1
|
Zhang T, Liu J, Liu X, Wang Q, Zhang H. The causal impact of gut microbiota on circulating adipokine concentrations: a two-sample Mendelian randomization study. Hormones (Athens) 2024; 23:789-799. [PMID: 38564143 DOI: 10.1007/s42000-024-00553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE Evidence from previous experimental and observational research demonstrates that the gut microbiota is related to circulating adipokine concentrations. Nevertheless, the debate as to whether gut microbiome composition causally influences circulating adipokine concentrations remains unresolved. This study aimed to take an essential step in elucidating this issue. METHODS We used two-sample Mendelian randomization (MR) to causally analyze genetic variation statistics for gut microbiota and four adipokines (including adiponectin, leptin, soluble leptin receptor [sOB-R], and plasminogen activator inhibitor-1 [PAI-1]) from large-scale genome-wide association studies (GWAS) datasets. A range of sensitivity analyses was also conducted to assess the stability and reliability of the results. RESULTS The composite results of the MR and sensitivity analyses revealed 22 significant causal associations. In particular, there is a suggestive causality between the family Clostridiaceae1 (IVW: β = 0.063, P = 0.034), the genus Butyrivibrio (IVW: β = 0.029, P = 0.031), and the family Alcaligenaceae (IVW: β=-0.070, P = 0.014) and adiponectin. Stronger causal effects with leptin were found for the genus Enterorhabdus (IVW: β=-0.073, P = 0.038) and the genus Lachnospiraceae (NK4A136 group) (IVW: β=-0.076, P = 0.01). Eight candidate bacterial groups were found to be associated with sOB-R, with the phylum Firmicutes (IVW: β = 0.235, P = 0.03) and the order Clostridiales (IVW: β = 0.267, P = 0.028) being of more interest. In addition, the genus Roseburia (IVW: β = 0.953, P = 0.022) and the order Lactobacillales (IVW: β=-0.806, P = 0.042) were suggestive of an association with PAI-1. CONCLUSION This study reveals a causal relationship between the gut microbiota and circulating adipokines and may help to offer novel insights into the prevention of abnormal concentrations of circulating adipokines and obesity-related diseases.
Collapse
Affiliation(s)
- Tongxin Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Jingyu Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Xiao Liu
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Qian Wang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| | - Huawei Zhang
- Department of Ultrasound, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China.
| |
Collapse
|
2
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
3
|
Gao Y, Zhu R, Dong J, Li Z. Pathogenesis of NAFLD-Related Hepatocellular Carcinoma: An Up-to-Date Review. J Hepatocell Carcinoma 2023; Volume 10:347-356. [DOI: 10.2147/jhc.s400231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
4
|
Chrysavgis L, Giannakodimos I, Diamantopoulou P, Cholongitas E. Non-alcoholic fatty liver disease and hepatocellular carcinoma: Clinical challenges of an intriguing link. World J Gastroenterol 2022; 28:310-331. [PMID: 35110952 PMCID: PMC8771615 DOI: 10.3748/wjg.v28.i3.310] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the most common liver disorder worldwide mainly attributed to the epidemic spread of obesity and type 2 diabetes mellitus. Although it is considered a benign disease, NAFLD can progress to non-alcoholic steatohepatitis, liver cirrhosis and hepatocellular carcinoma (HCC). Most data regarding the epidemiology of NAFLD-related HCC are derived from cohort and population studies and show that its incidence is increasing as well as it is likely to emerge as the leading indication for liver transplantation, especially in the Western World. Although cirrhosis constitutes the main risk factor for HCC development, in patients with NAFLD, HCC can arise in the absence of cirrhosis, indicating specific carcinogenic molecular pathways. Since NAFLD as an underlying liver disease for HCC is often underdiagnosed due to lack of sufficient surveillance in this population, NAFLD-HCC patients are at advanced HCC stage at the time of diagnosis making the management of those patients clinically challenging and affecting their prognostic outcomes. In this current review, we summarize the latest literature on the epidemiology, other than liver cirrhosis-pathogenesis, risk factors and prognosis of NAFLD-HCC patients. Finally, we emphasize the prevention of the development of NAFLD-associated HCC and we provide some insight into the open questions and issues regarding the appropriate surveillance policies for those patients.
