1
|
Hossain MB, Uchiyama Y, Rajib SA, Rahman A, Takatori M, Tan BJY, Sugata K, Nagashima M, Kawakami M, Ito H, Kumagai R, Sadamasu K, Ogi Y, Kawaguchi T, Tamura T, Fukuhara T, Ono M, Yoshimura K, Satou Y. A micro-disc-based multiplex method for monitoring emerging SARS-CoV-2 variants using the molecular diagnostic tool Intelli-OVI. COMMUNICATIONS MEDICINE 2024; 4:161. [PMID: 39122992 PMCID: PMC11316138 DOI: 10.1038/s43856-024-00582-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Highly transmissible viruses including SARS-CoV-2 frequently accumulate novel mutations that are detected via high-throughput sequencing. However, there is a need to develop an alternative rapid and non-expensive approach. Here we developed a novel multiplex DNA detection method Intelli-OVI for analysing existing and novel mutations of SARS-CoV-2. METHODS We have developed Intelli-OVI that includes the micro-disc-based method IntelliPlex and computational algorithms of objective variant identification (OVI). More than 250 SARS-CoV-2 positive samples including wastewater ones were analysed to verify the efficiency of the method. RESULTS IntelliPlex uses micro-discs printed with a unique pictorial pattern as a labelling conjugate for DNA probes, and OVI allows simultaneous identification of several variants using multidimensional data obtained by the IntelliPlex method. Importantly, de novo mutations can be identified by decreased signals, which indicates that there is an emergence of de novo variant virus as well as prompts the need to design additional primers and probes. We have upgraded probe panel according to the emergence of new variants and demonstrated that Intelli-OVI efficiently identified more than 20 different SARS-CoV-2 variants by using 35 different probes simultaneously. CONCLUSIONS Intelli-OVI can be upgraded to keep up with rapidly evolving viruses as we showed in this study using SARS-CoV-2 as an example and may be suitable for other viruses but would need to be validated.
Collapse
Affiliation(s)
- Md Belal Hossain
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Food Microbiology, Faculty of Nutrition and Food Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yoshikazu Uchiyama
- Department of Information and Communication Technology, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Samiul Alam Rajib
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Akhinur Rahman
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Takatori
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Benjy Jek Yang Tan
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kenji Sugata
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Mami Nagashima
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Mamiyo Kawakami
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hitoshi Ito
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Ryota Kumagai
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Kenji Sadamasu
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yasuhiro Ogi
- Clinical Laboratory Center of Kumamoto City Medical Association, Kumamoto, Japan
| | - Tatsuya Kawaguchi
- Clinical Laboratory Center of Kumamoto City Medical Association, Kumamoto, Japan
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Tomokazu Tamura
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Takasuke Fukuhara
- Department of Microbiology and Immunology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, HU-IVReD, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
- AMED-CREST, Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
- Collaboration Unit for Infection, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Kazuhisa Yoshimura
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Yorifumi Satou
- Division of Genomics and Transcriptomics, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
2
|
Ortiz-Gómez T, Gomez AC, Chuima B, Zevallos A, Ocampo K, Torres D, Pinto JA. Frequency of SARS-CoV-2 variants identified by real-time PCR in the AUNA healthcare network, Peru. Front Public Health 2024; 11:1244662. [PMID: 38410127 PMCID: PMC10894931 DOI: 10.3389/fpubh.2023.1244662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 12/26/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction In Peru, on 11 February 2023, the Ministry of Health registered 4 million patients infected with COVID-19 and around 219,260 deaths. In 2020, the SARS-CoV-2 virus was acquiring mutations that impacted the properties of transmissibility, infectivity, and immune evasion, leading to new lineages. In the present study, the frequency of COVID-19 variants was determined during 2021 and 2022 in patients treated in the AUNA healthcare network. Methods The methodology used to detect mutations and identify variants was the Allplex™ SARS-CoV-2 Variants Assay I, II, and VII kit RT-PCR. The frequency of variants was presented by epidemiological weeks. Results In total, 544 positive samples were evaluated, where the Delta, Omicron, and Gamma variants were identified. The Delta variant was found in 242 (44.5%) patients between epidemiological weeks 39 and 52 in 2021. In the case of Gamma, it was observed in 8 (1.5%) patients at weeks 39, 41, 43, 45, and 46 of 2021. The Omicron variant was the most frequent with 289 (53.1%) patients during weeks 49 to 52 of 2021 and 1 to 22 of 2022. During weeks 1 through 22 of 2022, it was possible to discriminate between BA. 1 (n = 32) and BA.2 (n = 82). Conclusion The rapid identification of COVID-19 variants through the RT-PCR methodology contributes to timely epidemiological surveillance, as well as appropriate patient management.
