dong
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
6
|
Kadu VD, Thokal MS, Godase RK, Kotali BC, Wadkar PS. Metal-free approach for imidazole synthesis via one-pot N-α-C(sp 3)- H bond functionalization of benzylamines. RSC Adv 2024; 14:28332-28339. [PMID: 39239291 PMCID: PMC11375450 DOI: 10.1039/d4ra03939d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/11/2024] [Indexed: 09/07/2024] Open
Abstract
A metal-free one-pot method is established for the synthesis of tetrasubstituted imidazoles from the reaction of arylmethylamines and 1,2-dicarbonyls/benzoin. The N-α-C(sp3)-H bond functionalization of arylmethylamines using a catalytic amount of AcOH afforded polysubstituted imidazoles under aerobic conditions in significant yields of up to 95%.
Collapse
Affiliation(s)
- Vikas D Kadu
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Machhindra S Thokal
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Rajkumar K Godase
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Bhagyashree C Kotali
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| | - Pooja S Wadkar
- School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University Solapur 413255 Maharashtra India
| |
Collapse
|
7
|
Justin Grams R, Yuan K, Founds MW, Ware ML, Pilar MG, Hsu KL. Imidazoles are Tunable Nucleofuges for Developing Tyrosine-Reactive Electrophiles. Chembiochem 2024; 25:e202400382. [PMID: 38819848 PMCID: PMC11462048 DOI: 10.1002/cbic.202400382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Imidazole-1-sulfonyl and -sulfonate (imidazylate) are widely used in synthetic chemistry as nucleofuges for diazotransfer, nucleophilic substitution, and cross-coupling reactions. The utility of these reagents for protein bioconjugation, in contrast, have not been comprehensively explored and important considering the prevalence of imidazoles in biomolecules and drugs. Here, we synthesized a series of alkyne-modified sulfonyl- and sulfonate-imidazole probes to investigate the utility of this electrophile for protein binding. Alkylation of the distal nitrogen activated the nucleofuge capability of the imidazole to produce sulfonyl-imidazolium electrophiles that were highly reactive but unstable for biological applications. In contrast, arylsulfonyl imidazoles functioned as a tempered electrophile for assessing ligandability of select tyrosine and lysine sites in cell proteomes and when mated to a recognition element could produce targeted covalent inhibitors with reduced off-target activity. In summary, imidazole nucleofuges show balanced stability and tunability to produce sulfone-based electrophiles that bind functional tyrosine and lysine sites in the proteome.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Kun Yuan
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, United States
| | - Michael W Founds
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Madeleine L Ware
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| | - Michael G Pilar
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, United States
| | - Ku-Lung Hsu
- Department of Chemistry, University of Texas at Austin, 100 E 24th St, Texas, 78712, United States
| |
Collapse
|
8
|
Głuszyńska A, Kosman J, Chuah SS, Hoffmann M, Haider S. Carbazole Derivatives Binding to Bcl-2 Promoter Sequence G-quadruplex. Pharmaceuticals (Basel) 2024; 17:912. [PMID: 39065762 PMCID: PMC11279778 DOI: 10.3390/ph17070912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
In this study, we used ultraviolet-visible (UV-Vis), fluorescence, and circular dichroism (CD) techniques, as well as molecular modeling, to probe the interactions between carbazole derivatives and the G-quadruplex structure formed in the promoter region of gene Bcl-2. This gene is a rational target for anticancer therapy due to its high expression in a variety of tumors as well as resistance to chemotherapy-induced apoptosis. We employed a sequence with a specific dual G-to-T mutation that may form a mixed-type hybrid G-quadruplex structure in the Bcl-2 P1 promoter region. The three tested carbazole compounds differing in substitution on the nitrogen atom of carbazole interact with the Bcl-2 G-quadruplex by the same binding mode with the very comparable binding affinities in the order of 105 M-1. During absorption and fluorescence measurements, large changes in the ligand spectra were observed at higher G4 concentrations. The spectrophotometric titration results showed a two-step complex formation between the ligands and the G-quadruplex in the form of initial hypochromicity followed by hyperchromicity with a bathochromic shift. The strong fluorescence enhancement of ligands was observed after binding to the DNA. All of the used analytical techniques, as well as molecular modeling, suggested the π-π interaction between carbazole ligands and a guanine tetrad of the Bcl-2 G-quadruplex. Molecular modeling has shown differences in the interaction between each of the ligands and the tested G-quadruplex, which potentially had an impact on the binding strength.
Collapse
Affiliation(s)
- Agata Głuszyńska
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Joanna Kosman
- Department of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Shang Shiuan Chuah
- School of Pharmacy, University College London, London WC1N 1AX, UK (S.H.)
| | - Marcin Hoffmann
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | - Shozeb Haider
- School of Pharmacy, University College London, London WC1N 1AX, UK (S.H.)
| |
Collapse
|
9
|
Basanova EI, Kulikova EA, Bormotov NI, Serova OA, Shishkina LN, Ovchinnikova AS, Odnoshevskiy DA, Pyankov OV, Agafonov AP, Yarovaya OI, Borisevich SS, Ilyina MG, Kolybalov DS, Arkhipov SG, Bogdanov NE, Pavlova MA, Salakhutdinov NF, Perevalov VP, Nikitina PA. 2-Aryl-1-hydroxyimidazoles possessing antiviral activity against a wide range of orthopoxviruses, including the variola virus. RSC Med Chem 2024:d4md00181h. [PMID: 39165907 PMCID: PMC11331333 DOI: 10.1039/d4md00181h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/25/2024] [Indexed: 08/22/2024] Open
Abstract
Scientific interest in orthopoxvirus infections and search for new highly effective compounds possessing antiviral activity against orthopoxviruses have significantly increased as a result of worldwide mpox outbreak in 2022. The present work deals with the synthesis of new 2-arylimidazoles exhibiting in vitro activity not only against the vaccinia virus, cowpox virus and ectromelia (mousepox) virus but also against the variola virus. Among the imidazole derivatives under consideration (1-hydroxyimidazoles, 1-methoxyimidazoles, 1-benzyloxyimidazoles, and imidazole N-oxides), the most promising antiviral activity is demonstrated by 1-hydroxyimidazoles, which may exist as two prototropic tautomers. Both of these tautomers may be manifested in different crystal structures of these compounds, according to single-crystal X-ray diffraction analysis, while predominantly one of them (N-hydroxy-tautomeric form) is present in DMSO-d 6 solutions and in the gaseous state, as shown by NMR spectroscopy and quantum-chemical calculations. The leader compound 1-hydroxy-2-(4-nitrophenyl)imidazole 4a demonstrated the highest selectivity indices against the vaccinia virus (SI = 1072) and the variola virus (SI = 373).
Collapse
Affiliation(s)
- Elizaveta I Basanova
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Ekaterina A Kulikova
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Nikolai I Bormotov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Olga A Serova
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Larisa N Shishkina
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Alyona S Ovchinnikova
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Dmitry A Odnoshevskiy
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Oleg V Pyankov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Alexander P Agafonov
- State Research Center of Virology and Biotechnology VECTOR Rospotrebnadzor 630559 Koltsovo Russia
| | - Olga I Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Institute of Organic Chemistry SB RAS Lavrentyev Ave., 9 630090 Novosibirsk Russia
| | | | | | - Dmitry S Kolybalov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
| | - Sergey G Arkhipov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
| | - Nikita E Bogdanov
- Scientific Educational Center "Institute of Chemical Technology", Novosibirsk State University Pirogova str., 1 630090 Novosibirsk Russia
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences Koptyuga Ave., 3 630090 Novosibirsk Russia
| | - Marina A Pavlova
- Laboratory of Photoactive Supramolecular Systems, A.N. Nesmeyanov Institute of Organoelement Compounds RAS Vavilova str., 28 119991 Moscow Russia
| | - Nariman F Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Institute of Organic Chemistry SB RAS Lavrentyev Ave., 9 630090 Novosibirsk Russia
| | - Valery P Perevalov
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| | - Polina A Nikitina
- Department of Fine Organic Synthesis and Chemistry of Dyes, D.I. Mendeleev University of Chemical Technology of Russia Miusskaya sq., 9 125047 Moscow Russia
| |
Collapse
|
10
|
Ali A, Stefàno E, De Castro F, Ciccarella G, Rovito G, Marsigliante S, Muscella A, Benedetti M, Fanizzi FP. Synthesis, Characterization, and Cytotoxicity Evaluation of Novel Water-Soluble Cationic Platinum(II) Organometallic Complexes with Phenanthroline and Imidazolic Ligands. Chemistry 2024; 30:e202401064. [PMID: 38703115 DOI: 10.1002/chem.202401064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Platinum-based chemotherapeutic agents are widely used in the treatment of cancer. However, their effectiveness is limited by severe adverse reactions, drug resistance, and poor water solubility. This study focuses on the synthesis and characterization of new water-soluble cationic monofunctional platinum(II) complexes starting from the [PtCl(η1-C2H4OEt)(phen)] (1, phen=1,10-phenanthroline) precursor, specifically [Pt(NH3)(η1-C2H4OEt)(phen)]Cl (2), [Pt(1-hexyl-1H-imidazole)(η1-C2H4OEt)(phen)]Cl (3), and [Pt(1-hexyl-1H-benzo[d]imidazole)(η1-C2H4OEt)(phen)]Cl (4), which deviate from traditional requirements for antitumor activity. These complexes were evaluated for their cytotoxic effects in comparison to cisplatin, using immortalized cervical adenocarcinoma cells (HeLa), human renal carcinoma cells (Caki-1), and normal human renal cells (HK-2). While complex 2 showed minimal effects on the cell lines, complexes 3 and 4 demonstrated higher cytotoxicity than cisplatin. Notably, complex 4 displayed the highest cytotoxicity in both cancer and normal cell lines. However, complex 3 exhibited the highest selectivity for renal tumor cells (Caki-1) among the tested complexes, compared to healthy cells (HK-2). This resulted in a significantly higher selectivity than that of cisplatin and complex 4. Therefore, complex 3 shows potential as a leading candidate for the development of a new generation of platinum-based anticancer drugs, utilizing biocompatible imidazole ligands while demonstrating promising anticancer properties.