Collapse
Affiliation(s)
- Lampros Chrysavgis
- Department of Experimental Physiology, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Ilias Giannakodimos
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Panagiota Diamantopoulou
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, "Laiko" General Hospital of Athens, National and Kapodistrian University of Athens, Athens 11527, Greece
| |
Collapse
|
5
|
Dimitrakopoulos C, Hindupur SK, Colombi M, Liko D, Ng CKY, Piscuoglio S, Behr J, Moore AL, Singer J, Ruscheweyh HJ, Matter MS, Mossmann D, Terracciano LM, Hall MN, Beerenwinkel N. Multi-omics data integration reveals novel drug targets in hepatocellular carcinoma. BMC Genomics 2021; 22:592. [PMID: 34348664 PMCID: PMC8340535 DOI: 10.1186/s12864-021-07876-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic aberrations in hepatocellular carcinoma (HCC) are well known, but the functional consequences of such aberrations remain poorly understood. RESULTS Here, we explored the effect of defined genetic changes on the transcriptome, proteome and phosphoproteome in twelve tumors from an mTOR-driven hepatocellular carcinoma mouse model. Using Network-based Integration of multi-omiCS data (NetICS), we detected 74 'mediators' that relay via molecular interactions the effects of genetic and miRNA expression changes. The detected mediators account for the effects of oncogenic mTOR signaling on the transcriptome, proteome and phosphoproteome. We confirmed the dysregulation of the mediators YAP1, GRB2, SIRT1, HDAC4 and LIS1 in human HCC. CONCLUSIONS This study suggests that targeting pathways such as YAP1 or GRB2 signaling and pathways regulating global histone acetylation could be beneficial in treating HCC with hyperactive mTOR signaling.
Collapse
Affiliation(s)
- Christos Dimitrakopoulos
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland.,Present address: Roche, PTD Biologics Europe, 4070, Basel, Switzerland
| | - Sravanth Kumar Hindupur
- Biozentrum, University of Basel, 4056, Basel, Switzerland.,Present address: Novartis Institutes for BioMedical Research, Disease Area Oncology, 4002, Basel, Switzerland
| | - Marco Colombi
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Dritan Liko
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Charlotte K Y Ng
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland.,Department of BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Salvatore Piscuoglio
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland.,Department of Biomedicine, Visceral Surgery Research Laboratory, Clarunis, Basel, Switzerland.,Clarunis Universitäres Bauchzentrum Basel, Basel, Switzerland
| | - Jonas Behr
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Ariane L Moore
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jochen Singer
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Hans-Joachim Ruscheweyh
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Matthias S Matter
- Institute of Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Dirk Mossmann
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | | - Michael N Hall
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland. .,Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
6
|
Body weight variability and cancer incidence in men aged 40 years and older-Korean National Insurance Service Cohort. Sci Rep 2021; 11:12122. [PMID: 34108574 PMCID: PMC8190310 DOI: 10.1038/s41598-021-91601-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 05/20/2021] [Indexed: 12/11/2022] Open
Abstract
Repeated weight fluctuation has been proposed as a potential risk factor for increasing morbidity and mortality including cancer. We aimed to investigate the association between body weight variability (BWV) and all cancer and site-specific cancer incidence and the impact of smoking on these associations. A total of 1,759,848 cancer-free male subjects who had their weight measured at least 5 times from the National Health Insurance Service-Health Screening Cohort from 2002 to 2011 were included and followed up until 2015. BWV was defined as the average absolute difference between successive values (ASV). The risk of cancer and site-specific cancer from BWV was identified using Cox proportional hazards regression analysis using hazard ratios (HRs) and 95% confidence intervals (CIs) adjusted for potential confounders including weight, and stratified analysis was also conducted according to smoking status. During the 7,015,413 person-years of follow-up, 11,494 patients (0.65%) developed new-onset cancers. BWV