Collapse
Affiliation(s)
| | - Andrea C. Gomez
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| | | | - Alejandra Zevallos
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima, Peru
| | - Karen Ocampo
- Laboratorios AUNA, Área de Biología Molecular, Lima, Peru
| | - Diana Torres
- Laboratorios AUNA, Área de Biología Molecular, Lima, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada Norbert Wiener, Lima, Peru
| | - Joseph A. Pinto
- Centro de Investigación Básica y Translacional, AUNA IDEAS, Lima, Peru
| |
Collapse
|
3
|
Pinkhover NP, Pontbriand KM, Fletcher KP, Sanchez E, Okello K, Garvey LM, Pum A, Li K, DeOliveira G, Proctor T, Feenstra JDM, Sorel O, Gandhi M, Auclair JR. Comparison of analytical performance and economic value of two biosurveillance methods for tracking SARS-COV-2 variants of concern. Microbiol Spectr 2024; 12:e0348423. [PMID: 38206048 PMCID: PMC10845967 DOI: 10.1128/spectrum.03484-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
The development of biosurveillance programs with strong analytical performance and economically accessible protocols is essential for monitoring viral pathogens. Throughout the COVID-19 pandemic, whole-genome sequencing (WGS) has been the prevailing technology for SARS-CoV-2 variant of concern (VOC) detection. While WGS offers benefits, it is a lengthy process, financially and technically straining for scalable viral tracking. The aim of this study was to compare the analytical performance and economic feasibility of WGS and PCR mutation panels for distinguishing six known VOCs: Alpha (B.1.1.7 and Q.4), Gamma (P.1), Delta (B.1.617.2 and AY.4.2), and Omicron. (B.1.1.529.1). In all, 78 SARS-CoV-2-positive samples were collected from April to December 2021 at Northeastern University (Cabot Testing Site, Boston, MA, USA) for genotyping PCR and WGS analysis. MagMax Viral/Pathogen II Nucleic Acid Isolation and TaqPath COVID-19 Combo Kits were used for RNA extraction and SARS-CoV-2 confirmation. VOC discrimination was assessed using two TaqMan SARS-CoV-2 single nucleotide polymorphism (SNP) assay layouts, and Ion Torrent WGS. In November 2021, the mutation panel demonstrated marked versatility by detecting the emerging Omicron variant reported by South Africa. SNP panel analysis yielded the following 78 VOC identifications: Alpha B.1.1.7 (N = 20), Alpha Q.4 (N = 3), Gamma P.1 (N = 1), Delta B.1.617.2 (N = 30), Delta AY.4.2 (N = 3), and Omicron B.1.1.529.1 (N = 20) with one undetermined (N = 1) sample. Genotyping mutation panels designated lineages in 77 of 78 samples, 46/78 were confirmed by WGS, while 32 samples failed WGS lineage assignment. RT-PCR genotyping panels offer pronounced throughput and sensitivity and provide an economically advantageous technique for SARS-CoV-2 biosurveillance.IMPORTANCEThe results presented in our manuscript demonstrate how the value of simplistic and reliable molecular assays coupled with the core scientific principle of standardization can be overlooked by the charm of more sophisticated assays and instrumentation. This effect can often be amplified during tumultuous public health events, such as the COVID-19 pandemic. By adapting standardized PCR mutation panels to detect prominently circulating SARS-CoV-2 variants, we were able to better assess the potential health impacts of rising positivity rates and transmission clusters within the Northeastern University population. While several literature publications utilizing genotyping PCR and NGS have a similar scope to ours, many investigations lack sufficiently standardized genotyping PCR and NGS bioinformatics inclusionary/exclusionary criteria for SARS-CoV-2 variant identification. Finally, the economic benefits of standardized PCR mutation panels would allow for global implementation of biosurveillance, rather than reserving biosurveillance to more economically developed nations.
Collapse
Affiliation(s)
- Nicholas P. Pinkhover
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Kerriann M. Pontbriand
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Kelli P. Fletcher
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Eduardo Sanchez
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Kenneth Okello
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Liam M. Garvey
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Alex Pum
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Kurvin Li
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Gabriel DeOliveira
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| | - Teddie Proctor
- Thermo Fisher Scientific, Genetic Testing Solutions, South San Francisco, California, USA
| | - Jelena D. M. Feenstra
- Thermo Fisher Scientific, Genetic Testing Solutions, South San Francisco, California, USA
| | - Océane Sorel
- Thermo Fisher Scientific, Genetic Testing Solutions, South San Francisco, California, USA
| | - Manoj Gandhi
- Thermo Fisher Scientific, Genetic Testing Solutions, South San Francisco, California, USA
| | - Jared R. Auclair
- Department of Chemistry and Chemical Biology, Life Sciences Testing Center, Northeastern University Innovation Campus, Burlington, Massachusetts, USA
| |
Collapse
|
4
|
Banada PP, Green R, Streck D, Kurvathi R, Reiss R, Banik S, Daivaa N, Montalvan I, Jones R, Marras SAE, Chakravorty S, Alland D. An expanded RT-PCR melting temperature coding assay to rapidly identify all known SARS-CoV-2 variants and sub-variants of concern. Sci Rep 2023; 13:21927. [PMID: 38081834 PMCID: PMC10713575 DOI: 10.1038/s41598-023-48647-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
The continued emergence of vaccine-resistant SARS-CoV-2 variants of concern (VOC) requires specific identification of each VOC as it arises. Here, we report an expanded version of our previously described sloppy molecular beacon (SMB) melting temperature (Tm) signature-based assay for VOCs, now modified to include detection of Delta (B.1.617.2) and Omicron (B.1.1.529) sub-variants. The SMB-VOC assay targets the signature codons 501, 484 and 452 in the SARS-CoV-2 spike protein which we show can specifically detect and differentiate all known VOCs including the Omicron subvariants (BA.1, BA.2, BA.2.12.1, BA.4/BA.5). The limit of detection (LOD) of the assay was 20, 22 and 36 genomic equivalents (GE) per reaction with the Delta, Omicron BA.1 and BA.2 respectively. Clinical validation of the 3-codon assay in the LC480 instrument showed the assay detected 94% (81/86) of the specimens as WT or VOCs and 6% (5/86) of the tests producing indeterminate results compared to sequencing. Sanger sequencing also failed for four samples. None of the specimens were incorrectly identified as WT or as a different VOC by our assay. Thus, excluding specimens with indeterminant results, the assay was 100% sensitive and 100% specific compared to Sanger sequencing for variant identification. This new assay concept can be easily expanded to add newer variants and can serve as a robust diagnostic tool for selecting appropriate monoclonal antibody therapy and rapid VOC surveillance.