Collapse
Affiliation(s)
- Asjad Ali
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Erika Stefàno
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Gianluca Rovito
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Santo Marsigliante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Antonella Muscella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Monteroni, I-73100, Lecce, Italy
| |
Collapse
|
11
|
Dziduch K, Janowska S, Andrzejczuk S, Strzyga-Łach P, Struga M, Feldo M, Demchuk O, Wujec M. Synthesis and Biological Evaluation of New Compounds with Nitroimidazole Moiety. Molecules 2024; 29:3023. [PMID: 38998972 PMCID: PMC11243693 DOI: 10.3390/molecules29133023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Heterocyclic compounds, particularly those containing azole rings, have shown extensive biological activity, including anticancer, antibacterial, and antifungal properties. Among these, the imidazole ring stands out due to its diverse therapeutic potential. In the presented study, we designed and synthesized a series of imidazole derivatives to identify compounds with high biological potential. We focused on two groups: thiosemicarbazide derivatives and hydrazone derivatives. We synthesized these compounds using conventional methods and confirmed their structures via nuclear magnetic resonance spectroscopy (NMR), MS, and elemental analysis, and then assessed their antibacterial and antifungal activities in vitro using the broth microdilution method against Gram-positive and Gram-negative bacteria, as well as Candida spp. strains. Our results showed that thiosemicarbazide derivatives exhibited varied activity against Gram-positive bacteria, with MIC values ranging from 31.25 to 1000 µg/mL. The hydrazone derivatives, however, did not display significant antibacterial activity. These findings suggest that structural modifications can significantly influence the antimicrobial efficacy of imidazole derivatives, highlighting the potential of thiosemicarbazide derivatives as promising candidates for further development in antibacterial therapies. Additionally, the cytotoxic activity against four cancer cell lines was evaluated. Two derivatives of hydrazide-hydrazone showed moderate anticancer activity.
Collapse
Affiliation(s)
- Katarzyna Dziduch
- Doctoral School, Medical University of Lublin, Chodzki 7, 20-093 Lublin, Poland
| | - Sara Janowska
- Department of Pathobiochemistry and Interdisciplinary Applications of Ion Chromatography, Biomedical Sciences, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | - Sylwia Andrzejczuk
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University, 20-093 Lublin, Poland
| | - Paulina Strzyga-Łach
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Marcin Feldo
- Department of Vascular Surgery, Medical University of Lublin, Staszica 11 St., 20-081 Lublin, Poland
| | - Oleg Demchuk
- Faculty of Medicine, The John Paul II Catholic University of Lublin, Konstantynow 1J, 20-708 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
12
|
Zanakhov TO, Galenko EE, Novikov MS, Khlebnikov AF. Cyclocondensation of 2-(α-Diazoacyl)-2 H-azirines with Amidines in Diazo Synthesis of Functionalized Naphtho[1,2- d]imidazoles. J Org Chem 2024; 89:8641-8655. [PMID: 38847418 DOI: 10.1021/acs.joc.4c00598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
A diazo approach toward functionalized naphtho[1,2-d]imidazole derivatives has been developed. It involved a new reaction of arylamidines with 2-(α-diazoacyl)-2H-azirines giving 5-aryl-4-(α-diazoacyl)-1H-imidazoles under mild conditions in good yields. The mechanism of annulation of azirines with amidines is discussed based on DFT calculations. The reaction proceeds in an unusual manner by cleavage of the azirine C-C bond, allowing for the transfer of the aryl substituent from the arylamidine to the proper position of the key intermediate of naphtho[1,2-d]imidazole synthesis. Under thermolysis conditions, 5-aryl-4-(α-diazoacyl)-1H-imidazoles undergo Wolff rearrangement followed by the selective 6π-cyclization of transient ketene to form 3H-naphtho[1,2-d]imidazoles bearing various substituents in the positions 2,3,4,5,7,8,9. Additionally, variation of the substituents at position 5 of naphtho[1,2-d]imidazoles is possible through the formation of triflates and subsequent cross-coupling reactions. One more heterocyclic pharmacophoric skeleton, 3H-furo[3',2':3,4]naphtho[1,2-d]imidazole, was easily constructed from methyl 5-hydroxy-3H-naphtho[1,2-d]imidazole-4-carboxylates in a one-pot mode using O-alkylation with phenacyl bromides followed by base-induced intramolecular acyl substitution at room temperature with high yields.
Collapse
Affiliation(s)
- Timur O Zanakhov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Ekaterina E Galenko
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Mikhail S Novikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| | - Alexander F Khlebnikov
- Saint Petersburg State University, Institute of Chemistry, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia
| |
Collapse
|
13
|
Xu T, Yan X, Kang A, Yang L, Li X, Tian Y, Yang R, Qin S, Guo Y. Development of Membrane-Targeting Fluorescent 2-Phenyl-1 H-phenanthro[9,10- d]imidazole-Antimicrobial Peptide Mimic Conjugates against Methicillin-Resistant Staphylococcus aureus. J Med Chem 2024; 67:9302-9317. [PMID: 38491982 DOI: 10.1021/acs.jmedchem.4c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
The escalation of multidrug-resistant bacterial infections, especially infections caused by methicillin-resistant Staphylococcus aureus (MRSA), underscores the urgent need for novel antimicrobial drugs. Here, we synthesized a series of amphiphilic 2-phenyl-1H-phenanthro[9,10-d]imidazole-antimicrobial peptide (AMP) mimic conjugates (III1-30). Among them, compound III13 exhibited excellent antibacterial activity against G+ bacteria and clinical MRSA isolates (MIC = 0.5-2 μg/mL), high membrane selectivity, and low toxicity. Additionally, compared with traditional clinical antibiotics, III13 demonstrated rapid bactericidal efficacy and was less susceptible to causing bacterial resistance. Mechanistic studies revealed that III13 targets phosphatidylglycerol (PG) on bacterial membranes to disrupt membrane integrity, leading to an increase in intracellular ROS and leakage of proteins and DNA, ultimately causing bacterial cell death. Furthermore, III13 possessed good fluorescence properties with potential for further dynamic monitoring of the antimicrobial process. Notably, III13 showed better in vivo efficacy against MRSA compared to vancomycin, suggesting its potential as a promising candidate for anti-MRSA medication.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
| | - Xiaoting Yan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ayue Kang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Longhua Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Xinhui Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yue Tian
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Ruige Yang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Yong Guo
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, China
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
14
|
Šoša I. Ingestion of Fluids of the Ocular Surface Containing Eye Drops of Imidazole Derivatives-Alpha Adrenergic Receptor Agonists as Paragons. Pharmaceuticals (Basel) 2024; 17:758. [PMID: 38931425 PMCID: PMC11206365 DOI: 10.3390/ph17060758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Accidental poisonings by ingesting conjunctival fluid mixed with eye drops commonly involve alpha-2 adrenergic receptor agonists and tetrahydrozoline. These substances are recognized in commonly reported ingestions. Victims of all ages, otherwise in good health, often present as pale and lethargic to the emergency department (ED) after unintentionally ingesting topical eye medication. While eye drop poisoning cases in childhood include accidents during the play and poisonings in adults mean either suicide attempts or side effects caused by the systemic absorption of the substance, fluid of the ocular surface is a risk to all age groups. With this in mind, this study aimed to summarize data in the literature on tetrahydrozoline and alpha-2 adrenergic receptor agonists as dangerous medications, even when administered in low-bioavailability forms, such as eye drops. With this aim, a Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)-compliant systematic review of relevant studies was conducted. A search of PubMed, Scopus, Web of Science, and EBSCOhost yielded nine studies that met the rigorous inclusion criteria. The primary studies were subject to a meta-analysis once a quality appraisal of the studies and a narrative synthesis of the extracted data had been conducted. The author hopes that this information will provide observations that will lead to better designs for over-the-counter eye drops, off-label drug usage policies, and parental attention.
Collapse
Affiliation(s)
- Ivan Šoša
- Department of Anatomy, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
15
|
Uvarova ES, Kutasevich AV, Lipatov ES, Pytskii IS, Raitman OA, Selivantev YM, Mityanov VS. Three-component cascade reaction of 3-ketonitriles, 2-unsubstituted imidazole N-oxides, and aldehydes. Org Biomol Chem 2024; 22:4297-4308. [PMID: 38717323 DOI: 10.1039/d4ob00353e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component condensation of 2-unsubstituted imidazole N-oxides, 3-ketonitriles, and aldehydes is described. The reaction proceeds via sequential Knoevenagel condensation/Michael addition under mild, catalyst-free conditions with various substrates. Furthermore, the corresponding 2-functionalized imidazole N-oxides can be further dehydrated to (Z)-2-aroyl-3-(1H-imidazol-2-yl)-acrylonitriles, which may also be directly prepared by changing the reaction conditions as a cascade of Knoevenagel condensation/Michael addition/dehydration.