was associated with a higher risk of all cancers after adjustment for confounders. The highest BWV quintile group compared to the lowest had greater risks of all cancers and site-specific cancers including lung, liver, and prostate cancer (HR 1.22, 95% CI 1.15–1.30; HR 1.22, 95% CI 1.07–1.39; HR 1.46, 95% CI 1.19–1.81; HR 1.36, 95% CI 1.15–1.62, in all cancers, lung, liver and prostate cancer, respectively). Due to small number of cancer occurrence, the risk of kidney cancer was increased, but statistically insignificant (HR 1.38, 95% CI 0.91–2.10). Similar results were observed in noncurrent smokers. However, in current smokers, the risks of all cancers and only prostate cancer were significantly increased in the highest BWV quintile group (HR 1.19, 95% CI 1.09–1.31; HR 1.51, 95% CI 1.08–2.11). The risk of kidney cancer also increased in this group, although the finding was not statistically significant (HR 1.77, 95% CI 0.87–3.63) This study suggested BWV is an independent risk factor for cancer in men, especially in lung, liver, and prostate cancer, but evidence was weaker in kidney cancer. This association remained significant only in prostate cancer in current smokers.
Collapse
|
7
|
Rajesh Y, Sarkar D. Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer. Int J Mol Sci 2021; 22:ijms22042163. [PMID: 33671547 PMCID: PMC7926723 DOI: 10.3390/ijms22042163] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their role as potential therapeutic targets. The field is rapidly developing, and further research is still required to fully understand the underlying mechanisms for the metabolic actions of adipokines and their role in obesity-associated HCC.
Collapse
Affiliation(s)
- Yetirajam Rajesh
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA;
| | - Devanand Sarkar
- Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA
- Correspondence: ; Tel.: +1-804-827-2339
| |
Collapse
|
8
|
Raza S, Rajak S, Anjum B, Sinha RA. Molecular links between non-alcoholic fatty liver disease and hepatocellular carcinoma. ACTA ACUST UNITED AC 2019; 5:42. [PMID: 31867441 PMCID: PMC6924993 DOI: 10.20517/2394-5079.2019.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its advanced complication, non-alcoholic steatohepatitis (NASH), have become leading causes of hepatocellular carcinoma (HCC) worldwide. In this review, we discuss the role of metabolic, gut microbial, immune and endocrine mediators which promote the progression of NAFLD to HCC. In particular, this progression involves multiple hits resulting from lipotoxicity, oxidative stress, inhibition of hepatic autophagy and inflammation. Furthermore, dysbiosis in the gut associated with obesity also promotes HCC via induction of proinflammatory cytokines and Toll like receptor signalling as well as altered bile metabolism. Additionally, compromised T-cell function and impaired hepatic hormonal action promote the development of NASH-associated HCC. Lastly, we discuss the current challenges involved in the diagnosis and treatment of NAFLD/NASH-associated HCC.
Collapse
Affiliation(s)
- Sana Raza
- Department of Bioscience, Integral University, Lucknow 226026, India
| | - Sangam Rajak
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Baby Anjum
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
9
|
Léveillé M, Estall JL. Mitochondrial Dysfunction in the Transition from NASH to HCC. Metabolites 2019; 9:E233. [PMID: 31623280 PMCID: PMC6836234 DOI: 10.3390/metabo9100233] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/11/2019] [Indexed: 02/06/2023] Open
Abstract
The liver constantly adapts to meet energy requirements of the whole body. Despite its remarkable adaptative capacity, prolonged exposure of liver cells to harmful environmental cues (such as diets rich in fat, sugar, and cholesterol) results in the development of chronic liver diseases (including non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH)) that can progress to hepatocellular carcinoma (HCC). The pathogenesis of these diseases is extremely complex, multifactorial, and poorly understood. Emerging evidence suggests that mitochondrial dysfunction or maladaptation contributes to detrimental effects on hepatocyte bioenergetics, reactive oxygen species (ROS) homeostasis, endoplasmic reticulum (ER) stress, inflammation, and cell death leading to NASH and HCC. The present review highlights the potential contribution of altered mitochondria function to NASH-related HCC and discusses how agents targeting this organelle could provide interesting treatment strategies for these diseases.
