1
|
Kalra S, Gokhale NS, Bantwal G, Matada R, Shaikh S, Pawar V, Khalse M, Patel K. Dry Eye in Diabetes: The Indian Diabetic and Endocrine Eye Diseases (INDEED) Review. TOUCHREVIEWS IN ENDOCRINOLOGY 2024; 20:30-41. [PMID: 39526056 PMCID: PMC11548426 DOI: 10.17925/ee.2024.20.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 11/16/2024]
Abstract
Dry eye disease (DED) is an inadequately addressed condition in the diabetes management process and can significantly impact the quality of life and self-care. Therefore, it was imperative to review DED in the diabetic population. The aim of this article was to obtain insights into the correlation between dry eye and diabetes, with a focus on data published in the Indian population. A comprehensive literature review was performed using MEDLINE and Google Scholar, along with an internet-based search of publicly available information and peer-reviewed publications that may not have been indexed in these databases. The recommendations from several important societies for patients with DED have also been reviewed. Major aspects commonly associated with DED and diabetes have been addressed, and specific suggestions for screening, diagnosis and treatment have been described. Therefore, this review could be an invaluable resource for doctors managing patients with both conditions.
Collapse
Affiliation(s)
- Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| | | | - Ganapathi Bantwal
- Department of Endocrinology, St. Johns Medical College, Bangalore, Karnataka, India
| | - Roopashri Matada
- Department of Ophthalmology, JJM Medical College, Davangere, Karnataka, India
| | | | - Varsha Pawar
- Medical Affairs Division, Lupin Ltd., Mumbai, Maharashtra, India
| | - Maneesha Khalse
- Medical Affairs Division, Lupin Ltd., Mumbai, Maharashtra, India
| | - Kamlesh Patel
- Medical and Health Tech, Lupin Ltd., Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Sabeti S, Foulad DP, Linden K. Doxycyline-induced hypoglycemia in a nondiabetic older woman. JAAD Case Rep 2024; 48:33-35. [PMID: 38766390 PMCID: PMC11101694 DOI: 10.1016/j.jdcr.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sara Sabeti
- Department of Dermatology, University of California Irvine, California
| | | | - Kenneth Linden
- Department of Dermatology, University of California Irvine, California
| |
Collapse
|
3
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
4
|
Kuretu A, Arineitwe C, Mothibe M, Ngubane P, Khathi A, Sibiya N. Drug-induced mitochondrial toxicity: Risks of developing glucose handling impairments. Front Endocrinol (Lausanne) 2023; 14:1123928. [PMID: 36860368 PMCID: PMC9969099 DOI: 10.3389/fendo.2023.1123928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Mitochondrial impairment has been associated with the development of insulin resistance, the hallmark of type 2 diabetes mellitus (T2DM). However, the relationship between mitochondrial impairment and insulin resistance is not fully elucidated due to insufficient evidence to support the hypothesis. Insulin resistance and insulin deficiency are both characterised by excessive production of reactive oxygen species and mitochondrial coupling. Compelling evidence states that improving the function of the mitochondria may provide a positive therapeutic tool for improving insulin sensitivity. There has been a rapid increase in reports of the toxic effects of drugs and pollutants on the mitochondria in recent decades, interestingly correlating with an increase in insulin resistance prevalence. A variety of drug classes have been reported to potentially induce toxicity in the mitochondria leading to skeletal muscle, liver, central nervous system, and kidney injury. With the increase in diabetes prevalence and mitochondrial toxicity, it is therefore imperative to understand how mitochondrial toxicological agents can potentially compromise insulin sensitivity. This review article aims to explore and summarise the correlation between potential mitochondrial dysfunction caused by selected pharmacological agents and its effect on insulin signalling and glucose handling. Additionally, this review highlights the necessity for further studies aimed to understand drug-induced mitochondrial toxicity and the development of insulin resistance.