Collapse
Affiliation(s)
- Ekaterina S Uvarova
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Anton V Kutasevich
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Egor S Lipatov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences, Vavilov str. 28/1, 119334 Moscow, Russian Federation
- Higher Chemical College of Russian Academy of Sciences, D.I. Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, 125047, Moscow, Russian Federation
| | - Ivan S Pytskii
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Academy of Sciences, Leninsky Prospect 31 bldg. 4, 119071 Moscow, Russian Federation
| | - Oleg A Raitman
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Yuriy M Selivantev
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| | - Vitaly S Mityanov
- Mendeleev University of Chemical Technology, Miusskaya Sq., 9, Moscow 125047, Russian Federation.
| |
Collapse
|
16
|
Zhang F, Fang H, Zhao Y, Zhao B, Qin S, Wang Y, Guo Y, Liu J, Xu T. A membrane-targeting magnolol derivative for the treatment of methicillin-resistant Staphylococcus aureus infections. Front Microbiol 2024; 15:1385585. [PMID: 38827157 PMCID: PMC11140843 DOI: 10.3389/fmicb.2024.1385585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Multidrug-resistant bacterial infections are a major global health challenge, especially the emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) urgently require alternative treatment options. Our study has identified that a magnolol derivative 6i as a promising agent with significant antibacterial activity against S. aureus and clinical MRSA isolates (MIC = 2-8 μg/mL), showing high membrane selectivity. Unlike traditional antibiotics, 6i demonstrated rapid bactericidal efficiency and a lower propensity for inducing bacterial resistance. Compound 6i also could inhibit biofilm formation and eradicate bacteria within biofilms. Mechanistic studies further revealed that 6i could target bacterial cell membranes, disrupting the integrity of the cell membrane and leading to increased DNA leakage, resulting in potent antibacterial effects. Meanwhile, 6i also showed good plasma stability and excellent biosafety. Notably, 6i displayed good in vivo antibacterial activity in a mouse skin abscess model of MRSA-16 infection, which was comparable to the positive control vancomycin. These findings indicated that the magnolol derivative 6i possessed the potential to be a novel anti-MRSA infection agent.
Collapse
Affiliation(s)
- Fushan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hui Fang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuxin Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Buhui Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Shangshang Qin
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Yong Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Jifeng Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Xu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
17
|
Shitov DA, Krutin DV, Tupikina EY. Mutual influence of non-covalent interactions formed by imidazole: A systematic quantum-chemical study. J Comput Chem 2024; 45:1046-1060. [PMID: 38216334 DOI: 10.1002/jcc.27309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
Imidazole is a five-membered heterocycle that is part of a number of biologically important molecules such as the amino acid histidine and the hormone histamine. Imidazole has a unique ability to participate in a variety of non-covalent interactions involving the NH group, the pyridine-like nitrogen atom or the π-system. For many biologically active compounds containing the imidazole moiety, its participation in formation of hydrogen bond NH⋯O/N and following proton transfer is the key step of mechanism of their action. In this work a systematic study of the mutual influence of various paired combinations of non-covalent interactions (e.g., hydrogen bonds and π-interactions) involving the imidazole moiety was performed by means of quantum chemistry (PW6B95-GD3/def2-QZVPD) for a series of model systems constructed based on analysis of available x-ray data. It is shown that for considered complexes formation of additional non-covalent interactions can only enhance the proton-donating ability of imidazole. At the same time, its proton-accepting ability can be both enhanced and weakened, depending on what additional interactions are added to a given system. The mutual influence of non-covalent interactions involving imidazole can be classified as weak geometric and strong energetic cooperativity-a small change in the length of non-covalent interaction formed by imidazole can strongly influence its strength. The latter can be used to develop methods for controlling the rate and selectivity of chemical reactions involving the imidazole fragment in larger systems. It is shown that the strong mutual influence of non-covalent interactions involving imidazole is due to the unique ability of the imidazole ring to effectively redistribute electron density in non-covalently bound systems with its participation.
Collapse
Affiliation(s)
- Daniil A Shitov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Danil V Krutin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Elena Yu Tupikina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
18
|
A Malik A, Dangroo NA, Kaur P, Attery S, A Rather M, Khan A, Ara T, Nandanwar H. Discovery of novel dihydronaphthalene-imidazole ligands as potential inhibitors of Staphylococcus aureus multidrug resistant NorA efflux pump: A combination of experimental and in silico molecular docking studies. Microb Pathog 2024; 190:106627. [PMID: 38521473 DOI: 10.1016/j.micpath.2024.106627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Overexpression of the efflux pump is a predominant mechanism by which bacteria show antimicrobial resistance (AMR) and leads to the global emergence of multidrug resistance (MDR). In this work, the inhibitory potential of library of dihydronapthyl scaffold-based imidazole derivatives having structural resemblances with some known efflux pump inhibitors (EPI) were designed, synthesized and evaluated against efflux pump inhibitor against overexpressing bacterial strains to study the synergistic effect of compounds and antibiotics. Out of 15 compounds, four compounds (Dz-1, Dz-3, Dz-7, and Dz-8) were found to be highly active. DZ-3 modulated the MIC of ciprofloxacin, erythromycin, and tetracycline by 128-fold each against 1199B, XU212 and RN4220 strains of S. aureus respectively. DZ-3 also potentiated tetracycline by 64-fold in E. coli AG100 strain. DZ-7 modulated the MIC of both tetracycline and erythromycin 128-fold each in S. aureus XU212 and S. aureus RN4220 strains. DZ-1 and DZ-8 showed the moderate reduction in MIC of tetracycline in E. coli AG100 only by 16-fold and 8-fold, respectively. DZ-3 was found to be the potential inhibitor of NorA as determined by ethidium bromide efflux inhibition and accumulation studies employing NorA overexpressing strain SA-1199B. DZ-3 displayed EPI activity at non-cytotoxic concentration to human cells and did not possess any antibacterial activity. Furthermore, molecular docking studies of DZ-3 was carried out in order to understand the possible binding sites of DZ-3 with the active site of the protein. These studies indicate that dihydronaphthalene scaffolds could serve as valuable cores for the development of promising EPIs.
Collapse
Affiliation(s)
- Asif A Malik
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Nisar A Dangroo
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, J &K, 192122, India.
| | - Parminder Kaur
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Shobit Attery
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology, Awantipora, J &K, 192122, India.
| | - Abrar Khan
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India
| | - Tabassum Ara
- Department of Chemistry, National Institute of Technology, Srinagar, J&K, 190006, India.
| | - Hemraj Nandanwar
- Clinical Microbiology & Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
| |
Collapse
|
19
|
Khalili Ghomi M, Noori M, Mirahmad M, Iraji A, Sadr AS, Dastyafteh N, Asili P, Gholami M, Javanshir S, Lotfi M, Mojtabavi S, Faramarzi MA, Asadi M, Nasli-Esfahani E, Palimi M, Larijani B, Meshkatalsadat MH, Mahdavi M. Evaluation of novel 2-(quinoline-2-ylthio)acetamide derivatives linked to diphenyl-imidazole as α-glucosidase inhibitors: Insights from in silico, in vitro, and in vivo studies on their anti-diabetic properties. Eur J Med Chem 2024; 269:116332. [PMID: 38508120 DOI: 10.1016/j.ejmech.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 03/05/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
The inhibition of the α-glucosidase enzyme is crucial for targeting type 2 diabetes mellitus (DM). This study introduces a series of synthetic analogs based on thiomethylacetamide-quinoline derivatives linked to diphenyl-imidazole as highly potential α-glucosidase inhibitors. Twenty derivatives were synthesized and screened in vitro against α-glucosidase, revealing IC50 values ranging from 0.18 ± 0.00 to 2.10 ± 0.07 μM, in comparison to the positive control, acarbose. Among these derivatives, compound 10c (IC50 = 0.180 μM) demonstrated the highest potency and revealed a competitive inhibitory mechanism in kinetic studies (Ki = 0.15 μM). Docking and molecular dynamic evaluations elucidated the binding mode of 10c with the active site residues of the α-glucosidase enzyme. Moreover, in vivo assessments on a rat model of DM affirmed the anti-diabetic efficacy of 10c, evidenced by reduced fasting and overall blood glucose levels. The histopathological evaluation enhanced pancreatic islet architecture and hepatocytes in liver sections. In conclusion, novel 2-(quinoline-2-ylthio)acetamide derivatives as potent α-glucosidase inhibitors were developed. Compound 10c emerged as a promising candidate for diabetes management, warranting further investigation for potential clinical applications and mechanistic insights.