Collapse
Affiliation(s)
- Mélissa Léveillé
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
| | - Jennifer L Estall
- Institut de Recherches Cliniques de Montréal (IRCM), Montreal, Quebec, QC H2W 1R7, Canada.
- Faculty of Medicine, University of Montreal, Montreal, Quebec, QC H3G 2M1, Canada.
- Division of Experimental Medicine, McGill University, Montreal, Quebec, QC H4A 3J1, Canada.
| |
Collapse
|
10
|
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 2019; 12:191-198. [PMID: 30774404 PMCID: PMC6354688 DOI: 10.2147/dmso.s182406] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leptin and its receptors have been identified as key regulators of body weight and energy homeostasis. A decrease in tissue sensitivity to leptin leads to the development of obesity and metabolic disorders, such as insulin resistance and dyslipidemia. Mechanisms underlying the development of leptin resistance include mutations in the genes encoding leptin and its receptors, as well as proteins involved in self-regulation of leptin synthesis and blood-brain barrier permeability. Leptin resistance encompasses a complex pathophysiological phenomenon with a number of potential research lines. In this review, we analyze the existing data on the methods used to diagnose leptin resistance.
Collapse
Affiliation(s)
- Olga Gruzdeva
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
- Federal State Budget Educational Institution of Higher Education, Kemerovo State Medical University of the Ministry of Healthcare of the Russian Federation, Kemerovo, Russian Federation
| | - Daria Borodkina
- Autonomous Public Healthcare Institution of the Kemrovo Region, Kemerovo Regional Clinical Hospital Named After S.V. Beliyaev, Regional Center for Diabetes, Kemerovo, Russian Federation
| | - Evgenya Uchasova
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
| | - Yulia Dyleva
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
| | - Olga Barbarash
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
- Federal State Budget Educational Institution of Higher Education, Kemerovo State Medical University of the Ministry of Healthcare of the Russian Federation, Kemerovo, Russian Federation
| |
Collapse
|
11
|
Molecular Pathogenesis of Nonalcoholic Steatohepatitis- (NASH-) Related Hepatocellular Carcinoma. Can J Gastroenterol Hepatol 2018; 2018:8543763. [PMID: 30228976 PMCID: PMC6136489 DOI: 10.1155/2018/8543763] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/12/2018] [Indexed: 12/14/2022] Open
Abstract
The proportion of obese or diabetic population has been anticipated to increase in the upcoming decades, which rises the prevalence of nonalcoholic fatty liver disease (NAFLD) and its progression to nonalcoholic steatohepatitis (NASH). Recent evidence indicates that NASH is the main cause of chronic liver diseases and it is an important risk factor for development of hepatocellular carcinoma (HCC). Although the literature addressing NASH-HCC is growing rapidly, limited data is available about the etiology of NASH-related HCC. Experimental studies on the molecular mechanism of HCC development in NASH reveal that the carcinogenesis is relevant to complex changes in signaling pathways that mediate cell proliferation and energy metabolism. Genetic or epigenetic modifications and alterations in metabolic, immunologic, and endocrine pathways have been shown to be closely related to inflammation, liver injury, and fibrosis in NASH along with its subsequent progression to HCC. In this review, we provide an overview on the current knowledge of NASH-related HCC development and emphasize molecular signaling pathways regarding their mechanism of action in NASH-derived HCC.
