1
|
Chávez M, Asthana A, Jackson PK. Ciliary localization of GPR75 promotes fat accumulation in mice. J Clin Invest 2024; 134:e185059. [PMID: 39352389 PMCID: PMC11444157 DOI: 10.1172/jci185059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024] Open
Abstract
Obesity is a growing public health concern that affects the longevity and lifestyle of all human populations including children and older individuals. Diverse factors drive obesity, making it challenging to understand and treat. While recent studies highlight the importance of GPCR signaling for metabolism and fat accumulation, we lack a molecular description of how obesogenic signals accumulate and propagate in cells, tissues, and organs. In this issue of the JCI, Jiang et al. utilized germline mutagenesis to generate a missense variant of GRP75, encoded by the Thinner allele, which resulted in mice with a lean phenotype. GPR75 accumulated in the cilia of hypothalamic neurons. However, mice with the Thinner allele showed defective ciliary localization with resistance to fat accumulation. Additionally, GPR75 regulation of fat accumulation appeared independent of leptin and ADCY3 signaling. These findings shed light on the role of GPR75 in fat accumulation and highlight the need to identify relevant ligands.
Collapse
|
2
|
Wang S, Gao S, Wang F. Effect and mechanism of GPR75 in metabolic dysfunction-related steatosis liver disease. Int J Med Sci 2024; 21:2343-2347. [PMID: 39310267 PMCID: PMC11413904 DOI: 10.7150/ijms.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Research on G protein-coupled receptor 75 (GPR75) in metabolic dysfunction-related steatosis liver disease (MASLD) reveals its potential role in regulating body weight and energy balance. Loss-of-function mutations in the GPR75 gene are significantly associated with lower body mass index and reduced body weight. Studies demonstrate that GPR75 knockout mice exhibit lower fasting blood glucose levels, improved glucose homeostasis, and significant prevention of high-fat diet-induced MASLD. The absence of GPR75 reduces fat accumulation by beneficially altering energy balance rather than restricting adipose tissue expansion. Moreover, female GPR75 knockout mice show greater protection against lipid accumulation on a high-fat diet compared to males, potentially attributed to higher physical activity and energy expenditure. However, current research primarily relies on mouse models, and its applicability to humans requires further validation. Future studies should explore the role of GPR75 across diverse populations, its clinical potential, and delve into its specific mechanisms and interactions with other metabolic pathways. Ultimately, targeted therapies based on GPR75 could offer novel strategies for the prevention and treatment of MASLD and other metabolic disorders.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Internal Medicine, The Affiliated Zhong Shan Hospital of Dalian University, Dalian, 116001, China
| | - Shan Gao
- Department of Central laboratory, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Fei Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
- Gastrointestinal Endoscopy, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
3
|
Zhong Z, Fan J, Tian Y, Lin M, Zhu H, Ma D. Whole-genome resequencing and RNA-seq analysis implicates GPR75 as a potential genetic basis related to retarded growth in South China carp (Cyprinus carpio rubrofuscus). Genomics 2024; 116:110934. [PMID: 39236771 DOI: 10.1016/j.ygeno.2024.110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/07/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
The south China carp (Cyprinus carpio rubrofuscus) is an indigenous and important fish species, widely cultured in south China. However, part of individuals experienced retarded growth, the genetic basis of which has yet to be elucidated. In this study, whole-genome resequencing of 35 fast-growing and 35 retarded-growing south China carp were conducted to identify promising genes associated with retarded growth. Twelve candidate SNPs were detected and annotated to the Gpr75 gene, which has been reported to be related with body weight through regulating insulin homeostasis. RNA-seq analysis of muscle suggested that differentially expressed genes were significantly enriched in the insulin signaling pathway. Additionally, the fasting serum insulin level was significantly lower while the blood glucose level was significantly higher in the retarded-growing group. Our preliminary study provides insights into the genetic basis underlying the retarded growth and may facilitate further genetic improvement of south China carp.