Collapse
Affiliation(s)
- Minoo Khalili Ghomi
- Department of Chemistry, Qom University of Technology, Qom, Iran; Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Noori
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Mirahmad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Research Center for Traditional Medicine and History of Medicine, Department of Persian Medicine, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Shahir Sadr
- Computer Science Department, Mathematical Sciences Faculty, Shahid Beheshti University, Tehran, Iran; School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Navid Dastyafteh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Pooria Asili
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholami
- Toxicology and Diseases Specialty Group, Pharmaceutical Sciences Research Center (PSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Javanshir
- Pharmaceutical and Heterocyclic Chemistry Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Maryam Lotfi
- Department of Pathology, Amir-Alam Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Asadi
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdie Palimi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Salvan da Rosa J, Bramorski Mohr ET, Lubschinski TL, Vieira GN, Rossa TA, Mandolesi Sá M, Dalmarco EM. Interference in Macrophage Balance (M1/M2): The Mechanism of Action Responsible for the Anti-Inflammatory Effect of a Fluorophenyl-Substituted Imidazole. Mediators Inflamm 2024; 2024:9528976. [PMID: 38405621 PMCID: PMC10894048 DOI: 10.1155/2024/9528976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/19/2024] [Accepted: 02/03/2024] [Indexed: 02/27/2024] Open
Abstract
Traditionally, the treatment of inflammatory conditions has focused on the inhibition of inflammatory mediator production; however, many conditions are refractory to this classical approach. Recently, an alternative has been presented by researchers to solve this problem: The immunomodulation of cells closely related to inflammation. Hence, macrophages, a critical key in both innate and acquired immunity, have been presented as an alternative target for the development of new medicines. In this work, we tested the fluorophenyl-imidazole for its anti-inflammatory activity and possible immunomodulatory effect on RAW 264.7 macrophages. We also evaluated the anti-inflammatory effect of the compound, and the macrophage repolarization to M2 was confirmed by the ability of the compound to reduce the M1 markers TNF-α, IL-6, MCP-1, IL-12p70, IFN-γ, and TLR4, the high levels of p65 phosphorylated, iNOS and COX-2 mRNA expression, and the fact that the compound was not able to induce the production of M1 markers when used in macrophages without lipopolysaccharide (LPS) stimulation. Moreover, fluorophenyl-imidazole had the ability to increase the M2 markers IL-4, IL-13, CD206, apoptosis and phagocytosis levels, arginase-1, and FIZZ-1 mRNA expression before LPS stimulation. Similarly, it was also able to induce the production of these same M2 markers in macrophages without being induced with LPS. These results reinforce the affirmation that the fluorophenyl-imidazole has an important anti-inflammatory effect and demonstrates that this effect is due to immunomodulatory activity, having the ability to trigger a repolarization of macrophages from M1 to M2a. These facts suggest that this molecule could be used as an alternative scaffold for the development of a new medicine to treat inflammatory conditions, where the anti-inflammatory and proregenerative properties of M2a macrophages are desired.
Collapse
Affiliation(s)
- Julia Salvan da Rosa
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduarda Talita Bramorski Mohr
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Tainá Larissa Lubschinski
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Guilherme Nicácio Vieira
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Thais Andreia Rossa
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Marcus Mandolesi Sá
- Department of Chemistry, Center for Physical and Mathematical Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| | - Eduardo Monguilhott Dalmarco
- Department of Clinical Analysis, Center for Health Sciences, Campus Universitário—Trindade, Universidade Federal de Santa Catarina, Florianópolis 88040-970, SC, Brazil
| |
Collapse
|
21
|
Koley M, Han J, Soloshonok VA, Mojumder S, Javahershenas R, Makarem A. Latest developments in coumarin-based anticancer agents: mechanism of action and structure-activity relationship studies. RSC Med Chem 2024; 15:10-54. [PMID: 38283214 PMCID: PMC10809357 DOI: 10.1039/d3md00511a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/20/2023] [Indexed: 01/30/2024] Open
Abstract
Many researchers around the world are working on the development of novel anticancer drugs with different mechanisms of action. In this case, coumarin is a highly promising pharmacophore for the development of novel anticancer drugs. Besides, the hybridization of this moiety with other anticancer pharmacophores has emerged as a potent breakthrough in the treatment of cancer to decrease its side effects and increase its efficiency. This review aims to provide a comprehensive overview of the recent development of coumarin derivatives and their application as novel anticancer drugs. Herein, we highlight and describe the largest number of research works reported in this field from 2015 to August 2023, along with their mechanisms of action and structure-activity relationship studies, making this review different from the other review articles published on this topic to date.
Collapse
Affiliation(s)
- Manankar Koley
- CSIR-Central Glass & Ceramic Research Institute Kolkata India
| | - Jianlin Han
- College of Chemical Engineering, Nanjing Forestry University Nanjing China
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, University of the Basque Country San Sebastián Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | | | - Ramin Javahershenas
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University Urmia Iran
| | - Ata Makarem
- Institute of Pharmacy, University of Hamburg Hamburg Germany
| |
Collapse
|
22
|
Dindi UMR, Al-Ghamdi S, Alrudian NA, Dayel SB, Abuderman AA, Saad Alqahtani M, Bahakim NO, Ramesh T, Vilwanathan R. Ameliorative inhibition of sirtuin 6 by imidazole derivative triggers oxidative stress-mediated apoptosis associated with Nrf2/Keap1 signaling in non-small cell lung cancer cell lines. Front Pharmacol 2024; 14:1335305. [PMID: 38235110 PMCID: PMC10791838 DOI: 10.3389/fphar.2023.1335305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Background: Redox homeostasis is the vital regulatory system with respect to antioxidative response and detoxification. The imbalance of redox homeostasis causes oxidative stress. Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2, also called Nfe2l2)/Kelchlike ECH-associated protein 1 (Keap1) signaling is the major regulator of redox homeostasis. Nrf2/Keap1 signaling is reported to be involved in cancer cell growth and survival. A high level of Nrf2 in cancers is associated with poor prognosis, resistance to therapeutics, and rapid proliferation, framing Nrf2 as an interesting target in cancer biology. Sirtuins (SIRT1-7) are class III histone deacetylases with NAD + dependent deacetylase activity that have a remarkable impact on antioxidant and redox signaling (ARS) linked with Nrf2 deacetylation thereby increasing its transcription by epigenetic modifications which has been identified as a crucial event in cancer progression under the influence of oxidative stress in various transformed cells. SIRT6 plays an important role in the cytoprotective effect of multiple diseases, including cancer. This study aimed to inhibit SIRT6 using an imidazole derivative, Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate, to assess its impact on Nrf2/Keap1 signaling in A549 and NCI-H460 cell lines. Method: Half maximal inhibitory concentration (IC50) of Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate was fixed by cell viability assay. The changes in the gene expression of important regulators involved in this study were examined using quantitative real-time PCR (qRT-PCR) and protein expression changes were confirmed by Western blotting. The changes in the antioxidant molecules are determined by biochemical assays. Further, morphological studies were performed to observe the generation of reactive oxygen species, mitochondrial damage, and apoptosis. Results: We inhibited SIRT6 using Ethyl 2-[5-(4-chlorophenyl)-2-methyl-1-H-Imidazole-4-yl] acetate and demonstrated that SIRT6 inhibition impacts the modulation of antioxidant and redox signaling. The level of antioxidant enzymes and percentage of reactive oxygen species scavenging activity were depleted. The morphological studies showed ROS generation, mitochondrial damage, nuclear damage, and apoptosis. The molecular examination of apoptotic factors confirmed apoptotic cell death. Further, molecular studies confirmed the changes in Nrf2 and Keap1 expression during SIRT6 inhibition. Conclusion: The overall study suggests that SIRT6 inhibition by imidazole derivative disrupts Nrf2/Keap1 signaling leading to oxidative stress and apoptosis induction.
Collapse
Affiliation(s)
- Uma Maheswara Rao Dindi
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sameer Al-Ghamdi
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Naif Abdurhman Alrudian
- Department of Family and Community Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Salman Bin Dayel
- Dermatology Unit, Internal Medicine Department, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulwahab Ali Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed Saad Alqahtani
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nasraddin Othman Bahakim
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ravikumar Vilwanathan
- Cancer Biology Laboratory, Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| |
Collapse
|
23
|
Emami L, Zare F, Khabnadideh S, Rezaei Z, Sabahi Z, Zare Gheshlaghi S, Behrouz M, Emami M, Ghobadi Z, Madadelahi Ardekani S, Barzegar F, Ebrahimi A, Sabet R. Synthesis, design, biological evaluation, and computational analysis of some novel uracil-azole derivatives as cytotoxic agents. BMC Chem 2024; 18:3. [PMID: 38173035 PMCID: PMC10765869 DOI: 10.1186/s13065-023-01106-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
The design and synthesis of novel cytotoxic agents is still an interesting topic for medicinal chemistry researchers due to the unwanted side effects of anticancer drugs. In this study, a novel series of uracil-azole hybrids were designed and synthesized. The cytotoxic activity, along with computational studies: molecular docking, molecular dynamic simulation, density functional theory, and ADME properties were also, evaluated. The compounds were synthesized by using 3-methyl-6-chlorouracil as the starting material. Cytotoxicity was determined using MTT assay in the breast carcinoma cell line (MCF-7) and Hepatocellular carcinoma cell line (HEPG-2). These derivatives demonstrated powerful inhibitory activity against breast and hepatocellular carcinoma cell lines in comparison to Cisplatin as positive control. Among these compounds, 4j displayed the best selectivity profile and good activity with IC50 values of 16.18 ± 1.02 and 7.56 ± 5.28 µM against MCF-7 and HEPG-2 cell lines respectively. Structure-activity relationships revealed that the variation in the cytotoxic potency of the synthesized compounds was affected by various substitutions of benzyl moiety. The docking output showed that 4j bind well in the active site of EGFR and formed a stable complex with the EGFR protein. DFT was used to investigate the reactivity descriptors of 4a and 4j. The outputs demonstrated that these uracil-azole hybrids can be considered as potential cytotoxic agents.
