1
|
Hassan M, Vanjare BD, Sim KY, Raza H, Lee KH, Shahzadi S, Kloczkowski A. Biological and Cheminformatics Studies of Newly Designed Triazole Based Derivatives as Potent Inhibitors against Mushroom Tyrosinase. Molecules 2022; 27:1731. [PMID: 35268831 PMCID: PMC8911699 DOI: 10.3390/molecules27051731] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
A series of nine novel 1,2,4-triazole based compounds were synthesized through a multistep reaction pathway and their structures were scrutinized by using spectral methods such as FTIR, LC-MS, 1H NMR, and 13C NMR. The synthesized derivatives were screened for inhibitory activity against the mushroom tyrosinase and we found that all the synthesized compounds demonstrated decent inhibitory activity against tyrosinase. However, among the series of compounds, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide exhibited more prominent activity when accompanied with the standard drug kojic acid. Furthermore, the molecular docking studies identified the interaction profile of all synthesized derivatives at the active site of tyrosinase. Based on these results, N-(4-fluorophenyl)-2-(5-(2-fluorophenyl)-4-(4-fluorophenyl)-4H-1,2,4-triazol-3-ylthio) acetamide could be used as a novel scaffold to design some new drugs against melanogenesis.
Collapse
Affiliation(s)
- Mubashir Hassan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54590, Pakistan;
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Balasaheb D. Vanjare
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Kyou-Yeong Sim
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
| | - Hussain Raza
- Department of Biological Science, Kongju National University, Gongju 32588, Korea;
| | - Ki Hwan Lee
- Department of Chemistry, Kongju National University, Gongju 32588, Korea; (B.D.V.); (K.-Y.S.)
| | - Saba Shahzadi
- Institute of Molecular Sciences and Bioinformatics, Nesbit Road Lahore, Lahore 54590, Pakistan;
| | - Andrzej Kloczkowski
- The Steve and Cindy Rasmussen Institute for Genomic Medicine at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Choi H, Young Ryu I, Choi I, Ullah S, Jin Jung H, Park Y, Hwang Y, Jeong Y, Hong S, Chun P, Young Chung H, Ryong Moon H. Identification of (Z)-2-benzylidene-dihydroimidazothiazolone derivatives as tyrosinase inhibitors: anti-melanogenic effects and in silico studies. Comput Struct Biotechnol J 2022; 20:899-912. [PMID: 35242283 PMCID: PMC8861568 DOI: 10.1016/j.csbj.2022.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/19/2022] Open
Affiliation(s)
- Heejeong Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Inkyu Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, FL 33458, USA
| | - Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - YeJi Hwang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yeongmu Jeong
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sojeong Hong
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
- Corresponding author at: Laboratory of Medicinal Chemistry, College of Pharmacy, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
3
|
Lee S, Choi H, Park Y, Jung HJ, Ullah S, Choi I, Kang D, Park C, Ryu IY, Jeong Y, Hwang Y, Hong S, Chun P, Moon HR. Urolithin and Reduced Urolithin Derivatives as Potent Inhibitors of Tyrosinase and Melanogenesis: Importance of the 4-Substituted Resorcinol Moiety. Int J Mol Sci 2021; 22:ijms22115616. [PMID: 34070680 PMCID: PMC8199067 DOI: 10.3390/ijms22115616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 12/17/2022] Open
Abstract
We previously reported (E)-β-phenyl-α,β-unsaturated carbonyl scaffold ((E)-PUSC) played an important role in showing high tyrosinase inhibitory activity and that derivatives with a 4-substituted resorcinol moiety as the β-phenyl group of the scaffold resulted in the greatest tyrosinase inhibitory activity. To examine whether the 4-substituted resorcinol moiety could impart tyrosinase inhibitory activity in the absence of the α,β-unsaturated carbonyl moiety of the (E)-PUSC scaffold, 10 urolithin derivatives were synthesized. To obtain more candidate samples, the lactone ring in synthesized urolithins was reduced to produce nine reduced urolithins. Compounds 1c (IC50 = 18.09 ± 0.25 μM), 1h (IC50 = 4.14 ± 0.10 μM), and 2a (IC50 = 15.69 ± 0.40 μM) had greater mushroom tyrosinase-inhibitory activities than kojic acid (KA) (IC50 = 48.62 ± 3.38 μM). The SAR results suggest that the 4-substituted resorcinol motif makes an important contribution to tyrosinase inhibition. To investigate whether these compounds bind to human tyrosinase, a human tyrosinase homology model was developed. Docking simulations with mushroom and human tyrosinases showed that 1c, 1h, and 2a bind to the active site of both tyrosinases with higher binding affinities than KA. Pharmacophore analyses showed that two hydroxyl groups of the 4-substituted resorcinol entity act as hydrogen bond donors in both mushroom and human tyrosinases. Kinetic analyses indicated that these compounds were all competitive inhibitors. Compound 2a inhibited cellular tyrosinase activity and melanogenesis in α-MSH plus IBMX-stimulated B16F10 melanoma cells more strongly than KA. These results suggest that 2a is a promising candidate for the treatment of skin pigment disorders, and show the 4-substituted resorcinol entity importantly contributes to tyrosinase inhibition.