Collapse
Affiliation(s)
- Zaixuan Zhong
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Jiajia Fan
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Yuanyuan Tian
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Minhui Lin
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China
| | - Huaping Zhu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China.
| | - Dongmei Ma
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, Guangdong, China; Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Jain S, Shukla AK. An orphan to the rescue of obesity and steatotic liver? Trends Endocrinol Metab 2024; 35:761-762. [PMID: 38945795 DOI: 10.1016/j.tem.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
In a recent article, Leeson-Payne et al. demonstrate that GPR75 knock-out in mice results in lower body fat and reduced hepatic lipid accumulation, with an increase in physical activity and energy expenditure. Loss-of-function (LoF) GPR75 variants in the UK Biobank (UKBB) are associated with reduced liver steatosis, suggesting potential therapeutic implications in metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Shanu Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India.
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur 208016, India.
| |
Collapse
|
5
|
Jiang Y, Xun Y, Zhang Z. Central regulation of feeding and body weight by ciliary GPR75. J Clin Invest 2024; 134:e182121. [PMID: 39137039 PMCID: PMC11444156 DOI: 10.1172/jci182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Variants of the G protein-coupled receptor 75 (GPR75) are associated with a lower BMI in large-scale human exome-sequencing studies. However, how GPR75 regulates body weight remains poorly understood. Using random germline mutagenesis in mice, we identified a missense allele (Thinner) of Gpr75 that resulted in a lean phenotype and verified the decreased body weight and fat weight in Gpr75-knockout (Gpr75-/-) mice. Gpr75-/- mice displayed reduced food intake under high-fat diet (HFD) feeding, and pair-feeding normalized their body weight. The endogenous GPR75 protein was exclusively expressed in the brains of 3xFlag-tagged Gpr75-knockin (3xFlag-Gpr75) mice, with consistent expression across different brain regions. GPR75 interacted with Gαq to activate various signaling pathways after HFD feeding. Additionally, GPR75 was localized in the primary cilia of hypothalamic cells, whereas the Thinner mutation (L144P) and human GPR75 variants in individuals with a lower BMI failed to localize in the cilia. Loss of GPR75 selectively inhibited weight gain in HFD-fed mice but failed to suppress the development of obesity in leptin ob-mutant (Lepob-mutant) mice and adenylate cyclase 3-mutant (Adcy3-mutant) mice on a chow diet. Our data reveal that GPR75 is a ciliary protein expressed in the brain and plays an important role in regulating food intake.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu Xun
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense and
- Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
6
|
Powell DR, Doree DD, Shadoan MK, Platt KA, Brommage R, Vogel P, Revelli JP. Mice Lacking Mrs2 Magnesium Transporter are Hypophagic and Thin When Maintained on a High-Fat Diet. Endocrinology 2024; 165:bqae072. [PMID: 38878275 DOI: 10.1210/endocr/bqae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 07/05/2024]
Abstract
Genes regulating body fat are shared with high fidelity by mice and humans, indicating that mouse knockout (KO) phenotyping might identify valuable antiobesity drug targets. Male Mrs2 magnesium transporter (Mrs2) KO mice were recently reported as thin when fed a high-fat diet (HFD). They also exhibited increased energy expenditure (EE)/body weight and had beiged adipocytes that, along with isolated hepatocytes, demonstrated increased oxygen consumption, suggesting that increased EE drove the thin phenotype. Here we provide our data on these and additional assays in Mrs2 KO mice. We generated Mrs2 KO mice by homologous recombination. HFD-fed male and female Mrs2 KO mice had significantly less body fat, measured by quantitative magnetic resonance, than wild-type (WT) littermates. HFD-fed Mrs2 KO mice did not demonstrate increased EE by indirect calorimetry and could not maintain body temperature at 4 °C, consistent with their decreased brown adipose tissue stores but despite increased beige white adipose tissue. Instead, when provided a choice between HFD and low-fat diet (LFD), Mrs2 KO mice showed a significant 15% decrease in total energy intake resulting from significantly lower HFD intake that offset numerically increased LFD intake. Food restriction studies performed using WT mice suggested that this decrease in energy intake could explain the loss of body fat. Oral glucose tolerance test studies revealed significantly improved insulin sensitivity in Mrs2 KO mice. We conclude that HFD-fed Mrs2 KO mice are thin with improved insulin sensitivity, and that this favorable metabolic phenotype is driven by hypophagia. Further evaluation is warranted to determine the suitability of MRS2 as a drug target for antiobesity therapeutics.