Collapse
Affiliation(s)
- Leila Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Zare
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Soghra Khabnadideh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rezaei
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Sabahi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | - Saman Zare Gheshlaghi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Marzieh Behrouz
- Department of Chemistry, Shiraz University of Technology, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghobadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran
| | | | - Fatemeh Barzegar
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, Zahedan, Iran
| | - Razieh Sabet
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, I.R. of Iran.
| |
Collapse
|
24
|
Ashraf M, Kamal A, Ahmed E, Bhatti HN, Arshad M, Iqbal MA. Tetra-azolium Salts Induce Significant Cytotoxicity in Human Colon Cancer Cells In vitro. Curr Org Synth 2024; 21:1075-1080. [PMID: 37622716 DOI: 10.2174/1570179421666230824151219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/10/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Azolium salts are the organic salts used as stable precursors for generating N-Heterocyclic Carbenes and their metal complexes. Azolium salts have also been reported to have significant biological potential. Hence, in the current study, four tetra-dentate azolium salts were derived from bis-azolium salts by a new synthetic strategy. METHODS The tetra azolium salts have been synthesized by reacting the imidazole or methyl imidazole with dibromo xylene (meta, para)/ 1-bromo methyl imidazole or dibromo ethane resulting in the mono or bis azolium salts namely I-IV. V-VII have been obtained by reacting I with II-IV, resulting in the tetra azolium salts. Each product was analyzed by various analytical techniques, i.e., microanalysis, FT-IR, and NMR (1H & 13C). Salts V-VII were evaluated for their antiproliferative effect against human colon cancer cells (HCT-116) using MTT assay. RESULTS Four chemical shifts for acidic protons between 8.5-9.5 δ ppm in 1H NMR and resonance of respective carbons around 136-146 δ ppm in 13C NMR indicated the successful synthesis of tetra azolium salts. Salt V showed the highest IC50 value, 24.8 μM among all synthesized compounds. CONCLUSION Tetra-azolium salts may play a better cytotoxicity effect compared to mono-, bi-& tri-azolium salts.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Center for Organic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
| | - Amna Kamal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Ejaz Ahmed
- Center for Organic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Arshad
- Center for Organic Chemistry, School of Chemistry, University of the Punjab, Quaid-e-Azam Campus, 54590, Lahore, Pakistan
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture, 38040, Faisalabad, Pakistan
| |
Collapse
|
25
|
Zareei S, Ranjbar S, Mohammadi M, Ghasemi Y, Golestanian S, Avizheh L, Moazzam A, Larijani B, Mohammadi-Khanaposhtani M, Tarahomi MM, Mahdavi M, Sadeghian N, Taslimi P. Discovery of novel 4,5-diphenyl-imidazol-α-aminophosphonate hybrids as promising anti-diabetic agents: Design, synthesis, in vitro, and in silico enzymatic studies. Bioorg Chem 2023; 141:106846. [PMID: 37713948 DOI: 10.1016/j.bioorg.2023.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Herein, a novel series of 4,5-diphenyl-imidazol-α-aminophosphonate hybrids 4a-m was designed, synthesized, and evaluated as new anti-diabetic agents. These compounds were evaluated against two important target enzymes in the diabetes treatment: α-glucosidase and α-amylase. These new compounds were synthesized in three steps and characterized by different spectroscopic techniques. The in vitro evaluations demonstrated that all the synthesized compounds 4a-m were more potent that standard inhibitor acarbose against studied enzymes. Among these compound, the most potent compound against both studied enzymes was 3-bromo derivative 4l. The latter compound with IC50 = 5.96 nM was 18-times more potent than acarbose (IC50 = 106.63 nM) against α-glucosidase. Moreover, compound 4l with IC50 = 1.62 nM was 27-times more potent than acarbose (IC50 = 44.16 nM) against α-amylase. Molecular docking analysis revealed that this compound well accommodated in the binding site of α-glucosidase and α-amylase enzymes with notably more favorable binding energy as compared to acarbose.
Collapse
Affiliation(s)
- Samira Zareei
- School of Chemistry, Alborz Campus, University of Tehran, 14155-6619 Tehran, Iran
| | - Sara Ranjbar
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Mohammadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Younes Ghasemi
- Computational Vaccine and Drug Design Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sahand Golestanian
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Laya Avizheh
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Majid Tarahomi
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey.
| |
Collapse
|
26
|
Hodyna D, Kovalishyn V, Kachaeva M, Shulha Y, Klipkov A, Shaitanova E, Kobzar O, Shablykin O, Metelytsia L. In Silico, in Vitro and in Vivo Study of Substituted Imidazolidinone Sulfonamides as Antibacterial Agents. Chem Biodivers 2023; 20:e202301267. [PMID: 37943002 DOI: 10.1002/cbdv.202301267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
New substituted imidazolidinone sulfonamides have been developed using a rational drug design strategy. Predictive QSAR models for the search of new antibacterials were created using the OCHEM platform. Regression models were applied to verify a virtual chemical library of new imidazolidinone derivatives designed to have antibacterial activity. A number of substituted imidazolidinone sulfonamides as effective antibacterial agents were identified by QSAR prediction, synthesized and characterized by spectral and elemental, and tested in vitro. Six studied compounds have shown the highest in vitro antibacterial activity against Gram-negative E. coli and Gram-positive S. aureus multidrug-resistant strains. The in vivo acute toxicity of these imidazolidinone sulfonamides based on the LC50 value ranged from 16.01 to 44.35 mg/L (slightly toxic compounds class). The results of molecular docking suggest that the antibacterial mechanism of the compounds can be associated with the inhibition of post-translational modification processes of bacterial peptides and proteins.
Collapse
Affiliation(s)
- Diana Hodyna
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Vasyl Kovalishyn
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Maryna Kachaeva
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Yurii Shulha
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Anton Klipkov
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Elena Shaitanova
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Oleksandr Kobzar
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Oleh Shablykin
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| | - Larysa Metelytsia
- V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 02094, Academician Kukhar Str, 1, Kyiv, Ukraine
| |
Collapse
|
27
|
Aruchamy B, Kuruburu MG, Bovilla VR, Madhunapantula SV, Drago C, Benny S, Presanna AT, Ramani P. Design, Synthesis, and Anti-Breast Cancer Potential of Imidazole-Pyridine Hybrid Molecules In Vitro and Ehrlich Ascites Carcinoma Growth Inhibitory Activity Assessment In Vivo. ACS OMEGA 2023; 8:40287-40298. [PMID: 37929115 PMCID: PMC10620790 DOI: 10.1021/acsomega.3c04384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/15/2023] [Indexed: 11/07/2023]
Abstract
Breast cancer remains a challenging medical issue and is a high priority for biomedical research despite significant advancements in cancer research and therapy. The current study aims to determine the anticancer activity of a group of imidazole-pyridine-based scaffolds against a variety of breast cancer cell lines differing in their receptor expression (estrogen receptor (ER), progesterone receptor (PR), and HER-2). A series of 10 molecules (coded 5a-5j) were synthesized through multicomponent and alkylation reactions. FTIR, MS, 1H, and 13C NMR spectral analyses confirmed the structures and purity of the synthesized molecules. Subsequently, these molecules were tested for their ability to inhibit the viability of cell lines representing carcinoma of the breast, viz., MDA-MB-468 (ER-, PR-, and HER-), BT-474 (ER+, PR+, and HER+), T-47D (ER+, PR+, and HER-), and MCF-7 (ER+, PR+, and HER-) in vitro. Among these 10 molecules, 5a, 5c, 5d, and 5e exhibited better potency, as evidenced by IC50 < 50 μM at 24 h of treatment against BT-474 and MDA-MB-468 cell lines. However, except for 5d, the IC50 value is much higher than 50 μM when tested against T47D and MCF-7 cell lines at 24h. Extended treatment for 48 h reduced the effect of these molecules, as an increase in IC50 was observed. In mice, intraperitoneal administration of 5e retarded the Ehrlich ascites carcinoma (EAC) growth without causing any organ toxicity at the doses tested. In summary, we report the synthesis scheme and key structural requirements for a new series of imidazole-pyridine molecules for in vitro inhibition of the feasibility of breast cancer cells and in vivo inhibition of EAC tumors.
Collapse
Affiliation(s)
- Baladhandapani Aruchamy
- Dhanvanthri
Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center
of Excellence in Advanced Materials & Green Technologies (CoE−AMGT),
Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Coimbatore 641112, India
| | - Mahadevaswamy G. Kuruburu
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
a DST-FIST Supported Center), Department of Biochemistry (a DST-FIST
Supported Department), JSS Medical College,
JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Venugopal R. Bovilla
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
a DST-FIST Supported Center), Department of Biochemistry (a DST-FIST
Supported Department), JSS Medical College,
JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - SubbaRao V. Madhunapantula
- Center
of Excellence in Molecular Biology and Regenerative Medicine (CEMR,
a DST-FIST Supported Center), Department of Biochemistry (a DST-FIST
Supported Department), JSS Medical College,
JSS Academy of Higher Education & Research, Mysore 570015, Karnataka, India
| | - Carmelo Drago
- Institute
of Biomolecular Chemistry, CNR, via Paolo Gaifami 18, I-95126 Catania, Italy
| | - Sonu Benny
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041, India
| | - Aneesh Thankappan Presanna
- Department
of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Kochi, Kerala 682041, India
| | - Prasanna Ramani
- Dhanvanthri
Laboratory, Department of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore 641112, India
- Center
of Excellence in Advanced Materials & Green Technologies (CoE−AMGT),
Amrita School of Engineering, Amrita Vishwa
Vidyapeetham, Coimbatore 641112, India
| |
Collapse
|
28
|
Fatima M, Aslam S, Zafar AM, Irfan A, Khan MA, Ashraf M, Faisal S, Noreen S, Shazly GA, Shah BR, Bin Jardan YA. Exploring the Synthetic Chemistry of Phenyl-3-(5-aryl-2-furyl)- 2-propen-1-ones as Urease Inhibitors: Mechanistic Approach through Urease Inhibition, Molecular Docking and Structure-Activity Relationship. Biomedicines 2023; 11:2428. [PMID: 37760869 PMCID: PMC10525509 DOI: 10.3390/biomedicines11092428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Furan chalcone scaffolds belong to the most privileged and promising oxygen-containing heterocyclic class of compounds, which have a wide spectrum of therapeutic applications in the field of pharmaceutics, pharmacology, and medicinal chemistry. This research described the synthesis of a series of twelve novel and seven reported furan chalcone (conventional synthetic approach) analogues 4a-s through the application of microwave-assisted synthetic methodology and evaluated for therapeutic inhibition potential against bacterial urease enzyme. In the first step, a series of nineteen substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were achieved in moderate to good yields (40-70%). These substituted 5-aryl-2-furan-2-carbaldehyde derivatives 3a-s were condensed with acetophenone via Claisen-Schmidt condensation to furnish 19 substituted furan chalcone scaffolds 4a-s in excellent yields (85-92%) in microwave-assisted synthetic approach, while in conventional methodology, these furan chalcone 4a-s were furnished in good yield (65-90%). Furan chalcone structural motifs 4a-s were characterized through elemental analysis and spectroscopic techniques. These nineteen (19)-afforded furan chalcones 4a-s were screened for urease inhibitory chemotherapeutic efficacy and most of the furan chalcones displayed promising urease inhibition activity. The most active urease inhibitors were 1-phenyl-3-[5-(2',5'-dichlorophenyl)-2-furyl]-2-propen-1-one 4h with an IC50 value of 16.13 ± 2.45 μM, and 1-phenyl- 3-[5-(2'-chlorophenyl)-2-furyl] -2-propen-1-one 4s with an IC50 value of 18.75 ± 0.85 μM in comparison with reference drug thiourea (IC50 = 21.25 ± 0.15 μM). These furan chalcone derivatives 4h and 4s are more efficient urease inhibitors than reference drug thiourea. Structure-activity relationship (SAR) revealed that the 2,5-dichloro 4h and 2-chloro 4s moiety containing furan chalcone derivatives may be considered as potential lead reagents for urease inhibition. The in silico molecular docking study results are in agreement with the experimental biological findings. The results of this study may be helpful in the future drug discovery and designing of novel efficient urease inhibitory agents from this biologically active class of furan chalcones.