Collapse
|
12
|
Nwadozi E, Ng A, Strömberg A, Liu HY, Olsson K, Gustafsson T, Haas TL. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis 2018; 22:103-115. [DOI: 10.1007/s10456-018-9641-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022]
|
13
|
Ray A, Cleary MP. The potential role of leptin in tumor invasion and metastasis. Cytokine Growth Factor Rev 2017; 38:80-97. [PMID: 29158066 DOI: 10.1016/j.cytogfr.2017.11.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
Abstract
The adipocyte-released hormone-like cytokine/adipokine leptin behaves differently in obesity compared to its functions in the normal healthy state. In obese individuals, elevated leptin levels act as a pro-inflammatory adipokine and are associated with certain types of cancers. Further, a growing body of evidence suggests that higher circulating leptin concentrations and/or elevated expression of leptin receptors (Ob-R) in tumors may be poor prognostic factors. Although the underlying pathological mechanisms of leptin's association with poor prognosis are not clear, leptin can impact the tumor microenvironment in several ways. For example, leptin is associated with a number of biological components that could lead to tumor cell invasion and distant metastasis. This includes interactions with carcinoma-associated fibroblasts, tumor promoting effects of infiltrating macrophages, activation of matrix metalloproteinases, transforming growth factor-β signaling, etc. Recent studies also have shown that leptin plays a role in the epithelial-mesenchymal transition, an important phenomenon for cancer cell migration and/or metastasis. Furthermore, leptin's potentiating effects on insulin-like growth factor-I, epidermal growth factor receptor and HER2/neu have been reported. Regarding unfavorable prognosis, leptin has been shown to influence both adenocarcinomas and squamous cell carcinomas. Features of poor prognosis such as tumor invasion, lymph node involvement and distant metastasis have been recorded in several cancer types with higher levels of leptin and/or Ob-R. This review will describe the current scenario in a precise manner. In general, obesity indicates poor prognosis in cancer patients.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United States
| | - Margot P Cleary
- The Hormel Institute, University of Minnesota, Austin, MN 55912, United States.
| |
Collapse
|
14
|
Kaz AM, Wong CJ, Varadan V, Willis JE, Chak A, Grady WM. Global DNA methylation patterns in Barrett's esophagus, dysplastic Barrett's, and esophageal adenocarcinoma are associated with BMI, gender, and tobacco use. Clin Epigenetics 2016; 8:111. [PMID: 27795744 PMCID: PMC5082363 DOI: 10.1186/s13148-016-0273-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/29/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The risk of developing Barrett's esophagus (BE) and/or esophageal adenocarcinoma (EAC) is associated with specific demographic and behavioral factors, including gender, obesity/elevated body mass index (BMI), and tobacco use. Alterations in DNA methylation, an epigenetic modification that can affect gene expression and that can be influenced by environmental factors, is frequently present in both BE and EAC and is believed to play a role in the formation of BE and its progression to EAC. It is currently unknown whether obesity or tobacco smoking influences the risk of developing BE/EAC via the induction of alterations in DNA methylation. To investigate this possibility, we assessed the genome-wide methylation status of 81 esophageal tissues, including BE, dysplastic BE, and EAC epithelia using HumanMethylation450 BeadChips (Illumina). RESULTS We found numerous differentially methylated loci in the esophagus tissues when comparing males to females, obese to lean individuals, and smokers to nonsmokers. Differences in DNA methylation between these groups were seen in a variety of functional genomic regions and both within and outside of CpG islands. Several cancer-related pathways were found to have differentially methylated genes between these comparison groups. CONCLUSIONS Our findings suggest obesity and tobacco smoking may influence DNA methylation in the esophagus and raise the possibility that these risk factors affect the development of BE, dysplastic BE, and EAC through influencing the epigenetic status of specific loci that have a biologically plausible role in cancer formation.