Collapse
Affiliation(s)
- Sanggwon Lee
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Heejeong Choi
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA;
| | - Inkyu Choi
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Yeongmu Jeong
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - YeJi Hwang
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Sojeong Hong
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Korea;
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, Korea; (S.L.); (H.C.); (Y.P.); (H.J.J.); (I.C.); (D.K.); (C.P.); (I.Y.R.); (Y.J.); (Y.H.); (S.H.)
- Correspondence: ; Tel.: +82-51-510-2815; Fax: +82-51-513-6754
| |
Collapse
|
4
|
Choi I, Park Y, Ryu IY, Jung HJ, Ullah S, Choi H, Park C, Kang D, Lee S, Chun P, Young Chung H, Moon HR. In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Comput Struct Biotechnol J 2020; 19:37-50. [PMID: 33363708 PMCID: PMC7753086 DOI: 10.1016/j.csbj.2020.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
The β-phenyl-α,β-unsaturated carbonyl (PUSC) scaffold confers tyrosinase inhibitory activity, and in the present study, 16 (Z)-5-(substituted benzylidene)-3-phenyl-2-thioxooxazolidin-4-one analogues containing this scaffold were synthesized. Mushroom tyrosinase inhibitory activities were examined. Compound 1c (IC50 = 4.70 ± 0.40 μM) and compound 1j (IC50 = 11.18 ± 0.54 μM) inhibited tyrosinase by 4.9 and 2.1-fold, respectively, and did so more potently than kojic acid (IC50 = 23.18 ± 0.11 μM). Kinetic analysis of tyrosinase inhibition revealed that 1c and 1j inhibited tyrosinase competitively. Results of docking simulation with mushroom tyrosinase using four docking programs suggested that 1c and 1j bind more strongly than kojic acid to the active site of tyrosinase and supported kinetic findings that both compounds are competitive inhibitors. The docking results of human tyrosinase homology model indicated that 1c and 1j can also strongly inhibit human tyrosinase. EZ-cytox assays revealed 1c and 1j were not cytotoxic to B16F10 melanoma cells. The effects of 1c and 1j on cellular tyrosinase activity and melanin production were also investigated in α-MSH- and IBMX-co-stimulated these cells. Both compounds significantly and dose-dependently reduced tyrosinase activity, and at 10 µM were more potent than kojic acid at 20 µM. Compounds 1c and 1j also inhibited melanogenesis, which suggested that the inhibitory effects of these compounds on melanin production were mainly attributable to their inhibitions of tyrosinase. These results indicate that compounds 1c and 1j with the PUSC scaffold have potential use as whitening agents for the treatment of hyperpigmentation-associated diseases.
Collapse
Affiliation(s)
- Inkyu Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yujin Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Il Young Ryu
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hee Jin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sultan Ullah
- Department of Molecular Medicine, The Scripps Research Institute, FL 33458, USA
| | - Heejeong Choi
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Chaeun Park
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Dongwan Kang
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Sanggwon Lee
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, South Korea
| | - Hae Young Chung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Hyung Ryong Moon
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| |
Collapse
|
5
|
Mirmortazavi SS, Farvandi M, Ghafouri H, Mohammadi A, Shourian M. Evaluation of novel pyrimidine derivatives as a new class of mushroom tyrosinase inhibitor. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:2169-2178. [PMID: 31371919 PMCID: PMC6635827 DOI: 10.2147/dddt.s209324] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
Background and aim Tyrosinase (EC 1.14.18.1) is responsible for enzymatic browning in fruits and vegetables. Its inhibitors may be applied to efficiently treat hyperpigmentation and are widely used in pharmaceutical and cosmetic products, food supplements and insecticides. Previous studies have shown that heterocyclic compounds with an amino group can inhibit tyrosinase activity. The present study aims to evaluate the inhibitory effect of some novel 2,6-diamino-4-chloropyrimidine derivatives (1a-e) and 2,4,6-triaminopyrimidine (2a–e) including bioactive aniline moiety on the activity of the mushroom tyrosinase. Methods In practice, the azo salt was initially synthesized from aniline derivatives and combined subsequently with the 2,4,6-triaminopyrimidine and 2,6-diamino-4 chloropyrimidine followed by crystallization. The structures of resulting compounds were confirmed by FT-IR, 13C NMR, and 1H NMR. The derivatives (0–100 µM) were evaluated for their inhibitory effect on tyrosinase activity using l-3,4-dihydroxyphenylalanine (l-DOPA) as substrate. Results All compounds showed inhibitory effects against the activity of the enzyme. About 23.72–55.08% inhibition was observed in the presence of 30 µM of each compound. The IC50 values of the synthesized compounds were measured, and their inhibition properties were also visualized by zymography. Based on the results, the compounds 1a-e and 2a-e showed moderate inhibitory activities. Notably, pyrimidine derivatives 1a (IC50=24.68) and 1d (IC50=24.45) also exhibited similar inhibitory activities when compared with the positive control, kojic acid (IC50=25.24 µM). Kinetic studies indicated that the type of inhibition was noncompetitive. Conclusion All results suggest that pyrimidine derivatives, especially 1d and 1a, can be considered as safe and efficient tyrosinase inhibitors.
Collapse
Affiliation(s)
| | - Mahdieh Farvandi
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Asadollah Mohammadi
- Department of Chemistry, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Mostafa Shourian
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
6
|
Guo H, Zheng R, Jiang H, Xu Z, Xia A. Preparation of Large-Size, Superparamagnetic, and Highly Magnetic Fe 3O 4@PDA Core⁻Shell Submicrosphere-Supported Nano-Palladium Catalyst and Its Application to Aldehyde Preparation through Oxidative Dehydrogenation of Benzyl Alcohols. Molecules 2019; 24:E1730. [PMID: 31058870 PMCID: PMC6539375 DOI: 10.3390/molecules24091730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022] Open
Abstract
Large-size, superparamagnetic, and highly magnetic Fe3O4@PDA core-shell submicrosphere-supported nano-palladium catalysts were prepared in this study. Dopamine was encapsulated on the surface of Fe3O4 particles via self-polymerization and then protonated to positively charge the microspheres. PdCl42- was dispersed on the surface of the microspheres by positive and negative charge attraction and then reduced to nano-palladium. With air as oxidant, the catalyst can successfully catalyze the dehydrogenation of benzyl alcohols to produce the corresponding aldehydes at 120 °C.
Collapse
Affiliation(s)
- Haichang Guo
- Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, China.
- School of Pharmaceutical and Material Engineering, Taizhou University, Taizhou 318000, China.
| | - Renhua Zheng
- School of Pharmaceutical and Material Engineering, Taizhou University, Taizhou 318000, China.
| | - Huajiang Jiang
- School of Pharmaceutical and Material Engineering, Taizhou University, Taizhou 318000, China.
| | - Zhenyuan Xu
- Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Aibao Xia
- Zhejiang Key Laboratory of Green Pesticides and Cleaner Production Technology, Catalytic Hydrogenation Research Center, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Pillaiyar T, Manickam M, Namasivayam V. Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J Enzyme Inhib Med Chem 2017; 32:403-425. [PMID: 28097901 PMCID: PMC6010116 DOI: 10.1080/14756366.2016.1256882] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/07/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Melanogenesis is a process to synthesize melanin, which is a primary responsible for the pigmentation of human skin, eye and hair. Although numerous enzymatic catalyzed and chemical reactions are involved in melanogenesis process, the enzymes such as tyrosinase and tyrosinase-related protein-1 (TRP-1) and TRP-2 played a major role in melanin synthesis. Specifically, tyrosinase is a key enzyme, which catalyzes a rate-limiting step of the melanin synthesis, and the downregulation of tyrosinase is the most prominent approach for the development of melanogenesis inhibitors. Therefore, numerous inhibitors that target tyrosinase have been developed in recent years. The review focuses on the recent discovery of tyrosinase inhibitors that are directly involved in the inhibition of tyrosinase catalytic activity and functionality from all sources, including laboratory synthetic methods, natural products, virtual screening and structure-based molecular docking studies.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| | - Manoj Manickam
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, Korea
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, Bonn, Germany
| |
Collapse
|