Collapse
Affiliation(s)
- Miraj Fatima
- Department of Chemistry, The Women University, Multan 66000, Pakistan
| | - Samina Aslam
- Department of Chemistry, The Women University, Multan 66000, Pakistan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ansa Madeeha Zafar
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Chemistry, Government Sadiq Women University, Bahawalpur 63100, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Misbahul Ain Khan
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Ashraf
- Department of Biotechnology and Biochemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Shah Faisal
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan
| | - Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bakht Ramin Shah
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czech Republic
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
29
|
Cordeiro MM, Filipe HAL, dos Santos P, Samelo J, Ramalho JPP, Loura LMS, Moreno MJ. Interaction of Hoechst 33342 with POPC Membranes at Different pH Values. Molecules 2023; 28:5640. [PMID: 37570608 PMCID: PMC10420284 DOI: 10.3390/molecules28155640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Hoechst 33342 (H33342) is a fluorescent probe that is commonly used to stain the DNA of living cells. To do so, it needs to interact with and permeate through cell membranes, despite its high overall charge at physiological pH values. In this work, we address the effect of pH in the association of H33342 with lipid bilayers using a combined experimental and computational approach. The partition of H33342 to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipid membranes was experimentally quantified using fluorescence spectroscopy and isothermal titration calorimetry (ITC) measurements. Quantum chemical calculations were performed to select the most stable isomer of H33342 for the overall charges 0, +1, and +2, expected to predominate across the 5 < pH < 10 range. The interaction of these isomers with POPC bilayers was then studied by both unrestrained and umbrella sampling molecular dynamics (MD) simulations. Both experimental results and computational free energy profiles indicate that the partition coefficient of H33342 displays a small variation over a wide pH range, not exceeding one order of magnitude. The enthalpy variation upon partition to the membrane suggests efficient hydrogen bonding between the probe and the lipid, namely, for the protonated +2 form, which was confirmed in the MD simulation studies. The relatively high lipophilicity obtained for the charged species contrasts with the decrease in their general hydrophobicity as estimated from octanol/water partition. This highlights the distinction between lipophilicity and hydrophobicity, as well as the importance of considering the association with lipid bilayers when predicting the affinity for biomembranes.
Collapse
Affiliation(s)
- Margarida M. Cordeiro
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Hugo A. L. Filipe
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Polytechnic of Guarda, CPIRN-IPG—Center of Potential and Innovation of Natural Resources, 6300-559 Guarda, Portugal
| | - Patrícia dos Santos
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Jaime Samelo
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
| | - João P. Prates Ramalho
- LAQV, REQUIMTE, Hercules Laboratory, Department of Chemistry, School of Science and Technology, University of Évora, 7000-671 Évora, Portugal;
| | - Luís M. S. Loura
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535 Coimbra, Portugal; (M.M.C.); (H.A.L.F.); (J.S.)
- Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
30
|
Jani T, P C V, Vinodkumar M. Theoretical Investigation of Electron Impact Scattering on Imidazole. J Phys Chem A 2023. [PMID: 37258493 DOI: 10.1021/acs.jpca.3c02246] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study presents the results of electron scattering calculations on a biologically important molecule, imidazole, using the UK molecular R-matrix method. The R-matrix calculations are performed using SE, SEP, and CC models, and the resonance detected in the present SEP model is found to be in better agreement with available experimental data than previous theoretical data. The study also reports an inelastic scattering cross section, which comprises dissociative electron attachment (DEA), excitation, and ionization cross section, for the first time. The total scattering cross sections are also reported for the first time. We confirm the presence of the two well-known π* shape resonances predicted earlier experimentally. Due to the scarcity of total scattering cross section (TCS) data for imidazole, we have compared the TCS of imidazole with its isoelectronic target isoxazole and drawn important conclusions. A comparison among the resonances of imidazole with those of isoxazole helps us to conclude that electron attachment to π* molecular orbitals is a general feature displayed by these five-membered heterocyclic compounds. The comprehensive electron scattering studies presented in this work are expected to provide a deeper understanding of electron-induced biochemical processes and fill gaps in the available data. Furthermore, this study is anticipated to inspire further investigations on imidazole and other five-membered heterocyclic ring molecules, which have significant applications in medicine.
Collapse
Affiliation(s)
- Tejas Jani
- Gujarat Arts & Science College, Gujarat University, Ahmedabad 38006, India
- V.P. & R.P.T.P. Science College, Sardar Patel University, Vallabh Vidyanagar 388120, India
| | - Vinodkumar P C
- P. D. Patel Institute of Applied Science, CHARUSAT, Changa, Anand 388001, India
| | - Minaxi Vinodkumar
- V.P. & R.P.T.P. Science College, Sardar Patel University, Vallabh Vidyanagar 388120, India
| |
Collapse
|
31
|
Pilon A, Avecilla F, Mohai M, Enyedy ÉA, Rácz B, Spengler G, Garcia MH, Valente A. First iron(II) organometallic compound acting as ABCB1 inhibitor. Eur J Med Chem 2023; 256:115466. [PMID: 37187089 DOI: 10.1016/j.ejmech.2023.115466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Five new iron (II) complexes bearing imidazole-based (Imi-R) ligands with the general formula [Fe(η5-C5H5)(CO)(PPh3)(Imi-R)][CF3SO3] were synthesized and fully characterized by several spectroscopic and analytical techniques. All compounds crystallize in centrosymmetric space groups in a typical "piano stool" distribution. Given the growing importance of finding alternatives to overcome different forms of multidrug resistance, all compounds were tested against cancer cell lines with different ABCB1 efflux pump expression, namely, the doxorubicin-sensitive (Colo205) and doxorubicin-resistant (Colo320) human colon adenocarcinoma cell lines. Compound 3 bearing 1-benzylimidazole was the most active in both cell lines with IC50 values of 1.26 ± 0.11 and 2.21 ± 0.26 μM, respectively, being also slightly selective against the cancer cells (vs. MRC5 normal human embryonic fibroblast cell lines). This compound, together with compound 2 bearing 1H-1,3-benzodiazole, were found to display very potent ABCB1 inhibitory effect. Compound 3 also showed the ability to induce cell apoptosis. Iron cellular accumulation studies by ICP-MS and ICP-OES methods revealed that the compounds' cytotoxicity is not related to the extent of iron accumulation. Yet, it is worth mentioning that, from the compounds tested, 3 was the only one where iron accumulation was greater in the resistant cell line than in the sensitive one, validating the possible role of ABCB1 inhibition in its mechanism of action.