Collapse
Affiliation(s)
- Padmapriya P Banada
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA.
| | - Raquel Green
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - Deanna Streck
- Institute of Genomic Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Rohini Kurvathi
- Institute of Genomic Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Robert Reiss
- Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Sukalyani Banik
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - Naranjargal Daivaa
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | | | | | - Salvatore A E Marras
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
| | - Soumitesh Chakravorty
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA
- Cepheid, Sunnyvale, CA, USA
| | - David Alland
- Rutgers New Jersey Medical School, Public Health Research Institute, Newark, NJ, USA.
| |
Collapse
|
5
|
Liu Y, Yang Y, Wang G, Wang D, Shao PL, Tang J, He T, Zheng J, Hu R, Liu Y, Xu Z, Niu D, Lv J, Yang J, Xiao H, Wu S, He S, Tang Z, Liu Y, Tang M, Jiang X, Yuan J, Dai H, Zhang B. Multiplexed discrimination of SARS-CoV-2 variants via plasmonic-enhanced fluorescence in a portable and automated device. Nat Biomed Eng 2023; 7:1636-1648. [PMID: 37735541 DOI: 10.1038/s41551-023-01092-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Portable assays for the rapid identification of lineages of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are needed to aid large-scale efforts in monitoring the evolution of the virus. Here we report a multiplexed assay in a microarray format for the detection, via isothermal amplification and plasmonic-gold-enhanced near-infrared fluorescence, of variants of SARS-CoV-2. The assay, which has single-nucleotide specificity for variant discrimination, single-RNA-copy sensitivity and does not require RNA extraction, discriminated 12 lineages of SARS-CoV-2 (in three mutational hotspots of the Spike protein) and detected the virus in nasopharyngeal swabs from 1,034 individuals at 98.8% sensitivity and 100% specificity, with 97.6% concordance with genome sequencing in variant discrimination. We also report a compact, portable and fully automated device integrating the entire swab-to-result workflow and amenable to the point-of-care detection of SARS-CoV-2 variants. Portable, rapid, accurate and multiplexed assays for the detection of SARS-CoV-2 variants and lineages may facilitate variant-surveillance efforts.
Collapse
Affiliation(s)
- Ying Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guanghui Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dou Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Pan-Lin Shao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiahu Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Tingzhen He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jintao Zheng
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ruibin Hu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yiyi Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ziyi Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Dan Niu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jiahui Lv
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingkai Yang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hongjun Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Shuai Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Shuang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Zhongrong Tang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Yan Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | | | - Xingyu Jiang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Infectious Disease Department, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Hongjie Dai
- Department of Chemistry, Stanford University, Stanford, CA, USA.
| | - Bo Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Niedre-Otomere B, Kampenusa I, Trofimova J, Bodrenko J, Vangravs R, Skenders G, Nikisins S, Savicka O. Multiplexed RT-qPCR Coupled with Whole-Genome Sequencing to Monitor a SARS-CoV-2 Omicron Variant of Concern in a Hospital Laboratory Setting in Latvia. Diagnostics (Basel) 2023; 13:3467. [PMID: 37998603 PMCID: PMC10670528 DOI: 10.3390/diagnostics13223467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023] Open
Abstract
At the end of 2021, the SARS-CoV-2 Omicron variant of concern (VOC) displaced the previously dominant Delta VOC and enhanced diagnostic and therapeutic challenges worldwide. Respiratory specimens submitted to the Riga East University Hospital Laboratory Service by the central and regional hospitals of Latvia from January to March 2022 that were positive for SARS-CoV-2 RNA were tested by commercial multiplexed RT-qPCR targeting three of the Omicron VOC signature mutations: ΔH69/V70, E484A, and N501Y. Of the specimens tested and analyzed in parallel by whole-genome sequencing (WGS), 964 passed the internal quality criteria (genome coverage ≥90%, read depth ≥400×) and the Nextstrain's quality threshold for "good". We validated the detection accuracy of RT-qPCR for each target individually by using WGS as a control. The results were concordant with both approaches for 938 specimens, with the correct classification rate exceeding 96% for each target (CI 95%); however, the presumptive WHO label was misassigned for 21 specimens. The RT-qPCR genotyping provided an acceptable means to pre-monitor the prevalence of the two presumptive Omicron VOC sublineages, BA.1 and BA.2.
Collapse
|
7
|
Partakusuma LG, Budiailmiawan L, Budiman, Parwati I, Aryati, Andriyoko B, Markus L, Niswara C, Cinthia Alamanda CN. The Single-Nucleotide Polymorphism (SNP) Validity to Detect Omicron Variants. Adv Virol 2023; 2023:6618710. [PMID: 37719318 PMCID: PMC10501844 DOI: 10.1155/2023/6618710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/26/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Mutation of SARS-CoV-2 has generated several variants of concern (VOC) which spread promptly worldwide. These emerging variants affected global strategies to overcome COVID-19. Variants of SARS-CoV-2 are determined by the whole genome sequencing (WGS) assay, which is time-consuming, with limited availability (only in several laboratories). Hence, a faster and more accessible examination is needed. The single-nucleotide polymorphism (SNP) method is one of the options for genomic variation surveillance that can help provide an answer to this challenge. This study aims to determine the validity of the SNP method with PCR to detect omicron variants of SARS-CoV-2 compared with the gold standard, WGS. Methods This is a diagnostic analysis of 140 confirmed COVID-19 nasopharyngeal samples taken from the Kemayoran COVID Emergency Hospital Laboratory and the West Java Provincial Health Laboratory from April to October 2022. Data analysis was carried out to determine conformity and validity values. Results Analysis using Cohen's kappa coefficient test showed high conformity between SNP and WGS (p value <0.001; kappa coefficient = 0.948). SNP showed great validity values on omicron BA.1 (90% sensitivity; 100% specificity), omicron BA.2 (100% sensitivity; 99% specificity), and omicron BA.4/5 (99.2% sensitivity; 100% specificity). Conclusion The SNP method can be a more time-efficient alternative to detect omicron variants of SARS-CoV-2 and distinguish their sublineages (BA.1, BA.2, and BA.4/5) by two different specific gene mutations in combination analysis (ΔH69/V70 and Q493R mutations).
Collapse
Affiliation(s)
- Lia Gardenia Partakusuma
- Faculty of Medicine and Post Graduate Programme, YARSI University, Jakarta, West Java, Indonesia
| | | | - Budiman
- COVID Emergency Hospital, Kemayoran, Jakarta, West Java, Indonesia
| | - Ida Parwati
- Department of Clinical Pathology, Faculty of Medicine Padjadjaran University, Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Aryati
- Department of Clinical Pathology, Faculty of Medicine Airlangga University, Dr. Soetomo General Hospital, Surabaya, East Java, Indonesia
| | - Basti Andriyoko
- Department of Clinical Pathology, Faculty of Medicine Padjadjaran University, Dr. Hasan Sadikin General Hospital, Bandung, West Java, Indonesia
| | - Louisa Markus
- Cengkareng Hospital, Jakarta, West Jakarta, Indonesia
| | - Corine Niswara
- COVID Emergency Hospital, Kemayoran, Jakarta, West Java, Indonesia
| | | |
Collapse
|
8
|
Koets L, van Leeuwen K, Derlagen M, van Wijk J, Keijzer N, Feenstra JDM, Gandhi M, Sorel O, van de Laar TJW, Koppelman MHGM. Efficient SARS-CoV-2 Surveillance during the Pandemic-Endemic Transition Using PCR-Based Genotyping Assays. Microbiol Spectr 2023; 11:e0345022. [PMID: 37154727 PMCID: PMC10269661 DOI: 10.1128/spectrum.03450-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOC) pose an increased risk to public health due to higher transmissibility and/or immune escape. In this study, we assessed the performance of a custom TaqMan SARS-CoV-2 mutation panel consisting of 10 selected real-time PCR (RT-PCR) genotyping assays compared to whole-genome sequencing (WGS) for identification of 5 VOC circulating in The Netherlands. SARS-CoV-2 positive samples (N = 664), collected during routine PCR screening (15 ≤ CT ≤ 32) between May-July 2021 and December 2021-January 2022, were selected and analyzed using the RT-PCR genotyping assays. VOC lineage was determined based on the detected mutation profile. In parallel, all samples underwent WGS with the Ion AmpliSeq SARS-CoV-2 research panel. Among 664 SARS-CoV-2 positive samples, the RT-PCR genotyping assays classified 31.2% as Alpha (N = 207); 48.9% as Delta (N = 325); 19.4% as Omicron (N = 129), 0.3% as Beta (N = 2), and 1 sample as a non-VOC. Matching results were obtained using WGS in 100% of the samples. RT-PCR genotyping assays enable accurate detection of SARS-CoV-2 VOC. Furthermore, they are easily implementable, and the costs and turnaround time are significantly reduced compared to WGS. For this reason, a higher proportion of SARS-CoV-2 positive cases in the VOC surveillance testing can be included, while reserving valuable WGS resources for identification of new variants. Therefore, RT-PCR genotyping assays would be a powerful method to include in SARS-CoV-2 surveillance testing. IMPORTANCE The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome changes constantly. It is estimated that there are thousands of variants of SARS-CoV-2 by now. Some of those variants, variants of concern (VOC), pose an increased risk to public health due to higher transmissibility and/or immune escape. Pathogen surveillance helps researchers, epidemiologists, and public health officials to monitor the evolution of infectious diseases agents, alert on the spread of pathogens, and develop counter measures like vaccines. The technique used for the pathogen surveillance is called sequence analysis which makes it possible to examine the building blocks of SARS-CoV-2. In this study, a new PCR method based on the detection of specific changes of those building blocks is presented. This method enables a fast, accurate and cheap determination of different SARS-CoV-2 VOC. Therefore, it would be a powerful method to include in SARS-CoV-2 surveillance testing.
Collapse
Affiliation(s)
- Lianne Koets
- Sanquin Research and Lab Services, National Screening Laboratory of Sanquin, Amsterdam, The Netherlands
| | - Karin van Leeuwen
- Sanquin Diagnostics, Department of Phagocytes Diagnostics, Amsterdam, The Netherlands
| | - Maaike Derlagen
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | - Jalenka van Wijk
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | - Nadia Keijzer
- Sanquin Diagnostics, Department of Immune Cytology, Amsterdam, The Netherlands
| | | | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Oceane Sorel
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Thijs J. W. van de Laar
- Sanquin Research, Department of Blood-Borne Infections, Amsterdam, The Netherlands
- Onze Lieve Vrouwe Gasthuis, Laboratory of Medical Microbiology, Amsterdam, The Netherlands
| | - Marco H. G. M. Koppelman
- Sanquin Research and Lab Services, National Screening Laboratory of Sanquin, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Thompson CR, Torres PM, Kontogianni K, Byrne RL, Noguera SV, Luna-Muschi A, Marchi AP, Andrade PS, dos Santos Barboza A, Nishikawara M, Body R, de Vos M, Escadafal C, Adams E, Figueiredo Costa S, Cubas-Atienzar AI. Multicenter Diagnostic Evaluation of OnSite COVID-19 Rapid Test (CTK Biotech) among Symptomatic Individuals in Brazil and the United Kingdom. Microbiol Spectr 2023; 11:e0504422. [PMID: 37212699 PMCID: PMC10269675 DOI: 10.1128/spectrum.05044-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
The COVID-19 pandemic has given rise to numerous commercially available antigen rapid diagnostic tests (Ag-RDTs). To generate and to share accurate and independent data with the global community requires multisite prospective diagnostic evaluations of Ag-RDTs. This report describes the clinical evaluation of the OnSite COVID-19 rapid test (CTK Biotech, CA, USA) in Brazil and the United Kingdom. A total of 496 paired nasopharyngeal (NP) swabs were collected from symptomatic health care workers at Hospital das Clínicas in São Paulo, Brazil, and 211 NP swabs were collected from symptomatic participants at a COVID-19 drive-through testing site in Liverpool, United Kingdom. Swabs were analyzed by Ag-RDT, and results were compared to quantitative reverse transcriptase PCR (RT-qPCR). The clinical sensitivity of the OnSite COVID-19 rapid test in Brazil was 90.3% (95% confidence interval [CI], 75.1 to 96.7%) and in the United Kingdom was 75.3% (95% CI, 64.6 to 83.6%). The clinical specificity in Brazil was 99.4% (95% CI, 98.1 to 99.8%) and in the United Kingdom was 95.5% (95% CI, 90.6 to 97.9%). Concurrently, analytical evaluation of the Ag-RDT was assessed using direct culture supernatant of SARS-CoV-2 strains from wild-type (WT), Alpha, Delta, Gamma, and Omicron lineages. This study provides comparative performance of an Ag-RDT across two different settings, geographical areas, and populations. Overall, the OnSite Ag-RDT demonstrated a lower clinical sensitivity than claimed by the manufacturer. The sensitivity and specificity from the Brazil study fulfilled the performance criteria determined by the World Health Organization, but the performance obtained from the UK study failed to do. Further evaluation of Ag-RDTs should include harmonized protocols between laboratories to facilitate comparison between settings. IMPORTANCE Evaluating rapid diagnostic tests in diverse populations is essential to improving diagnostic responses as it gives an indication of the accuracy in real-world scenarios. In the case of rapid diagnostic testing within this pandemic, lateral flow tests that meet the minimum requirements for sensitivity and specificity can play a key role in increasing testing capacity, allowing timely clinical management of those infected, and protecting health care systems. This is particularly valuable in settings where access to the test gold standard is often restricted.
Collapse
Affiliation(s)
- Caitlin R. Thompson
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Pablo Muñoz Torres
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Konstantina Kontogianni
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - Rachel L. Byrne
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| | - LSTM Diagnostic group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Saidy Vásconez Noguera
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Luna-Muschi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana Paula Marchi
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Pâmela S. Andrade
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
| | - Antonio dos Santos Barboza
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marli Nishikawara
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - CONDOR steering group
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Department of Epidemiology, School of Public Health of University of São Paulo, São Paulo, Brazil
- Centro de atendimento ao colaborador, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- FIND, Geneva, Switzerland
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Richard Body
- Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Camille Escadafal
- Divisão de Laboratório Central, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Emily Adams
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
- Global Access Diagnostics, Thurleigh, Bedfordshire, United Kingdom
| | - Silvia Figueiredo Costa
- LIM-49, Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
- Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Ana I. Cubas-Atienzar
- Liverpool School of Tropical Medicine, Centre for Drugs and Diagnostics, Liverpool, United Kingdom
| |
Collapse
|
10
|
Esman A, Dubodelov D, Khafizov K, Kotov I, Roev G, Golubeva A, Gasanov G, Korabelnikova M, Turashev A, Cherkashin E, Mironov K, Cherkashina A, Akimkin V. Development and Application of Real-Time PCR-Based Screening for Identification of Omicron SARS-CoV-2 Variant Sublineages. Genes (Basel) 2023; 14:1218. [PMID: 37372398 DOI: 10.3390/genes14061218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The Omicron strain is currently the main dominant variant of SARS-CoV-2, with a large number of sublineages. In this article, we present our experience in tracing it in Russia using molecular diagnostic methods. For this purpose, different approaches were used; for example, we developed multiprimer panels for RT-PCR and Sanger and NGS sequencing methods. For the centralized collection and analysis of samples, the VGARus database was developed, which currently includes more than 300,000 viral sequences.
Collapse
Affiliation(s)
- Anna Esman
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Dmitry Dubodelov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Kamil Khafizov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - Ivan Kotov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - German Roev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
- Moscow Institute of Physics and Technology, National Research University, 115184 Dolgoprudny, Russia
| | - Anna Golubeva
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Gasan Gasanov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Marina Korabelnikova
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Askar Turashev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Evgeniy Cherkashin
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Konstantin Mironov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Anna Cherkashina
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| | - Vasily Akimkin
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing Russian Federation, 3a Novogireevskaya Str., 111123 Moscow, Russia
| |
Collapse
|
11
|
Subramoney K, Mtileni N, Davis A, Giandhari J, Tegally H, Wilkinson E, Naidoo Y, Ramphal Y, Pillay S, Ramphal U, Simane A, Reddy B, Mashishi B, Mbenenge N, de Oliveira T, Fielding BC, Treurnicht FK. SARS-CoV-2 spike protein diversity at an intra-host level, among SARS-CoV-2 infected individuals in South Africa, 2020 to 2022. PLoS One 2023; 18:e0286373. [PMID: 37253027 PMCID: PMC10228762 DOI: 10.1371/journal.pone.0286373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/01/2023] Open
Abstract
Intra-host diversity studies are used to characterise the mutational heterogeneity of SARS-CoV-2 infections in order to understand the impact of virus-host adaptations. This study investigated the frequency and diversity of the spike (S) protein mutations within SARS-CoV-2 infected South African individuals. The study included SARS-CoV-2 respiratory samples, from individuals of all ages, received at the National Health Laboratory Service at Charlotte Maxeke Johannesburg Academic hospital, Gauteng, South Africa, from June 2020 to May 2022. Single nucleotide polymorphism (SNP) assays and whole genome sequencing were performed on a random selection of SARS-CoV-2 positive samples. The allele frequency (AF) was determined using TaqMan Genotyper software for SNP PCR analysis and galaxy.eu for analysis of FASTQ reads from sequencing. The SNP assays identified 5.3% (50/948) of Delta cases with heterogeneity at delY144 (4%; 2/50), E484Q (6%; 3/50), N501Y (2%; 1/50) and P681H (88%; 44/50), however only heterogeneity for E484Q and delY144 were confirmed by sequencing. From sequencing we identified 9% (210/2381) of cases with Beta, Delta, Omicron BA.1, BA.2.15, and BA.4 lineages that had heterogeneity in the S protein. Heterogeneity was primarily identified at positions 19 (1.4%) with T19IR (AF 0.2-0.7), 371 (92.3%) with S371FP (AF 0.1-1.0), and 484 (1.9%) with E484AK (0.2-0.7), E484AQ (AF 0.4-0.5) and E484KQ (AF 0.1-0.4). Mutations at heterozygous amino acid positions 19, 371 and 484 are known antibody escape mutations, however the impact of the combination of multiple substitutions identified at the same position is unknown. Therefore, we hypothesise that intra-host SARS-CoV-2 quasispecies with heterogeneity in the S protein facilitate competitive advantage of variants that can completely/partially evade host's natural and vaccine-induced immune responses.
Collapse
Affiliation(s)
- Kathleen Subramoney
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Nkhensani Mtileni
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Ashlyn Davis
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Jennifer Giandhari
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Yeshnee Naidoo
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Yajna Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Sureshnee Pillay
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Upasana Ramphal
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Andiswa Simane
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Bhaveshan Reddy
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Bonolo Mashishi
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Nonhlanhla Mbenenge
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, South Africa
| | - Burtram C. Fielding
- Molecular Biology and Virology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Cape Town, South Africa
| | - Florette K. Treurnicht
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Department of Virology, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| |
Collapse
|
12
|
Paz M, Moreno P, Moratorio G. Perspective Chapter: Real-Time Genomic Surveillance for SARS-CoV-2 on Center Stage. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.107842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
The course of the COVID-19 pandemic depends not only on how the SARS-CoV-2 virus mutates but on the actions taken to respond to it. Important public health decisions can only be taken if we know viral dynamics, viral variants distribution, and whether new variants are emerging that may be more transmissible or/and more virulent, displaying evasion to vaccines or antiviral treatments. This situation has put the use of different approaches, such as molecular techniques and real-time genomic sequencing, to support public health decision-making on center stage. To achieve this, robust programs based on: (i) diagnostic capacity; (ii) high-throughput sequencing technologies; and (iii) high-performance bioinformatic resources, need to be established. This chapter focuses on how SARS-CoV-2 evolved since its discovery and it summarizes the scientific efforts to obtain genomic data as the virus spread throughout the globe.
Collapse
|
13
|
Milanesi S, Rosset F, Colaneri M, Giordano G, Pesenti K, Blanchini F, Bolzern P, Colaneri P, Sacchi P, De Nicolao G, Bruno R. Early detection of variants of concern via funnel plots of regional reproduction numbers. Sci Rep 2023; 13:1052. [PMID: 36658143 PMCID: PMC9852294 DOI: 10.1038/s41598-022-27116-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Early detection of the emergence of a new variant of concern (VoC) is essential to develop strategies that contain epidemic outbreaks. For example, knowing in which region a VoC starts spreading enables prompt actions to circumscribe the geographical area where the new variant can spread, by containing it locally. This paper presents 'funnel plots' as a statistical process control method that, unlike tools whose purpose is to identify rises of the reproduction number ([Formula: see text]), detects when a regional [Formula: see text] departs from the national average and thus represents an anomaly. The name of the method refers to the funnel-like shape of the scatter plot that the data take on. Control limits with prescribed false alarm rate are derived from the observation that regional [Formula: see text]'s are normally distributed with variance inversely proportional to the number of infectious cases. The method is validated on public COVID-19 data demonstrating its efficacy in the early detection of SARS-CoV-2 variants in India, South Africa, England, and Italy, as well as of a malfunctioning episode of the diagnostic infrastructure in England, during which the Immensa lab in Wolverhampton gave 43,000 incorrect negative tests relative to South West and West Midlands territories.
Collapse
Affiliation(s)
- Simone Milanesi
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Francesca Rosset
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Marta Colaneri
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Giordano
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Kenneth Pesenti
- Department of Surgical Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Franco Blanchini
- Department of Mathematics, Computer Science and Physics, University of Udine, Udine, Italy
| | - Paolo Bolzern
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Patrizio Colaneri
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
- Institute of Electronics, Information Engineering and Telecommunication (IEIIT), Italian National Research Council (CNR), Turin, Italy
| | - Paolo Sacchi
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuseppe De Nicolao
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy.
| | - Raffaele Bruno
- Division of Infectious Diseases I, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
14
|
Stanhope BJ, Peterson B, Knight B, Decadiz RN, Pan R, Davis P, Fraser A, Nuth M, vanWestrienen J, Wendlandt E, Goodwin B, Myers C, Stone J, Sozhamannan S. Development, testing and validation of a SARS-CoV-2 multiplex panel for detection of the five major variants of concern on a portable PCR platform. Front Public Health 2022; 10:1042647. [PMID: 36590003 PMCID: PMC9798920 DOI: 10.3389/fpubh.2022.1042647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/11/2022] [Indexed: 12/16/2022] Open
Abstract
Many SARS-CoV-2 variants have emerged during the course of the COVID-19 pandemic. These variants have acquired mutations conferring phenotypes such as increased transmissibility or virulence, or causing diagnostic, therapeutic, or immune escape. Detection of Alpha and the majority of Omicron sublineages by PCR relied on the so-called S gene target failure due to the deletion of six nucleotides coding for amino acids 69-70 in the spike (S) protein. Detection of hallmark mutations in other variants present in samples relied on whole genome sequencing. However, whole genome sequencing as a diagnostic tool is still in its infancy due to geographic inequities in sequencing capabilities, higher cost compared to other molecular assays, longer turnaround time from sample to result, and technical challenges associated with producing complete genome sequences from samples that have low viral load and/or high background. Hence, there is a need for rapid genotyping assays. In order to rapidly generate information on the presence of a variant in a given sample, we have created a panel of four triplex RT-qPCR assays targeting 12 mutations to detect and differentiate all five variants of concern: Alpha, Beta, Gamma, Delta, and Omicron. We also developed an expanded pentaplex assay that can reliably distinguish among the major sublineages (BA.1-BA.5) of Omicron. In silico, analytical and clinical testing of the variant panel indicate that the assays exhibit high sensitivity and specificity. This panel can help fulfill the need for rapid identification of variants in samples, leading to quick decision making with respect to public health measures, as well as treatment options for individuals. Compared to sequencing, these genotyping PCR assays allow much faster turn-around time from sample to results-just a couple hours instead of days or weeks.
Collapse
Affiliation(s)
| | | | | | | | - Roger Pan
- Naval Health Research Center (NHRC), San Diego, CA, United States
| | | | - Anne Fraser
- Naval Health Research Center (NHRC), San Diego, CA, United States
| | | | | | - Erik Wendlandt
- Integrated DNA Technologies, Coralville, IA, United States
| | - Bruce Goodwin
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Enabling Biotechnologies, Frederick, MD, United States
| | | | - Jennifer Stone
- MRIGlobal, Kansas City, MO, United States,*Correspondence: Jennifer Stone
| | - Shanmuga Sozhamannan
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense (JPEO-CBRND), Enabling Biotechnologies, Frederick, MD, United States,Logistics Management Institute, Tysons, VA, United States,Shanmuga Sozhamannan
| |
Collapse
|
15
|
Rana R, Kant R, Huirem RS, Bohra D, Ganguly NK. Omicron variant: Current insights and future directions. Microbiol Res 2022; 265:127204. [PMID: 36152612 PMCID: PMC9482093 DOI: 10.1016/j.micres.2022.127204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 01/08/2023]
Abstract
The global COVID-19 outbreak has returned with the identification of the SARS-CoV-2 Omicron variant (B.1.1.529) after appearing to be persistently spreading for the more than past two years. In comparison to prior SARS-CoV-2 variants, this new variant revealed a significant amount of mutation. This novel variety may have a greater rate of transmissibility which might impede the effectiveness of current diagnostic equipment as well as vaccination efficacy and also impede immunotherapies (Antibody / monoclonal antibody based). WHO designated B.1.1.529 as a variant of concern on November 26, 2021, identified as Omicron. The Omicron variant transmission method and severity, on the other hand, are well defined. The global spread of Omicron, which has now seized many nations, has resulted in numerous speculations regarding its origin and degree of infectivity. The following sections will go over its potential for transmission, omicron structure, and impact on COVID-19 vaccines, how it is different from delta variant and diagnostics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, Delhi, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | | - Deepika Bohra
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | | |
Collapse
|
16
|
Silva CS, Tryndyak VP, Camacho L, Orloff MS, Porter A, Garner K, Mullis L, Azevedo M. Temporal dynamics of SARS-CoV-2 genome and detection of variants of concern in wastewater influent from two metropolitan areas in Arkansas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157546. [PMID: 35914602 PMCID: PMC9338166 DOI: 10.1016/j.scitotenv.2022.157546] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Although SARS-CoV-2 can cause severe illness and death, a percentage of the infected population is asymptomatic. This, along with other factors, such as insufficient diagnostic testing and underreporting due to self-testing, contributes to the silent transmission of SARS-CoV-2 and highlights the importance of implementing additional surveillance tools. The fecal shedding of the virus from infected individuals enables its detection in community wastewater, and this has become a valuable public health tool worldwide as it allows the monitoring of the disease on a populational scale. Here, we monitored the presence of SARS-CoV-2 and its dynamic genomic changes in wastewater sampled from two metropolitan areas in Arkansas during major surges of COVID-19 cases and assessed how the viral titers in these samples related to the clinical case counts between late April 2020 and January 2022. The levels of SARS-CoV-2 RNA were quantified by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) using a set of TaqMan assays targeting three different viral genes (encoding ORF1ab polyprotein, surface glycoprotein, and nucleocapsid phosphoprotein). An allele-specific RT-qPCR approach was used to screen the samples for SARS-CoV-2 mutations. The identity and genetic diversity of the virus were further investigated through amplicon-based RNA sequencing, and SARS-CoV-2 variants of concern were detected in wastewater samples throughout the duration of this study. Our data show how changes in the virus genome can affect the sensitivity of specific RT-qPCR assays used in COVID-19 testing with the surge of new variants. A significant association was observed between viral titers in wastewater and recorded number of COVID-19 cases in the areas studied, except when assays failed to detect targets due to the presence of particular variants. These findings support the use of wastewater surveillance as a reliable complementary tool for monitoring SARS-CoV-2 and its genetic variants at the community level.
Collapse
Affiliation(s)
- Camila S Silva
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohammed S Orloff
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for the Studies of Tobacco, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Austin Porter
- Department of Health Policy and Management, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Kelley Garner
- Department of Epidemiology, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Arkansas Department of Health, Little Rock, AR, USA
| | - Lisa Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Marli Azevedo
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
17
|
Neopane P, Nypaver J, Shrestha R, Beqaj S. Performance Evaluation of TaqMan SARS-CoV-2, Flu A/B, RSV RT-PCR Multiplex Assay for the Detection of Respiratory Viruses. Infect Drug Resist 2022; 15:5411-5423. [PMID: 36119638 PMCID: PMC9480588 DOI: 10.2147/idr.s373748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To detect and differentiate co-infection with influenza and respiratory syncytial virus during the COVID pandemic, a rapid method that can detect multiple pathogens in a single test is a significant diagnostic advance to analyze the outcomes and clinical implications of co-infection. Therefore, we validated and evaluated the performance characteristics of TaqMan SARS-CoV-2, Flu A/B, RSV RT-PCR multiplex assay for the detection of SARS-CoV-2, Flu A/B, and RSV using nasopharyngeal and saliva samples. Materials and Methods The method validation was performed by using culture fluids of Influenza A virus (H3N2) (A/Wisconsin/67/2005), Influenza B virus (B/Virginia/ATCC4/2009), RSV A2 cpts-248, SARS-CoV-2 (USA-WA1/2020) and quantitative RNA controls of Influenza A virus (H1N1) strain A/PR/8/34 (VR-95DQ), RSV A2 (VR-1540DQ) and SARS-CoV-2 (MN908947.3 Wuhan-Hu-1) from ATCC and Zeptometrix, NY, USA. A total of 110 nasopharyngeal specimens and 70 saliva samples were used for the SARS-CoV-2 detection, and a total of 70 nasopharyngeal specimens were used for Influenza and RSV detection. Total RNA was extracted from all the samples and multiplex PCR was performed using TaqMan SARS-CoV-2, Flu A/B, RSV RT-PCR multiplex assay. The assay was used for SARS-CoV-2 variant (B.1.1.7_601443, B.1.617.1_1662307, P.1_792683, B.1.351_678597, B.1.1.529/BA.1). Results Validation controls showed accurate and precise results. The correlation study found the accuracy of 96.38 to 100% (95% CI) in nasopharyngeal and 94.87 to 100% (95% CI) in saliva for SARS-CoV-2 and 91.1 to 100% (95% CI) for both Influenza A/B and RSV. The diagnostic efficiency of this assay was not affected by SARS-CoV-2 variant, including Omicron. Conclusion The TaqMan SARS-CoV-2, Flu A/B, RSV RT-PCR multiplex assay is a rapid method to detect and differentiate SAR-CoV-2, Flu A and B, and RSV in nasopharyngeal and saliva samples. It has a significant role in the diagnosis and management of respiratory illnesses and the clinical implications of co-infection.
Collapse
Affiliation(s)
- Puja Neopane
- Patients Choice Laboratories, Indianapolis, IN, 46278, USA
| | - Jerome Nypaver
- Patients Choice Laboratories, Indianapolis, IN, 46278, USA
| | | | - Safedin Beqaj
- Patients Choice Laboratories, Indianapolis, IN, 46278, USA
| |
Collapse
|
18
|
Imaizumi Y, Ishige T, Fujikawa T, Miyabe A, Murata S, Kawasaki K, Nishimura M, Taniguchi T, Igari H, Matsushita K. