1
|
Oliveira M, Antunes W, Mota S, Madureira-Carvalho Á, Dinis-Oliveira RJ, Dias da Silva D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024; 12:1920. [PMID: 39338594 PMCID: PMC11434382 DOI: 10.3390/microorganisms12091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Antimicrobial resistance (AMR), frequently considered a major global public health threat, requires a comprehensive understanding of its emergence, mechanisms, advances, and implications. AMR's epidemiological landscape is characterized by its widespread prevalence and constantly evolving patterns, with multidrug-resistant organisms (MDROs) creating new challenges every day. The most common mechanisms underlying AMR (i.e., genetic mutations, horizontal gene transfer, and selective pressure) contribute to the emergence and dissemination of new resistant strains. Therefore, mitigation strategies (e.g., antibiotic stewardship programs-ASPs-and infection prevention and control strategies-IPCs) emphasize the importance of responsible antimicrobial use and surveillance. A One Health approach (i.e., the interconnectedness of human, animal, and environmental health) highlights the necessity for interdisciplinary collaboration and holistic strategies in combating AMR. Advancements in novel therapeutics (e.g., alternative antimicrobial agents and vaccines) offer promising avenues in addressing AMR challenges. Policy interventions at the international and national levels also promote ASPs aiming to regulate antimicrobial use. Despite all of the observed progress, AMR remains a pressing concern, demanding sustained efforts to address emerging threats and promote antimicrobial sustainability. Future research must prioritize innovative approaches and address the complex socioecological dynamics underlying AMR. This manuscript is a comprehensive resource for researchers, policymakers, and healthcare professionals seeking to navigate the complex AMR landscape and develop effective strategies for its mitigation.
Collapse
Affiliation(s)
- Manuela Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Wilson Antunes
- Instituto Universitário Militar, CINAMIL, Unidade Militar Laboratorial de Defesa Biológica e Química, Avenida Doutor Alfredo Bensaúde, 4 piso, do LNM, 1849-012 Lisbon, Portugal
| | - Salete Mota
- ULSEDV—Unidade Local De Saúde De Entre Douro Vouga, Unidade de Santa Maria da Feira e Hospital S. Sebastião, Rua Dr. Cândido Pinho, 4520-211 Santa Maria da Feira, Portugal
| | - Áurea Madureira-Carvalho
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Research Unit on Applied Molecular Biosciences, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- Department of Public Health and Forensic Sciences and Medical Education, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- FOREN—Forensic Science Experts, Avenida Dr. Mário Moutinho 33-A, 1400-136 Lisbon, Portugal
| | - Diana Dias da Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal; (Á.M.-C.); (D.D.d.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Forensics and Biomedical Sciences Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), Avenida Central de Gandra 1317, 4585-116 Gandra, Portugal
- REQUIMTE/LAQV, ESS, Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Franco-May DA, Gómez-Carballo J, Barrera-Badillo G, Cruz-Ortíz MN, Núñez-García TE, Arellano-Suárez DS, Wong-Arámbula C, López-Martínez I, Wong-Chew RM, Ayora-Talavera G. Low antiviral resistance in Influenza A and B viruses isolated in Mexico from 2010 to 2023. Antiviral Res 2024; 227:105918. [PMID: 38795911 DOI: 10.1016/j.antiviral.2024.105918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
The most widely used class of antivirals available for Influenza treatment are the neuraminidase inhibitors (NAI) Oseltamivir and Zanamivir. However, amino acid (AA) substitutions in the neuraminidase may cause reduced inhibition or high antiviral resistance. In Mexico, the current state of knowledge about NAI susceptibility is scarce, in this study we report the results of 14 years of Influenza surveillance by phenotypic and genotypic methods. A total of 255 isolates were assessed with the NAI assay, including Influenza A(H1N1)pdm09, A(H3N2) and Influenza B (IBV). Furthermore, 827 sequences contained in the GISAID platform were analyzed in search of relevant mutations.Overall, five isolates showed highly reduced inhibition or reduced inhibition to Oseltamivir, and two showed reduced inhibition to Zanamivir in the NAI assays. Additionally, five A(H1N1)pdm09 sequences from the GISAID possessed AA substitutions associated to reduced inhibition to Oseltamivir and none to Zanamivir. Oseltamivir resistant A(H1N1)pdm09 harbored the H275Y mutation. No genetic mutations were identified in Influenza A(H3N2) and IBV. Overall, these results show that in Mexico the rate of NAI resistance is low (0.6%), but it is essential to continue the Influenza surveillance in order to understand the drug susceptibility of circulating strains.
Collapse
MESH Headings
- Drug Resistance, Viral/genetics
- Antiviral Agents/pharmacology
- Mexico/epidemiology
- Humans
- Influenza B virus/drug effects
- Influenza B virus/genetics
- Influenza, Human/virology
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Oseltamivir/pharmacology
- Zanamivir/pharmacology
- Neuraminidase/genetics
- Neuraminidase/antagonists & inhibitors
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Mutation
- Influenza A Virus, H3N2 Subtype/drug effects
- Influenza A Virus, H3N2 Subtype/genetics
- Adult
- Influenza A virus/drug effects
- Influenza A virus/genetics
- Adolescent
- Child
- Amino Acid Substitution
- Young Adult
- Middle Aged
- Female
- Child, Preschool
- Genotype
- Male
- Aged
- Microbial Sensitivity Tests
- Viral Proteins/genetics
Collapse
Affiliation(s)
- Diana A Franco-May
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico
| | - Jesús Gómez-Carballo
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - María N Cruz-Ortíz
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Tatiana E Núñez-García
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Dayanira S Arellano-Suárez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Claudia Wong-Arámbula
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Irma López-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos "Dr. Manuel Martínez Baez", 01480, Mexico city, Mexico
| | - Rosa M Wong-Chew
- División de Investigación, Facultad de Medicina, Universidad Autónoma de México (UNAM), 04510, Mexico city, Mexico.
| | - Guadalupe Ayora-Talavera
- Laboratorio de Virología, Centro de Investigaciones Regionales Dr, Hideyo Noguchi, Universidad Autónoma de Yucatán, 97225, Yucatan, Mexico.
| |
Collapse
|
3
|
Ghorai S, Shand H, Patra S, Panda K, Santiago MJ, Rahman MS, Chinnapaiyan S, Unwalla HJ. Nanomedicine for the Treatment of Viral Diseases: Smaller Solution to Bigger Problems. Pharmaceutics 2024; 16:407. [PMID: 38543301 PMCID: PMC10975899 DOI: 10.3390/pharmaceutics16030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 04/01/2024] Open
Abstract
The continuous evolution of new viruses poses a danger to world health. Rampant outbreaks may advance to pandemic level, often straining financial and medical resources to breaking point. While vaccination remains the gold standard to prevent viral illnesses, these are mostly prophylactic and offer minimal assistance to those who have already developed viral illnesses. Moreover, the timeline to vaccine development and testing can be extensive, leading to a lapse in controlling the spread of viral infection during pandemics. Antiviral therapeutics can provide a temporary fix to tide over the time lag when vaccines are not available during the commencement of a disease outburst. At times, these medications can have negative side effects that outweigh the benefits, and they are not always effective against newly emerging virus strains. Several limitations with conventional antiviral therapies may be addressed by nanotechnology. By using nano delivery vehicles, for instance, the pharmacokinetic profile of antiviral medications can be significantly improved while decreasing systemic toxicity. The virucidal or virus-neutralizing qualities of other special nanomaterials can be exploited. This review focuses on the recent advancements in nanomedicine against RNA viruses, including nano-vaccines and nano-herbal therapeutics.
Collapse
Affiliation(s)
- Suvankar Ghorai
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Harshita Shand
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Soumendu Patra
- Department of Microbiology, Raiganj University, Raiganj 733134, India; (H.S.); (S.P.)
| | - Kingshuk Panda
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Maria J. Santiago
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | - Md. Sohanur Rahman
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Srinivasan Chinnapaiyan
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| | - Hoshang J. Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA; (S.G.); (K.P.); (M.J.S.); (M.S.R.); (S.C.)
| |
Collapse
|
4
|
Yang J, Yue L, Shen B, Yang Z, Shao J, Miao Y, Ouyang R, Hu Y. Exploring the Inhibitory Effect of AgBiS 2 Nanoparticles on Influenza Viruses. Int J Mol Sci 2023; 24:10223. [PMID: 37373369 DOI: 10.3390/ijms241210223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Influenza viruses are respiratory pathogens that are major threats to human health. Due to the emergence of drug-resistant strains, the use of traditional anti-influenza drugs has been hindered. Therefore, the development of new antiviral drugs is critical. In this article, AgBiS2 nanoparticles were synthesized at room temperature, using the bimetallic properties of the material itself to explore its inhibitory effect on the influenza virus. By comparing the synthesized Bi2S3 and Ag2S nanoparticles, it is found that after adding the silver element, the synthesized AgBiS2 nanoparticles have a significantly better inhibitory effect on influenza virus infection than Bi2S3 and Ag2S nanoparticles. Recent studies have shown that the inhibitory effect of AgBiS2 nanoparticles on the influenza virus mainly occurs in the stages of influenza virus-cell internalization and intracellular replication. In addition, it is found that AgBiS2 nanoparticles also have prominent antiviral properties against α and β coronaviruses, indicating that AgBiS2 nanoparticles have significant potential in inhibiting viral activity.
Collapse
Affiliation(s)
- Junlei Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhu Yang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiang Shao
- Institutional Center for Shared Technologies and Facilities of Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuqing Miao
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- Institute of Bismuth and Rhenium Science, School Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yihong Hu
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
- CAS Key Laboratory of Molecular Virology & Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
5
|
Kidokoro M, Shiino T, Yamaguchi T, Nariai E, Kodama H, Nakata K, Sano T, Gotou K, Kisu T, Maruyama T, Kuba Y, Sakata W, Higashi T, Kiyota N, Sakai T, Yahiro S, Nagita A, Watanabe K, Hirokawa C, Hamabata H, Fujii Y, Yamamoto M, Yokoi H, Sakamoto M, Saito H, Shibata C, Inada M, Fujitani M, Minagawa H, Ito M, Shima A, Murano K, Katoh H, Kato F, Takeda M, Suga S. Nationwide and long-term molecular epidemiologic studies of mumps viruses that circulated in Japan between 1986 and 2017. Front Microbiol 2022; 13:728831. [PMID: 36386684 PMCID: PMC9650061 DOI: 10.3389/fmicb.2022.728831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
In Japan, major mumps outbreaks still occur every 4–5 years because of low mumps vaccine coverage (30–40%) owing to the voluntary immunization program. Herein, to prepare for a regular immunization program, we aimed to reveal the nationwide and long-term molecular epidemiological trends of the mumps virus (MuV) in Japan. Additionally, we performed whole-genome sequencing (WGS) using next-generation sequencing to assess results from conventional genotyping using MuV sequences of the small-hydrophobic (SH) gene. We analyzed 1,064 SH gene sequences from mumps clinical samples and MuV isolates collected from 25 prefectures from 1986 to 2017. The results showed that six genotypes, namely B (110), F (1), G (900), H (3), J (41), and L (9) were identified, and the dominant genotypes changed every decade in Japan since the 1980s. Genotype G has been exclusively circulating since the early 2000s. Seven clades were identified for genotype G using SH sequence-based classification. To verify the results, we performed WGS on 77 representative isolates of genotype G using NGS and phylogenetically analyzed them. Five clades were identified with high bootstrap values and designated as Japanese clade (JPC)-1, -2, -3, -4, -5. JPC-1 and -3 accounted for over 80% of the total genotype G isolates (68.3 and 13.8%, respectively). Of these, JPC-2 and -5, were newly identified clades in Japan through this study. This is the first report describing the nationwide and long-term molecular epidemiology of MuV in Japan. The results provide information about Japanese domestic genotypes, which is essential for evaluating the mumps elimination progress in Japan after the forthcoming introduction of the mumps vaccine into Japan’s regular immunization program. Furthermore, the study shows that WGS analysis using NGS is more accurate than results obtained from conventional SH sequence-based classification and is a powerful tool for accurate molecular epidemiology studies.
Collapse
Affiliation(s)
- Minoru Kidokoro
- Department of Quality Assurance, Radiation Safety, and Information Management, National Institute of Infectious Diseases, Tokyo, Japan
- *Correspondence: Minoru Kidokoro,
| | - Teiichiro Shiino
- Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tomohiro Yamaguchi
- Public Hygiene Division, Gifu Prefectural Tono Region Public Health Center, Tajimi, Japan
| | - Eri Nariai
- Department of Health and Food Safety, Ishikawa Prefectural Institute of Public Health and Environmental Science, Kanazawa, Japan
| | - Hiroe Kodama
- Department of Health and Food Safety, Ishikawa Prefectural Institute of Public Health and Environmental Science, Kanazawa, Japan
| | - Keiko Nakata
- Division of Virology, Osaka Institute of Public Health, Osaka, Japan
| | - Takako Sano
- Division of Microbiology, Kanagawa Prefectural Institute of Public Health, Chigasaki, Japan
| | - Keiko Gotou
- Division of Virology, Ibaraki Prefectural Institute of Public Health, Mito, Ibaraki, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai National Hospital, Sendai, Japan
| | - Tomomi Maruyama
- Department of Infectious Diseases, Gifu Prefectural Research Institute for Health and Environmental Sciences, Kakamigahara, Japan
| | - Yumani Kuba
- Department of Medical Microbiology and zoology, Okinawa Prefectural Institute of Health and Environment, Uruma, Japan
| | - Wakako Sakata
- Kitakyushu City Institute of Health and Environmental Sciences, Kitakyushu, Japan
| | - Teruaki Higashi
- Kitakyushu City Institute of Health and Environmental Sciences, Kitakyushu, Japan
| | - Naoko Kiyota
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Takashi Sakai
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Shunsuke Yahiro
- Department of Microbiology, Kumamoto Prefectural Institute of Public-Health and Environmental Science, Uto, Japan
| | - Akira Nagita
- Department of Pediatrics, Mizushima Central Hospital, Kurashiki, Japan
| | - Kaori Watanabe
- Virology Section, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | - Chika Hirokawa
- Virology Section, Niigata Prefectural Institute of Public Health and Environmental Sciences, Niigata, Japan
| | | | - Yoshiki Fujii
- Division of Biological Science, Hiroshima City Institute of Public Health, Hiroshima, Japan
| | - Miwako Yamamoto
- Division of Biological Science, Hiroshima City Institute of Public Health, Hiroshima, Japan
| | - Hajime Yokoi
- Health Science Division, Chiba City Institute of Health and Environment, Chiba, Japan
| | - Misako Sakamoto
- Health Science Division, Chiba City Institute of Health and Environment, Chiba, Japan
| | - Hiroyuki Saito
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Chihiro Shibata
- Department of Microbiology, Akita Prefectural Research Center for Public Health and Environment, Akita, Japan
| | - Machi Inada
- Virology and Epidemiology Division, Nara Prefecture Institute of Health, Sakurai, Japan
| | - Misako Fujitani
- Virology and Epidemiology Division, Nara Prefecture Institute of Health, Sakurai, Japan
| | - Hiroko Minagawa
- Laboratory of Virology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Miyabi Ito
- Laboratory of Virology, Aichi Prefectural Institute of Public Health, Nagoya, Japan
| | - Akari Shima
- Microbiology Division, Saga Prefectural Institute of Public Health and Pharmaceutical Research, Saga, Japan
| | - Keiko Murano
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroshi Katoh
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Fumihiro Kato
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Takeda
- Department of Virology III, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Suga
- Department of Pediatrics, National Hospital Organization Mie National Hospital, Tsu, Japan
| | | |
Collapse
|
6
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
7
|
Qin J, Lin J, Zhang X, Yuan S, Zhang C, Yin Y. Evaluation of the Clinical Effectiveness of Oseltamivir for Influenza Treatment in Children. Front Pharmacol 2022; 13:849545. [PMID: 35462914 PMCID: PMC9020783 DOI: 10.3389/fphar.2022.849545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
Objective: To estimate the clinical effectiveness of oseltamivir in children with different subtypes of influenza virus infection. Methods: A total of 998 children with acute respiratory infection were enrolled from January to March 2018, and were divided into influenza A, influenza B, influenza A + B, and non-influenza infection (IV-negative) groups. Influenza-like symptoms and duration of fever were evaluated and compared between oseltamivir-treated and non-treated groups. Results: There were no significant differences in the reduction in total febrile period and duration of fever from the onset of therapy between the oseltamivir treated and non-treated children infected with influenza A (p = 0.6885 for total febrile period and 0.7904 for the duration of fever from the onset of treatment), influenza B (p = 0.1462 and 0.1966), influenza A + B (p = 0.5568 and 0.9320), and IV-negative (p = 0.7631 and 0.4655). The duration of fever in children received oseltamivir therapy within 48 h was not significantly shorter than that beyond 48 h (p > 0.05). Additionally, percentages and severities of influenza-like symptoms, including headache, myalgia, fatigue, bellyache, vomiting, diarrhea, sore throat, cough, and coryza were not decreased and alleviated after treatment of oseltamivir. Conclusion: Oseltamivir treatment does not significantly shorten the duration of fever, nor does it significantly relieve influenza-like symptoms in children with infection of influenza.
Collapse
Affiliation(s)
- Jianru Qin
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Jilei Lin
- Department of Respiratory, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangfei Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Shuhua Yuan
- Department of Respiratory, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chiyu Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yong Yin
- Department of Respiratory, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Jeyaram RA, Radha CA. Investigation on the Binding Properties of N1 Neuraminidase of H5N1 Influenza Virus in Complex with Fluorinated Sialic Acid Analog Compounds—a Study by Molecular Docking and Molecular Dynamics Simulations. BRAZILIAN JOURNAL OF PHYSICS 2022; 52:21. [PMCID: PMC8656140 DOI: 10.1007/s13538-021-01009-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 03/19/2024]
Abstract
Worldwide, only two types of antiviral inhibitors (M2 ion channel protein inhibitor and Neuraminidase inhibitors) are approved to treat the influenza viral infection. But the mutation of amino acid sequence in the viral membrane proteins creates the viral resistance to existing antiviral drugs or inhibitors. So the corresponding antiviral drugs have to be reformulated to match these antigenic variations. Fluorination on the carbon–based molecule significantly enriches its biological properties. Hence this study is motivated to design the fluorinated sialic acid (SIA) analog inhibitors for the neuraminidase of H5N1 influenza A virus by substituting fluorine atom at different hydroxyls (O2, O4, O7, O8, and O9) of sialic acid. 100 ns molecular dynamics simulations are carried out for each protein–ligand complex system. NAMD pair interaction energy and MM–PBSA binding free energy calculations predict two possible binding modes for N1–SIA_F2, N1–SIA_F4, and N1–SIA_F7 complexes and single binding mode for N1–SIA_F8 and N1–SIA_F9 complexes. RMSD, RMSF, and hydrogen bonding analyses are used to understand the conformational flexibility and structural stability of each complex system. It has been concluded that the fluorinated sialic acid drug candidates SIA_F2 and SIA_F7 have better inhibiting potency against the N1 neuraminidase of H5N1 influenza virus.
Collapse
Affiliation(s)
- R. A. Jeyaram
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu India
| | - C. Anu Radha
- Research Laboratory of Molecular Biophysics, Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu India
| |
Collapse
|
9
|
Genetic Characteristics of Avian Influenza Virus Isolated from Wild Birds in South Korea, 2019-2020. Viruses 2021; 13:v13030381. [PMID: 33673635 PMCID: PMC7997295 DOI: 10.3390/v13030381] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
Wild aquatic birds, a natural reservoir of avian influenza viruses (AIVs), transmit AIVs to poultry farms, causing huge economic losses. Therefore, the prevalence and genetic characteristics of AIVs isolated from wild birds in South Korea from October 2019 to March 2020 were investigated and analyzed. Fresh avian fecal samples (3256) were collected by active monitoring of 11 wild bird habitats. Twenty-eight AIVs were isolated. Seven HA and eight NA subtypes were identified. All AIV hosts were Anseriformes species. The HA cleavage site of 20 representative AIVs was encoded by non-multi-basic amino acid sequences. Phylogenetic analysis of the eight segment genes of the AIVs showed that most genes clustered within the Eurasian lineage. However, the HA gene of H10 viruses and NS gene of four viruses clustered within the American lineage, indicating intercontinental reassortment of AIVs. Representative viruses likely to infect mammals were selected and evaluated for pathogenicity in mice. JB21-58 (H5N3), JB42-93 (H9N2), and JB32-81 (H11N2) were isolated from the lungs, but JB31-69 (H11N9) was not isolated from the lungs until the end of the experiment at 14 dpi. None of infected mice showed clinical sign and histopathological change in the lung. In addition, viral antigens were not detected in lungs of all mice at 14 dpi. These data suggest that LPAIVs derived from wild birds are unlikely to be transmitted to mammals. However, because LPAIVs can reportedly infect mammals, including humans, continuous surveillance and monitoring of AIVs are necessary, despite their low pathogenicity.
Collapse
|
10
|
Maljkovic Berry I, Melendrez MC, Bishop-Lilly KA, Rutvisuttinunt W, Pollett S, Talundzic E, Morton L, Jarman RG. Next Generation Sequencing and Bioinformatics Methodologies for Infectious Disease Research and Public Health: Approaches, Applications, and Considerations for Development of Laboratory Capacity. J Infect Dis 2021; 221:S292-S307. [PMID: 31612214 DOI: 10.1093/infdis/jiz286] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Next generation sequencing (NGS) combined with bioinformatics has successfully been used in a vast array of analyses for infectious disease research of public health relevance. For instance, NGS and bioinformatics approaches have been used to identify outbreak origins, track transmissions, investigate epidemic dynamics, determine etiological agents of a disease, and discover novel human pathogens. However, implementation of high-quality NGS and bioinformatics in research and public health laboratories can be challenging. These challenges mainly include the choice of the sequencing platform and the sequencing approach, the choice of bioinformatics methodologies, access to the appropriate computation and information technology infrastructure, and recruiting and retaining personnel with the specialized skills and experience in this field. In this review, we summarize the most common NGS and bioinformatics workflows in the context of infectious disease genomic surveillance and pathogen discovery, and highlight the main challenges and considerations for setting up an NGS and bioinformatics-focused infectious disease research public health laboratory. We describe the most commonly used sequencing platforms and review their strengths and weaknesses. We review sequencing approaches that have been used for various pathogens and study questions, as well as the most common difficulties associated with these approaches that should be considered when implementing in a public health or research setting. In addition, we provide a review of some common bioinformatics tools and procedures used for pathogen discovery and genome assembly, along with the most common challenges and solutions. Finally, we summarize the bioinformatics of advanced viral, bacterial, and parasite pathogen characterization, including types of study questions that can be answered when utilizing NGS and bioinformatics.
Collapse
Affiliation(s)
- Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | | | - Kimberly A Bishop-Lilly
- Genomics and Bioinformatics Department, Biological Defense Research Directorate, Naval Medical Research Center-Frederick, Fort Detrick, Maryland
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| | - Simon Pollett
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland.,Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Eldin Talundzic
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lindsay Morton
- Global Emerging Infections Surveillance, Armed Forces Health Surveillance Branch, Silver Spring, Maryland
| | - Richard G Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland
| |
Collapse
|
11
|
Márquez-Domínguez L, Reyes-Leyva J, Herrera-Camacho I, Santos-López G, Scior T. Five Novel Non-Sialic Acid-Like Scaffolds Inhibit In Vitro H1N1 and H5N2 Neuraminidase Activity of Influenza a Virus. Molecules 2020; 25:molecules25184248. [PMID: 32947893 PMCID: PMC7571124 DOI: 10.3390/molecules25184248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 01/04/2023] Open
Abstract
Neuraminidase (NA) of influenza viruses enables the virus to access the cell membrane. It degrades the sialic acid contained in extracellular mucin. Later, it is responsible for releasing newly formed virions from the membrane of infected cells. Both processes become key functions within the viral cycle. Therefore, it is a therapeutic target for research of the new antiviral agents. Structure–activity relationships studies have revealed which are the important functional groups for the receptor–ligand interaction. Influenza virus type A NA activity was inhibited by five scaffolds without structural resemblance to sialic acid. Intending small organic compound repositioning along with drug repurposing, this study combined in silico simulations of ligand docking into the known binding site of NA, along with in vitro bioassays. The five proposed scaffolds are N-acetylphenylalanylmethionine, propanoic 3-[(2,5-dimethylphenyl) carbamoyl]-2-(piperazin-1-yl) acid, 3-(propylaminosulfonyl)-4-chlorobenzoic acid, ascorbic acid (vitamin C), and 4-(dipropylsulfamoyl) benzoic acid (probenecid). Their half maximal inhibitory concentration (IC50) was determined through fluorometry. An acidic reagent 2′-O-(4-methylumbelliferyl)-α-dN-acetylneuraminic acid (MUNANA) was used as substrate for viruses of human influenza H1N1 or avian influenza H5N2. Inhibition was observed in millimolar ranges in a concentration-dependent manner. The IC50 values of the five proposed scaffolds ranged from 6.4 to 73 mM. The values reflect a significant affinity difference with respect to the reference drug zanamivir (p < 0.001). Two compounds (N-acetyl dipeptide and 4-substituted benzoic acid) clearly showed competitive mechanisms, whereas ascorbic acid reflected non-competitive kinetics. The five small organic molecules constitute five different scaffolds with moderate NA affinities. They are proposed as lead compounds for developing new NA inhibitors which are not analogous to sialic acid.
Collapse
Affiliation(s)
- Luis Márquez-Domínguez
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Posgrado en Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Julio Reyes-Leyva
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
| | - Irma Herrera-Camacho
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Gerardo Santos-López
- Laboratorio de Virología, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla 74630, Mexico; (L.M.-D.); (J.R.-L.)
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| | - Thomas Scior
- Laboratorio de Simulaciones Computacionales Moleculares, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
- Correspondence: (G.S.-L.); (T.S.); Tel.: +52-244-444-0122 (G.S.-L.)
| |
Collapse
|
12
|
Tian J, Qu N, Jiao X, Wang X, Geng J, Griffin N, Shan F. Methionine enkephalin inhibits influenza A virus infection through upregulating antiviral state in RAW264.7 cells. Int Immunopharmacol 2019; 78:106032. [PMID: 31835089 DOI: 10.1016/j.intimp.2019.106032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023]
Abstract
MENK, as an immune adjuvant, has potential immune-regulatory activity on innate and adaptive immune cells. The aim of this work was to investigate the antiviral effect of MENK on influenza virus-infected murine macrophage cells (RAW264.7) and its underlying mechanisms. The results showed that MENK markedly inhibited influenza A virus (H1N1) replication in pre- and post-MENK treatment, especially in pre-MENK treatment. The mechanisms exploration revealed that MENK (10 mg/mL) significantly inhibited the nucleoprotein (NP) of influenza virus and up-regulated levels of IL-6, TNF-α and IFN-β compared with those in H1N1 control group. Further experiments confirmed that antiviral effects of MENK was associated with promotion of opioid receptor (MOR) as well as activation of NF-κB p65 inducing cellular antiviral status. The data suggest that MENK should be potential candidate for prophylactic or therapeutic treatment against H1N1 influenza virus.
Collapse
Affiliation(s)
- Jing Tian
- Department of Immunology, School of Basic Medical Science, Jinzhou Medical University, Jinzhou 121001, China; Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Na Qu
- Department of Gynecology, Cancer Hospital, China Medical University, Shenyang 110042, China
| | - Xue Jiao
- Department of Translational Medicine, No.4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Xiaonan Wang
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jin Geng
- Department of Ophthalmology, No.1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Noreen Griffin
- Immune Therapeutics, Inc., 37 North Orange Avenue, Suite 607, Orlando, FL 32801, USA
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China.
| |
Collapse
|
13
|
Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, Farahmand M, Javanmard D, Kiani SJ, Esghaei M, Pirhajati-Mahabadi V, Monavari SH, Ataei-Pirkooh A. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci 2019; 26:70. [PMID: 31500628 PMCID: PMC6734352 DOI: 10.1186/s12929-019-0563-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Currently available anti-influenza drugs are often associated with limitations such as toxicity and the appearance of drug-resistant strains. Therefore, there is a pressing need for the development of novel, safe and more efficient antiviral agents. In this study, we evaluated the antiviral activity of zinc oxide nanoparticles (ZnO-NPs) and PEGylated zinc oxide nanoparticles against H1N1 influenza virus. METHODS The nanoparticles were characterized using the inductively coupled plasma mass spectrometry, x-ray diffraction analysis, and electron microscopy. MTT assay was applied to assess the cytotoxicity of the nanoparticles, and anti-influenza activity was determined by TCID50 and quantitative Real-Time PCR assays. To study the inhibitory impact of nanoparticles on the expression of viral antigens, an indirect immunofluorescence assay was also performed. RESULTS Post-exposure of influenza virus with PEGylated ZnO-NPs and bare ZnO-NPs at the highest non-toxic concentrations could be led to 2.8 and 1.2 log10 TCID50 reduction in virus titer when compared to the virus control, respectively (P < 0.0001). At the highest non-toxic concentrations, the PEGylated and unPEGylated ZnO-NPs led to inhibition rates of 94.6 and 52.2%, respectively, which were calculated based on the viral loads. There was a substantial decrease in fluorescence emission intensity in viral-infected cell treated with PEGylated ZnO-NPs compared to the positive control. CONCLUSIONS Taken together, our study indicated that PEGylated ZnO-NPs could be a novel, effective, and promising antiviral agent against H1N1 influenza virus infection, and future studies can be designed to explore the exact antiviral mechanism of these nanoparticles.
Collapse
Affiliation(s)
- Hadi Ghaffari
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tavakoli
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Masoumeh Zahmatkeshan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davod Javanmard
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Jalal Kiani
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Esghaei
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Pirhajati-Mahabadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.,Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Angila Ataei-Pirkooh
- Department of Medical Virology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|