Collapse
Affiliation(s)
- Adhan Pilon
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruña, 15071, A Coruña, Spain
| | - Miklós Mohai
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, H-1117, Budapest, Hungary
| | - Éva A Enyedy
- MTA-SZTE Lendület Functional Metal Complexes Research Group, Department of Inorganic and Analytical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dóm tér 7, H-6720, Szeged, Hungary
| | - Bálint Rácz
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis utca 6, H-6725, Szeged, Hungary
| | - M Helena Garcia
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
32
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
33
|
Design, synthesis, spectroscopic characterization, single crystal X-ray analysis, in vitro α-amylase inhibition assay, DPPH free radical evaluation and computational studies of naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles. Eur J Med Chem 2023; 250:115230. [PMID: 36863227 DOI: 10.1016/j.ejmech.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
In our quest to design and develop N/O-containing inhibitors of α-amylase, we have tried to synergize the inhibitory action of 1,4-naphthoquinone, imidazole and 1,2,3-triazole motifs by incorporating these structures into a single matrix. For this, a series of novel naphtho[2,3-d]imidazole-4,9-dione appended 1,2,3-triazoles is synthesized by a sequential approach involving [3 + 2] cycloaddition of 2-aryl-1-(prop-2-yn-1-yl)-1H-naphtho[2,3-d]imidazole-4,9-diones with substituted azides. The chemical structures of all the compounds are established with the help of 1D-NMR, 2D-NMR, IR, mass and X-ray studies. The developed molecular hybrids are screened for their inhibitory action on the α-amylase enzyme using the reference drug, acarbose. Different substituents present on the attached aryl part of the target compounds show amazing variations in inhibitory action against the α-amylase enzyme. Based on the type of substituents and their respective positions, it is observed that compounds containing -OCH3 and -NO2 groups show more inhibition potential than others. All the tested derivatives display α-amylase inhibitory activity with IC50 values in the range of 17.83 ± 0.14 to 26.00 ± 0.17 μg/mL. Compound 2-(2,3,4-trimethoxyphenyl)-1-{[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl]methyl}-1H-naphtho[2,3-d]imidazole-4,9-dione (10y) show maximum inhibition of amylase activity with IC50 value 17.83 ± 0.14 μg/mL as compared to reference drug acarbose (18.81 ± 0.05 μg/mL). A molecular docking study of the most active derivative (10y) is performed with A. oryzae α-amylase (PDB ID: 7TAA) and it unveils favourable binding interactions within the active site of the receptor molecule. The dynamic studies reveal that the receptor-ligand complex is stable as the RMSD of less than 2 is observed in 100 ns molecular dynamic simulation. Also, the designed derivatives are assayed for their DPPH free radical scavenging ability and all of them exhibit comparable radical scavenging activity with the standard, BHT. Further, to assess their drug-likeness properties, ADME properties are also evaluated and all of them demonstrate worthy in silico ADME results.
Collapse
|
34
|
Jasiewicz B, Babijczuk K, Warżajtis B, Rychlewska U, Starzyk J, Cofta G, Mrówczyńska L. Indole Derivatives Bearing Imidazole, Benzothiazole-2-Thione or Benzoxazole-2-Thione Moieties-Synthesis, Structure and Evaluation of Their Cytoprotective, Antioxidant, Antibacterial and Fungicidal Activities. Molecules 2023; 28:molecules28020708. [PMID: 36677766 PMCID: PMC9867442 DOI: 10.3390/molecules28020708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
In the search for new bioactive compounds, a methodology based on combining two molecules with biological properties into a new hybrid molecule was used to design and synthesize of a series of ten indole derivatives bearing imidazole, benzothiazole-2-thione, or benzoxazole-2-thione moieties at the C-3 position. The compounds were spectroscopically characterized and tested for their antioxidant, antibacterial, and fungicidal activities. The crystal structures were determined for five of them. Comparison of the closely related structures containing either benzothiazole-2-thione or benzoxazole-2-thione clearly shows that the replacement of -S- and -O- ring atoms modify molecular conformation in the crystal, changes intermolecular interactions, and has a severe impact on biological activity. The results indicate that indole-imidazole derivatives with alkyl substituent exhibit an excellent cytoprotective effect against AAPH-induced oxidative hemolysis and act as effective ferrous ion chelating agents. The indole-imidazole compound with chlorine atoms inhibited the growth of fungal strains: Coriolus versicolor (Cv), Poria placenta (Pp), Coniophora puteana (Cp), and Gloeophyllum trabeum (Gt). The indole-imidazole derivatives showed the highest antibacterial activity, for which the largest growth-inhibition zones were noted in M. luteus and P. fluorescens cultures. The obtained results may be helpful in the development of selective indole derivatives as effective antioxidants and/or antimicrobial agents.
Collapse
Affiliation(s)
- Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
- Correspondence: (B.J.); (L.M.)
| | - Karolina Babijczuk
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Beata Warżajtis
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Urszula Rychlewska
- Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Justyna Starzyk
- Department of Soil Science and Microbiology, Faculty of Agronomy, Horticulture, and Bioengineering, University of Life Science, Szydłowska 50, 60-656 Poznań, Poland
| | - Grzegorz Cofta
- Department of Wood Chemical Technology, Faculty of Forest and Wood Technology, University of Life Science, Wojska Polskiego 28, 60-637 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
- Correspondence: (B.J.); (L.M.)
| |
Collapse
|
35
|
Babamale HF, Khor BK, Chear NJY, Yam W. Suppressive effects of azobenzene-imidazolium ionic conjugates on human cervical adenocarcinoma cells: Effects of alkyl chains and ortho-fluorination. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
37
|
Chaudhry F, Munir R, Ashraf M, Mehr-un-Nisa, Huma R, Malik N, Hussain S, Ali Munawar M, Ain Khan M. Exploring Facile Synthesis and Cholinesterase Inhibiting Potential of Heteroaryl Substituted Imidazole Derivatives for the Treatment of Alzheimer’s Disease. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
38
|
Yiğit M, Demir Y, Barut Celepci D, Taskin-Tok T, Arınç A, Yiğit B, Aygün M, Özdemir İ, Gülçin İ. Phthalimide-tethered imidazolium salts: Synthesis, characterization, enzyme inhibitory properties, and in silico studies. Arch Pharm (Weinheim) 2022; 355:e2200348. [PMID: 36153848 DOI: 10.1002/ardp.202200348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
A series of new imidazolium salts were prepared in good yield by the reaction between 1-alkylimidazole and a variety of alkyl halides. The structures of the compounds were identified by FT-IR, 1 H NMR, and 13 C NMR spectroscopy, elemental analysis, and mass spectrometry. The crystal structure of 1b was determined by the single-crystal X-ray diffraction method. The phthalimide-tethered imidazolium salts exhibited inhibition abilities toward acetylcholinesterase (AChE) and human carbonic anhydrases (hCAs) I and II, with Ki values in the range of 24.63 ± 3.45 to 305.51 ± 35.98 nM for AChE, 33.56 ± 3.71 to 218.01 ± 25.21 nM for hCA I and 17.75 ± 0.96 to 308.67 ± 13.73 nM for hCA II. The results showed that the new imidazolium salts can play a key role in the treatment of Alzheimer's disease, epilepsy, glaucoma, and leukemia, which is related to their inhibition abilities of hCA I, hCA II, and AChE. Molecular docking and in silico absorption, distribution, metabolism, excretion and toxicity studies were used to look into how the imidazolium salts interacted with the specific protein targets. To better visualize and understand the binding positions and the influence of the imidazolium salts on hCA I, hCA II, and AChE conformations, each one was subjected to molecular docking simulations.
Collapse
Affiliation(s)
- Murat Yiğit
- Department of Chemistry and Chemical Process Technologies, Vocational School of Technical Sciences, Adiyaman University, Adıyaman, Turkey
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, Ardahan, Turkey
| | - Duygu Barut Celepci
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - Tuğba Taskin-Tok
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Institute of Health Sciences, Gaziantep University, Gaziantep, Turkey
| | - Ali Arınç
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, Adıyaman, Turkey
| | - Beyhan Yiğit
- Department of Chemistry, Faculty of Science and Art, Adiyaman University, Adıyaman, Turkey
| | - Muhittin Aygün
- Department of Physics, Faculty of Science, Dokuz Eylül University, İzmir, Turkey
| | - İsmail Özdemir
- Department of Chemistry, Faculty of Science and Art, İnönü University, Malatya, Turkey
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
39
|
Zadeh MMA, Rostami E, Zare SH. Graphene oxide functionalized diethanolamine sulfate as a novel, highly efficient and sustainable catalyst for the synthesis of 8-aryl-7H-acenaphtho[1,2-d] imidazoles. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Bidusenko IA, Schmidt EY, Ushakov IA, Vashchenko AV, Protsuk NI, Orel VB, Vitkovskaya NM, Trofimov BA. Semistabilized Diazatrienyl Anions from Pyridine Imines and Acetylenes: An Access to ( Z)-Stilbene/Imidazopyridine Ensembles, Benzyl Imidazopyridines, and Beyond. J Org Chem 2022; 87:12225-12239. [PMID: 36044622 DOI: 10.1021/acs.joc.2c01372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Semistabilized diazatrienyl anions are generated by the reaction of 2-pyridylarylimines with arylacetylenes in superbase systems MOtBu (M = Li, Na, K)/DMSO at ambient temperature for 15 min. The initial intermediate N-centered propargyl-1,3-diaza-1,3,5-trienyl anions undergo intermolecular cyclization to benzyl imidazopyridine anions (formally [3 + 2] cycloaddition), further intercepting a second molecule of the starting pyridylimines or a proton of medium to afford (Z)-stilbene/imidazopyridine ensembles and benzyl imidazopyridines. The charge distribution in all intermediate anions and their synthetic evolution are consistent with quantum-chemical analysis (B2PLYPD/6-311+G**//B3LYP/6-31+G*).
Collapse
Affiliation(s)
- Ivan A Bidusenko
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Elena Yu Schmidt
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Igor A Ushakov
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Alexander V Vashchenko
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Nadezhda I Protsuk
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| | - Vladimir B Orel
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia.,Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russia
| | - Nadezhda M Vitkovskaya
- Laboratory of Quantum-Chemical Modeling of Molecular Systems, Irkutsk State University, 1 K. Marx Street, 664003 Irkutsk, Russia
| | - Boris A Trofimov
- E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
41
|
Solo P, Arockia doss M, Prasanna D. Designing and docking studies of imidazole-based drugs as potential inhibitors of myeloperoxidase (MPO) mediated inflammation and oxidative stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
42
|
Mahdy AR, Abu Ali OA, Serag WM, Fayad E, Elshaarawy RF, Gad EM. Synthesis, characterization, and biological activity of Co(II) and Zn(II) complexes of imidazoles-based azo-functionalized Schiff bases. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Johari S, Halim SNA, Johan MR, Khaligh NG. Synthesis and characterization of 1,4-di(1H-imidazol-1-yl) butane dihydrate and 1,4-di(1H-2-methylimidazol-1-yl) butane tetrahydrate: A study of the methyl group effect on spectroscopic data, thermal properties, and the crystal structures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Gapanenok D, Makhmet A, Peshkov AA, Smirnova D, Amire N, Peshkov VA, Spiridonova D, Dar'in D, Balalaie S, Krasavin M. Multicomponent Assembly of Trisubstituted Imidazoles and Their Photochemical Cyclization into Fused Polyheterocyclic Scaffolds. J Org Chem 2022; 87:7838-7851. [PMID: 35675099 DOI: 10.1021/acs.joc.2c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A straightforward route to a large and diverse library of trisubstituted imidazoles was established via a three-component reaction of 2-oxoaldehydes, 1,3-dicarbonyl compounds, and acyclic nitrogen bis-nucleophiles. The obtained products were subsequently explored in a photochemical cyclization yielding a variety of imidazole-fused polycyclic compounds.