Collapse
Affiliation(s)
| | - Deon D Doree
- Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | | | | | | | - Peter Vogel
- Lexicon Pharmaceuticals, The Woodlands, TX 77381, USA
| | | |
Collapse
|
7
|
Hu Y, Li W, Cheng X, Yang H, She ZG, Cai J, Li H, Zhang XJ. Emerging Roles and Therapeutic Applications of Arachidonic Acid Pathways in Cardiometabolic Diseases. Circ Res 2024; 135:222-260. [PMID: 38900855 DOI: 10.1161/circresaha.124.324383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cardiometabolic disease has become a major health burden worldwide, with sharply increasing prevalence but highly limited therapeutic interventions. Emerging evidence has revealed that arachidonic acid derivatives and pathway factors link metabolic disorders to cardiovascular risks and intimately participate in the progression and severity of cardiometabolic diseases. In this review, we systemically summarized and updated the biological functions of arachidonic acid pathways in cardiometabolic diseases, mainly focusing on heart failure, hypertension, atherosclerosis, nonalcoholic fatty liver disease, obesity, and diabetes. We further discussed the cellular and molecular mechanisms of arachidonic acid pathway-mediated regulation of cardiometabolic diseases and highlighted the emerging clinical advances to improve these pathological conditions by targeting arachidonic acid metabolites and pathway factors.
Collapse
Affiliation(s)
- Yufeng Hu
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Wei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Xu Cheng
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Hailong Yang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Key Laboratory of Cardiovascular Disease Prevention and Control, Ministry of Education, First Affiliated Hospital of Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y.)
| | - Zhi-Gang She
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
| | - Jingjing Cai
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
| | - Hongliang Li
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- Department of Cardiology, Renmin Hospital of Wuhan University, China (W.L., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China (H.L.)
| | - Xiao-Jing Zhang
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Gannan Innovation and Translational Medicine Research Institute, Gannan Medical University, Ganzhou, China (Y.H., X.C., H.Y., Z.-G.S., J.C., H.L., X.-J.Z.)
- School of Basic Medical Sciences, Wuhan University, China (X.-J.Z.)
| |
Collapse
|
8
|
Leeson-Payne A, Iyinikkel J, Malcolm C, Lam BYH, Sommer N, Dowsett GKC, Martinez de Morentin PB, Thompson D, Mackenzie A, Chianese R, Kentistou K, Gardner EJ, Perry JRB, Grassmann F, Speakman JR, Rochford JJ, Yeo GSH, Murray F, Heisler LK. Loss of GPR75 protects against non-alcoholic fatty liver disease and body fat accumulation. Cell Metab 2024; 36:1076-1087.e4. [PMID: 38653246 DOI: 10.1016/j.cmet.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/04/2023] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.
Collapse
Affiliation(s)
| | - Jean Iyinikkel
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Cameron Malcolm
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Brian Y H Lam
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Nadine Sommer
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Georgina K C Dowsett
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | | | - Dawn Thompson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | - Katherine Kentistou
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - John R B Perry
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Medical Research Council Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Felix Grassmann
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - John R Speakman
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK
| | | | - Giles S H Yeo
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Fiona Murray
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
| | - Lora K Heisler
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
9
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
10
|
Vasudevan S, Samuels IS, Park PSH. Gpr75 knockout mice display age-dependent cone photoreceptor cell loss. J Neurochem 2023; 167:538-555. [PMID: 37840219 PMCID: PMC10777681 DOI: 10.1111/jnc.15979] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
GPR75 is an orphan G protein-coupled receptor for which there is currently limited information and its function in physiology and disease is only recently beginning to emerge. This orphan receptor is expressed in the retina but its function in the eye is unknown. The earliest studies on GPR75 were conducted in the retina, where the receptor was first identified and cloned and mutations in the receptor were identified as a possible contributor to retinal degenerative disease. Despite these sporadic reports, the function of GPR75 in the retina and in retinal disease has yet to be explored. To assess whether GPR75 has a functional role in the retina, the retina of Gpr75 knockout mice was characterized. Knockout mice displayed a mild progressive retinal degeneration, which was accompanied by oxidative stress. The degeneration was because of the loss of both M-cone and S-cone photoreceptor cells. Housing mice under constant dark conditions reduced oxidative stress but did not prevent cone photoreceptor cell loss, indicating that oxidative stress is not a primary cause of the observed retinal degeneration. Studies here demonstrate an important role for GPR75 in maintaining the health of cone photoreceptor cells and that Gpr75 knockout mice can be used as a model to study cone photoreceptor cell loss.