Collapse
Affiliation(s)
- Andrew M. Kaz
- Gastroenterology Section, VA Puget Sound Health Care System, Seattle, WA 98108 USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| | - Chao-Jen Wong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
| | - Vinay Varadan
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Joseph E. Willis
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - Amitabh Chak
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106 USA
- Division of Gastroenterology, Case Western Reserve University School of Medicine, Cleveland, OH 44106 USA
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109 USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195 USA
| |
Collapse
|
15
|
Gao C. Molecular pathological epidemiology in diabetes mellitus and risk of hepatocellular carcinoma. World J Hepatol 2016; 8:1119-1127. [PMID: 27721917 PMCID: PMC5037325 DOI: 10.4254/wjh.v8.i27.1119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 02/06/2023] Open
Abstract
Molecular pathological epidemiology (MPE) is a multidisciplinary and transdisciplinary study field, which has emerged as an integrated approach of molecular pathology and epidemiology, and investigates the relationship between exogenous and endogenous exposure factors, tumor molecular signatures, and tumor initiation, progression, and response to treatment. Molecular epidemiology broadly encompasses MPE and conventional-type molecular epidemiology. Hepatocellular carcinoma (HCC) is the third most common cause of cancer-associated death worldwide and remains as a major public health challenge. Over the past few decades, a number of epidemiological studies have demonstrated that diabetes mellitus (DM) is an established independent risk factor for HCC. However, how DM affects the occurrence and development of HCC remains as yet unclearly understood. MPE may be a promising approach to investigate the molecular mechanisms of carcinogenesis of DM in HCC, and provide some useful insights for this pathological process, although a few challenges must be overcome. This review highlights the recent advances in this field, including: (1) introduction of MPE; (2) HCC, risk factors, and DM as an established independent risk factor for HCC; (3) molecular pathology, molecular epidemiology, and MPE in DM and HCC; and (4) MPE studies in DM and risk of HCC. More MPE studies are expected to be performed in future and I believe that this field can provide some very important insights on the molecular mechanisms, diagnosis, personalized prevention and treatment for DM and risk of HCC.
Collapse
|
16
|
Chen Y, Ling L, Su G, Han M, Fan X, Xun P, Xu G. Effect of Intermittent versus Chronic Calorie Restriction on Tumor Incidence: A Systematic Review and Meta-Analysis of Animal Studies. Sci Rep 2016; 6:33739. [PMID: 27653140 PMCID: PMC5031958 DOI: 10.1038/srep33739] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/01/2016] [Indexed: 12/15/2022] Open
Abstract
Both chronic calorie restriction (CCR) and intermittent calorie restriction (ICR) have shown anticancer effects. However, the direct evidence comparing ICR to CCR with respect to cancer prevention is controversial and inconclusive. PubMed and Web of Science were searched on November 25, 2015. The relative risk (RR) [95% confidence interval (CI)] was calculated for tumor incidence, and the standardised mean difference (95% CI) was computed for levels of serum insulin-like growth factor-1 (IGF-1), leptin, and adiponectin using a random-effects meta-analysis. Sixteen studies were identified, including 11 using genetically engineered mouse models (908 animals with 38-76 weeks of follow-up) and 5 using chemically induced rat models (379 animals with 7-18 weeks of follow-up). Compared to CCR, ICR decreased tumor incidence in genetically engineered models (RR = 0.57; 95% CI: 0.37, 0.88) but increased the risk in chemically induced models (RR = 1.53, 95% CI: 1.13, 2.06). It appears that ICR decreases IGF-1 and leptin and increases adiponectin in genetically engineered models. Thus, the evidence suggests that ICR exerts greater anticancer effect in genetically engineered mouse models but weaker cancer prevention benefit in chemically induced rat models as compared to CCR. Further studies are warranted to confirm our findings and elucidate the mechanisms responsible for these effects.