Collapse
Affiliation(s)
- Auxiliare Kuretu
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Charles Arineitwe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Mamosheledi Mothibe
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
| | - Phikelelani Ngubane
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Andile Khathi
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ntethelelo Sibiya
- Pharmacology Division, Faculty of Pharmacy, Rhodes University, Makhanda, South Africa
- *Correspondence: Ntethelelo Sibiya,
| |
Collapse
|
5
|
Kong L, Yu S, Gu L, Geng M, Zhang D, Cao H, Liu A, Wang Q, Wang S, Tao F, Liu K. Associations of typical antibiotic residues with elderly blood lipids and dyslipidemia in West Anhui, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113889. [PMID: 35853362 DOI: 10.1016/j.ecoenv.2022.113889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence has indicated the association of clinical antibiotic use with abnormal blood lipid levels; however, no epidemiological study has examined the relationship of antibiotic exposure, probably derived from food chains, with blood lipid levels. This study investigated the relationships of urinary antibiotic levels with blood lipid levels and dyslipidemias in the older population. Baseline data of 960 participants from the Cohort of Elderly Health and Environment Controllable Factors were used in the present study. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was performed to detect antibiotic residues in the urine samples of the participants. Our findings revealed that each 1 μg/g increase in enrofloxacin and ciprofloxacin levels was associated with an increase of 0.084 (95 % confidence interval (CI): 0.030, 0.139) and 0.049 (95 % CI: 0.012, 0.086) in triglyceride levels, respectively. Enrofloxacin was associated with an increased risk of hypertriglyceridemia. Each 1 μg/g increase in the enrofloxacin level corresponded to an increase of 0.052 (95 % CI: 0.006, 0.098) in the low-density lipoprotein cholesterol level. Furthermore, florfenicol exposure increased the risks of both hyperbetalipoproteinemia and hypoalphalipoproteinemia. By contrast, each 1 μg/g increase in sulfaclozine and doxycycline levels was associated with a - 0.062 (95 % CI: -0.111, -0.020), and - 0.083 (95 % CI: -0.160, -0.007) decrease in total cholesterol levels, respectively. Sulfaclozine was closely related to a decreased risk of hypercholesterolemia. Stratification analysis revealed specific differences in the correlation between antibiotic exposure and lipid levels based on the waist circumference (WC) values of the participants. Except for sulfaclozine and doxycycline, other antibiotics exerted adverse effects on lipid levels and increased dyslipidemia prevalence. The older participants with higher WC values were vulnerable to antibiotic exposure. Therefore, an appropriate understanding of the epidemiological attributes of antibiotic residues is indispensable to prevent abdominal obesity in the older population.
Collapse
Affiliation(s)
- Li Kong
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shuixin Yu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Lvfen Gu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Menglong Geng
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, 230032 Anhui, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui 237000, China
| | - Annuo Liu
- School of Nursing, Anhui Medical University, Hefei 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University),Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, No. 81 Meishan Road, Hefei 230032, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
6
|
Yu S, Kong L, Gu L, Zhu Y, Liu X, Sang Y, Wang Q, Wang S, Zhang D, Cao H, Tao F, Liu K. Typical antibiotic exposure and dysglycemia risk in an elderly Chinese population. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59701-59711. [PMID: 35394631 DOI: 10.1007/s11356-022-20056-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Studies examined the connection between antibiotic exposure in urine and dysglycemia risk (including prediabetes and diabetes) in the elderly were limited. Multiple linear regression, binary logistic regression, restricted cubic splines (RCS), and stratified analysis were applied to analyze the relationship between antibiotic exposure and dysglycemia risk. We observed that sulfaclozine exposure 0.07 (95% confidence interval [CI]: 0.01-0.23) significantly increased fasting blood glucose (FBG) level. By mechanism, usage, and antimicrobial action, sulfonamides 0.08 (95% CI: 0.06-0.36), veterinary antibiotics (VA) 0.07 (95% CI: 0.01-0.30), or bacteriostatic antibiotics 0.07 (95% CI: 0.02-0.29) significantly increased FBG level. Additionally, sulfaclozine exposure 1.54 (95% CI: 1.02-2.33) resulted in a higher dysglycemia risk, while doxycycline exposure 0.53 (95% CI: 0.30-0.95) resulted in a lower dysglycemia risk. By mechanism, usage, and antimicrobial action, sulfonamides 1.44 (95% CI: 1.02-2.04), VA 1.68 (95% CI: 1.21-2.35), or bacteriostatic antibiotics 1.40 (95% CI: 1.02-1.93) exposure had a higher dysglycemia risk. Taken together, exposure to sulfonamides, VA, especially sulfaclozine, was correlated with a higher dysglycemia risk in the elderly. Exposure to bacteriostatic antibiotics was associated with a higher dysglycemia risk in the female.