Collapse
Affiliation(s)
- Sreelakshmi Vasudevan
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ivy S. Samuels
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, Ohio, USA
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
11
|
Speidell A, Walton S, Campbell LA, Tomassoni-Ardori F, Tessarollo L, Corbo C, Taraballi F, Mocchetti I. Mice deficient for G-protein-coupled receptor 75 display altered presynaptic structural protein expression and disrupted fear conditioning recall. J Neurochem 2023; 165:827-841. [PMID: 36978267 PMCID: PMC10330141 DOI: 10.1111/jnc.15818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
There are a number of G-protein-coupled receptors (GPCRs) that are considered "orphan receptors" because the information on their known ligands is incomplete. Yet, these receptors are important targets to characterize, as the discovery of their ligands may lead to potential new therapies. GPR75 was recently deorphanized because at least two ligands appear to bind to it, the chemokine CCL5 and the eicosanoid 20-Hydroxyeicosatetraenoic acid. Recent reports suggest that GPR75 may play a role in regulating insulin secretion and obesity. However, little is known about the function of this receptor in the brain. To study the function of GPR75, we have generated a knockout (KO) mouse model of this receptor and we evaluated the role that this receptor plays in the adult hippocampus by an array of histological, proteomic, and behavioral endpoints. Using RNAscope® technology, we identified GPR75 puncta in several Rbfox3-/NeuN-positive cells in the hippocampus, suggesting that this receptor has a neuronal expression. Proteomic analysis of the hippocampus in 3-month-old GPR75 KO animals revealed that several markers of synapses, including synapsin I and II are downregulated compared with wild type (WT). To examine the functional consequence of this down-regulation, WT and GPR75 KO mice were tested on a hippocampal-dependent behavioral task. Both contextual memory and anxiety-like behaviors were significantly altered in GPR75 KO, suggesting that GPR75 plays a role in hippocampal activity.
Collapse
Affiliation(s)
- Andrew Speidell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC
| | - Sofia Walton
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
| | - Lee A Campbell
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
| | | | | | - Claudia Corbo
- School of Medicine and Surgery Nanomedicine Center, University of Milano-Bicocca, Milan, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute
- Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX
| | - Italo Mocchetti
- Laboratory of Preclinical Neurobiology, Department of Neuroscience, Washington, DC
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC
| |
Collapse
|
12
|
Hossain S, Gilani A, Pascale J, Villegas E, Diegisser D, Agostinucci K, Kulaprathazhe MM, Dirice E, Garcia V, Schwartzman ML. Gpr75-deficient mice are protected from high-fat diet-induced obesity. Obesity (Silver Spring) 2023; 31:1024-1037. [PMID: 36854900 PMCID: PMC10033368 DOI: 10.1002/oby.23692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 03/02/2023]
Abstract
OBJECTIVE G-protein coupled receptor 75 (GPR75) has been identified as the high-affinity receptor of 20-hydroxyeicosatetraenoic acid (20-HETE), a vasoactive and proinflammatory lipid, and mice overproducing 20-HETE have been shown to develop insulin resistance when fed a high-fat diet (HFD), which was prevented by a 20-HETE receptor blocker. Simultaneously, a large-scale exome sequencing of 640,000 subjects identified an association between loss-of-function GPR75 variants and protection against obesity. METHODS Wild-type (WT) and Gpr75-deficient mice were placed on HFD for 14 weeks, and their obesity phenotype was examined. RESULTS Male and female Gpr75 null (knockout [KO]) and heterozygous mice gained less weight than WT mice when placed on HFD. KO mice maintained the same level of energy expenditure during HFD feeding, whereas WT mice showed a significant reduction in energy expenditure. Diet-driven adiposity and adipocyte hypertrophy were greatly lessened in Gpr75-deficient mice. HFD-fed KO mice did not develop insulin resistance. Adipose tissue from Gpr75-deficient mice had increased expression of thermogenic genes and decreased levels of inflammatory markers. Moreover, insulin signaling, which was impaired in HFD-fed WT mice, was unchanged in KO mice. CONCLUSIONS These findings suggest that GPR75 is an important player in the control of metabolism and glucose homeostasis and a likely novel therapeutic target to combat obesity-driven metabolic disorders.