Collapse
Affiliation(s)
- Yalan Chen
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China.,Department of Medical Informatics, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Lifeng Ling
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China.,Department of Human Resources, Nantong University, Nantong, Jiangsu, China
| | - Guanglei Su
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Ming Han
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Xikang Fan
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, School of Public Health-Bloomington, Indiana University, Bloomington, IN, USA
| | - Guangfei Xu
- Department of Nutrition and Food Science, School of Public Health, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
17
|
Kolb R, Sutterwala FS, Zhang W. Obesity and cancer: inflammation bridges the two. Curr Opin Pharmacol 2016; 29:77-89. [PMID: 27429211 DOI: 10.1016/j.coph.2016.07.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/05/2016] [Accepted: 07/06/2016] [Indexed: 12/14/2022]
Abstract
Obesity is a growing public health problem and affects 35% US adults. Obesity increases the risk of many cancer types and is associated with poor outcomes. Clinical management of cancer patients has been essentially the same between normal weight and obese individuals. Understanding causal mechanisms by which obesity drives cancer initiation and progression is essential for the development of novel precision therapy for obese cancer patients. One caveat is that various mechanisms have been proposed for different cancer types for their progression under obesity. Since obesity is known to have global impact on inflammation, here we will summarize recent literature and discuss the potential of inflammation being the common causal mechanism to promote cancer promotion across cancer types.
Collapse
Affiliation(s)
- Ryan Kolb
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Fayyaz S Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Weizhou Zhang
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Medical Scientist Training Program, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Free Radical and Radiation Biology Program, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Cancer Genes and Pathway Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA.
| |
Collapse
|
18
|
Ding Y, Cao Y, Wang B, Wang L, Zhang Y, Zhang D, Chen X, Li M, Wang C. APPL1-Mediating Leptin Signaling Contributes to Proliferation and Migration of Cancer Cells. PLoS One 2016; 11:e0166172. [PMID: 27820851 PMCID: PMC5098739 DOI: 10.1371/journal.pone.0166172] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 10/23/2016] [Indexed: 11/24/2022] Open
Abstract
Leptin has been implicated in tumorigenesis and tumor progression, particularly in obese patients. As a multifunctional adaptor protein, APPL1 (containing pleckstrin homology domain, phosphotyrosine binding domain, and a leucine zipper motif 1) plays a critical role in regulating adiponectin and insulin signaling pathways. Currently, high APPL1 level has been suggested to be related to metastases and progression of some types of cancer. However, the intercourse between leptin signaling pathway and APPL1 remains poorly understood. Here, we show that the protein levels and phosphorylation statues of APPL1were highly expressed in tissues from human hepatocellular carcinoma and triple-positive breast cancer. Leptin stimulated APPL1 phosphorylation in a time-dependent manner in both human hepatocellular carcinoma HepG2 cell and breast cancer MCF-7 cell. Overexpression or suppression of APPL1 promoted or attenuated, respectively, leptin-induced phosphorylation of STAT3, ERK1/2, and Akt in the cancer cells, accompanied with enhanced or mitigated cell proliferation and migration. In addition, we identified that APPL1 directly bound to both leptin receptor and STAT3. This interaction was significantly enhanced by leptin stimulation. Our results suggested that APPL1 positively mediated leptin signaling and promoted leptin-induced proliferation and migration of cancer cells. This finding reveals a novel mechanism by which leptin promotes the motility and growth of cancer cells.
Collapse
Affiliation(s)
- Youming Ding
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Yingkang Cao
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Bin Wang
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Lei Wang
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Yemin Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Deling Zhang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Xiaoyan Chen
- Department of Hepatobiliary & Laparascopic Surgery, Wuhan University Renmin Hospital, Wuhan, 430060, China
| | - Mingxin Li
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Changhua Wang
- Department of Pathology & Pathophysiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
- * E-mail:
| |
Collapse
|