Collapse
Affiliation(s)
- Shuixin Yu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Li Kong
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lvfen Gu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yitian Zhu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinji Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yanru Sang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Qunan Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Sufang Wang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Dongmei Zhang
- School of Health Management, Anhui Medical University, Hefei, 230032, China
| | - Hongjuan Cao
- Lu'an Center of Disease Control and Prevention, Lu'an, Anhui, 237000, China
| | - Fangbiao Tao
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Kaiyong Liu
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, No 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
7
|
Wüst RCI, Coolen BF, Held NM, Daal MRR, Alizadeh Tazehkandi V, Baks-te Bulte L, Wiersma M, Kuster DWD, Brundel BJJM, van Weeghel M, Strijkers GJ, Houtkooper RH. The Antibiotic Doxycycline Impairs Cardiac Mitochondrial and Contractile Function. Int J Mol Sci 2021; 22:4100. [PMID: 33921053 PMCID: PMC8071362 DOI: 10.3390/ijms22084100] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/22/2022] Open
Abstract
Tetracycline antibiotics act by inhibiting bacterial protein translation. Given the bacterial ancestry of mitochondria, we tested the hypothesis that doxycycline-which belongs to the tetracycline class-reduces mitochondrial function, and results in cardiac contractile dysfunction in cultured H9C2 cardiomyoblasts, adult rat cardiomyocytes, in Drosophila and in mice. Ampicillin and carbenicillin were used as control antibiotics since these do not interfere with mitochondrial translation. In line with its specific inhibitory effect on mitochondrial translation, doxycycline caused a mitonuclear protein imbalance in doxycycline-treated H9C2 cells, reduced maximal mitochondrial respiration, particularly with complex I substrates, and mitochondria appeared fragmented. Flux measurements using stable isotope tracers showed a shift away from OXPHOS towards glycolysis after doxycycline exposure. Cardiac contractility measurements in adult cardiomyocytes and Drosophila melanogaster hearts showed an increased diastolic calcium concentration, and a higher arrhythmicity index. Systolic and diastolic dysfunction were observed after exposure to doxycycline. Mice treated with doxycycline showed mitochondrial complex I dysfunction, reduced OXPHOS capacity and impaired diastolic function. Doxycycline exacerbated diastolic dysfunction and reduced ejection fraction in a diabetes mouse model vulnerable for metabolic derangements. We therefore conclude that doxycycline impairs mitochondrial function and causes cardiac dysfunction.
Collapse
Affiliation(s)
- Rob C. I. Wüst
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije University Amsterdam, 1081 BT Amsterdam, The Netherlands
| | - Bram F. Coolen
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Ntsiki M. Held
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Mariah R. R. Daal
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
| | - Vida Alizadeh Tazehkandi
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Luciënne Baks-te Bulte
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Marit Wiersma
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Diederik W. D. Kuster
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, VU University Medical Center, 1081 HZ Amsterdam, The Netherlands; (L.B.-t.B.); (M.W.); (D.W.D.K.); (B.J.J.M.B.)
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| | - Gustav J. Strijkers
- Biomedical Engineering and Physics, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands; (B.F.C.); (M.R.R.D.); (G.J.S.)
- Department of Radiology, Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Riekelt H. Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (N.M.H.); (V.A.T.); (M.v.W.)
| |
Collapse
|