Collapse
Affiliation(s)
- Sakib Hossain
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Ankit Gilani
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Jonathan Pascale
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Elizabeth Villegas
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Kevin Agostinucci
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | | | - Ercument Dirice
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | - Victor Garcia
- Department of Pharmacology, New York Medical College School of Medicine, Valhalla, New York, USA
| | | |
Collapse
|
13
|
Pascale JV, Wolf A, Kadish Y, Diegisser D, Kulaprathazhe MM, Yemane D, Ali S, Kim N, Baruch DE, Yahaya MAF, Dirice E, Adebesin AM, Falck JR, Schwartzman ML, Garcia V. 20-Hydroxyeicosatetraenoic acid (20-HETE): Bioactions, receptors, vascular function, cardiometabolic disease and beyond. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 97:229-255. [PMID: 37236760 PMCID: PMC10683332 DOI: 10.1016/bs.apha.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Vascular function is dynamically regulated and dependent on a bevy of cell types and factors that work in concert across the vasculature. The vasoactive eicosanoid, 20-Hydroxyeicosatetraenoic acid (20-HETE) is a key player in this system influencing the sensitivity of the vasculature to constrictor stimuli, regulating endothelial function, and influencing the renin angiotensin system (RAS), as well as being a driver of vascular remodeling independent of blood pressure elevations. Several of these bioactions are accomplished through the ligand-receptor pairing between 20-HETE and its high-affinity receptor, GPR75. This 20-HETE axis is at the root of various vascular pathologies and processes including ischemia induced angiogenesis, arteriogenesis, septic shock, hypertension, atherosclerosis, myocardial infarction and cardiometabolic diseases including diabetes and insulin resistance. Pharmacologically, several preclinical tools have been developed to disrupt the 20-HETE axis including 20-HETE synthesis inhibitors (DDMS and HET0016), synthetic 20-HETE agonist analogues (20-5,14-HEDE and 20-5,14-HEDGE) and 20-HETE receptor blockers (AAA and 20-SOLA). Systemic or cell-specific therapeutic targeting of the 20-HETE-GPR75 axis continues to be an invaluable approach as studies examine the molecular underpinnings activated by 20-HETE under various physiological settings. In particular, the development and characterization of 20-HETE receptor blockers look to be a promising new class of compounds that can provide a considerable benefit to patients suffering from these cardiovascular pathologies.
Collapse
Affiliation(s)
- Jonathan V Pascale
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Alexandra Wolf
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Yonaton Kadish
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Danielle Diegisser
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | | | - Danait Yemane
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Samir Ali
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Namhee Kim
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - David E Baruch
- School of Medicine, New York Medical College, Valhalla, NY, United States
| | - Muhamad Afiq Faisal Yahaya
- Department of Basic Sciences, MAHSA University, Selangor Darul Ehsan, Malaysia; Department of Human Anatomy, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Ercument Dirice
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Adeniyi M Adebesin
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - John R Falck
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Michal L Schwartzman
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States
| | - Victor Garcia
- Department of Pharmacology, New York Medical College, Valhalla, NY, United States.
| |
Collapse
|