Collapse
Affiliation(s)
- Diana Gapanenok
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Azat Makhmet
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.,L. N. Gumilyov Eurasian National University, Department of Chemistry, Faculty of Natural Sciences, Nur-Sultan, 010000, Kazakhstan.,Nazarbayev University, Department of Chemistry, School of Sciences and Humanities, Nur-Sultan, 010000, Kazakhstan
| | - Anatoly A Peshkov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Darya Smirnova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Niyaz Amire
- Nazarbayev University, Department of Chemistry, School of Sciences and Humanities, Nur-Sultan, 010000, Kazakhstan
| | - Vsevolod A Peshkov
- Nazarbayev University, Department of Chemistry, School of Sciences and Humanities, Nur-Sultan, 010000, Kazakhstan
| | - Darya Spiridonova
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Dmitry Dar'in
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, P.O. Box 15875-4416, 19697 Tehran, Iran
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation.,Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russian Federation
| |
Collapse
|
45
|
Engle K, Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur J Med Chem 2022; 239:114542. [PMID: 35751979 DOI: 10.1016/j.ejmech.2022.114542] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/04/2022]
Abstract
Chemotherapy is one of the most common treatments for cancer that uses one or more anti-cancer drugs as a part of the standardized chemotherapy regimen. Cytotoxic chemicals delay and prevent cancer cells from multiplying, invading, and metastasizing. However, the significant drawbacks of cancer chemotherapy are the lack of selectivity of the cytotoxic drugs to tumour cells and normal cells and the development of resistance by cells for the particular drug or the combination of drugs. Multidrug resistance (MDR) is the low sensitivity of specific cells against drugs associated with cancer chemotherapy. The most common mechanisms of anticancer drug resistance are: (a) drug-dependent MDR (b) target-dependent MDR, and (c) drug target-independent MDR. In all the factors, the overexpression of multidrug efflux systems contributes significantly to the increased resistance in the cancer cells. Multidrug resistance due to efflux of anticancer drugs by membrane ABC transporters includes ABCB1, ABCC1, and ABCG2. ABCB1 inhibition can restore the sensitivity of the cancerous cells toward chemotherapeutic drugs. In this review, we discussed ABCB1 inhibitors under clinical studies with their mode of action, potency and selectivity. Also, we have highlighted the contribution of repurposing drugs, biologics and nano formulation strategies to combat multidrug resistance by modulating the ABCB1 activity.
Collapse
Affiliation(s)
- Kritika Engle
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India
| | - Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Balanagar, 500037, India.
| |
Collapse
|
46
|
Synthesis, in vitro anticancer activity and reactions with biomolecule of gold(I)-NHC carbene complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Feng LS, Gao C, Liu FW, Wang XP, Zhang ZL. Recent updates on the anticancer activity of quinoxaline hybrids (Jan. 2017-Jan. 2022). Curr Top Med Chem 2022; 22:1426-1441. [DOI: 10.2174/1568026622666220428093955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer as one of the leading causes of death among non-communicable diseases has already posed a heavy burden on the world health system. Chemotherapy is one of the most effective approaches for cancer treatment, but multidrug resistance, lack of efficacy, and toxic side effects hamper efficacious cancer chemotherapy, creating an urgent need to develop novel, more effective and less toxic anticancer therapeutics. Quinoxalines as fascinating structures constitute an important class of heterocycles in drug discovery. Quinoxaline hybrids could exert anticancer activity through diverse mechanisms and possess profound in vitro and in vivo efficacy against various cancers including multidrug-resistant forms. Thus, quinoxaline hybrids represent useful templates for the control and eradication of cancer. The purpose of the present review article is to provide an emphasis on the recent developments (Jan. 2017-Jan. 2022) in quinoxaline hybrids with insights into their in vitro and in vivo anticancer potential as well as structure-activity relationships (SARs) to facilitate further rational design of more effective candidates.
Collapse
|
48
|
Bogdanov AV, Sirazieva AR, Voloshina AD, Abzalilov TA, Samorodov AV, Mironov VF. Synthesis and Antimicrobial, Antiplatelet, and Anticoagulant Activities of New Isatin Deivatives Containing a Hetero-Fused Imidazole Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [PMCID: PMC9007260 DOI: 10.1134/s1070428022030101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A series of isatin derivatives containing an adenine or theophylline fragment have been synthesized. The corresponding N′-[2-(trimethylammonio)acetyl] and N′-(2-pyridinioacetyl) hydrazones have been found to exhibit neither cytotoxicity nor hemotoxicity. Quaternary salts based on adenine derivatives of 5-methyl- and 5-ethylisatins showed the highest antiplatelet activity which exceeded the activity of acetylsalicylic acid by a factor of 1.5.
Collapse
Affiliation(s)
- A. V. Bogdanov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
- Kazan (Volga region) Federal University, 420008 Kazan, Russia
| | - A. R. Sirazieva
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - A. D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| | - T. A. Abzalilov
- Bashkir State Medical University, Ministry of Health of the Russian Federation, 450008 Ufa, Russia
| | - A. V. Samorodov
- Bashkir State Medical University, Ministry of Health of the Russian Federation, 450008 Ufa, Russia
| | - V. F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
49
|
Suliman RS, Alghamdi SS, Ali R, Rahman I, Alqahtani T, Frah IK, Aljatli DA, Huwaizi S, Algheribe S, Alehaideb Z, Islam I. Distinct Mechanisms of Cytotoxicity in Novel Nitrogenous Heterocycles: Future Directions for a New Anti-Cancer Agent. Molecules 2022; 27:molecules27082409. [PMID: 35458609 PMCID: PMC9029529 DOI: 10.3390/molecules27082409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
Electron-rich, nitrogenous heteroaromatic compounds interact more with biological/cellular components than their non-nitrogenous counterparts. The strong intermolecular interactions with proteins, enzymes, and receptors confer significant biological and therapeutic properties to the imidazole derivatives, giving rise to a well-known and extensively used range of therapeutic drugs used for infections, inflammation, and cancer, to name a few. The current study investigates the anti-cancer properties of fourteen previously synthesized nitrogenous heterocycles, derivatives of imidazole and oxazolone, on a panel of cancer cell lines and, in addition, predicts the molecular interactions, pharmacokinetic and safety profiles of these compounds. Method: The MTT and CellTiter-Glo® assays were used to screen the imidazole and oxazolone derivatives on six cancer cell lines: HL60, MDA-MB-321, KAIMRC1, KMIRC2, MCF-10A, and HCT8. Subsequently, in vitro tubulin staining and imaging were performed, and the level of apoptosis was measured using the Promega ApoTox-Glo® triplex assay. Furthermore, several computational tools were utilized to investigate the pharmacokinetics and safety profile, including PASS Online, SEA Search, the QikProp tool, SwissADME, ProTox-II, and an in silico molecular docking study on tubulin to identify the critical molecular interactions. Results: In vitro analysis identified compounds 8 and 9 to possess the most significant potent cytotoxic activity on the HL60 and MDA-MB-231 cell lines, supported by PASS Online anti-cancer predictions with pa scores of 0.413 and 0.434, respectively. In addition, compound 9 induced caspase 3/7 dependent-apoptosis and interfered with tubulin polymerization in the MDA-MB-231 cell line, consistent with in silico docking results, identifying binding similarity to the native ligand colchicine. All the derivatives, including compounds 8 and 9, had acceptable pharmacokinetics; however, the safety profile was suboptimal for all the tested derivates except compound 4. Conclusion: The imidazole derivative compound 9 is a promising anti-cancer agent that switches on caspase-dependent apoptotic cell death and modulates microtubule function. Therefore, it could be a lead compound for further drug optimization and development.
Collapse
Affiliation(s)
- Rasha Saad Suliman
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Sahar Saleh Alghamdi
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
- Correspondence: (R.S.S.); (S.S.A.); Tel.: +966-(11)-429-9570 (R.S.S.); +966-(11)-429-9516 (S.S.A.)
| | - Rizwan Ali
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ishrat Rahman
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Tariq Alqahtani
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Ibrahim K. Frah
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Dimah A. Aljatli
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh 14611, Saudi Arabia; (R.A.); (T.A.); (I.K.F.); (D.A.A.)
| | - Sarah Huwaizi
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Shatha Algheribe
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Zeyad Alehaideb
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| | - Imadul Islam
- Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard Health Affairs, Riyadh 14811, Saudi Arabia; (S.H.); (S.A.); (Z.A.); (I.I.)
| |
Collapse
|
50
|
Synthesis, characterization, SC-XRD, HSA and DFT study of a novel copper(I) iodide complex with 2-(thiophen-2-yl)-4,5-dihydro-1H-imidazole ligand: An experimental and theoretical approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132264] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|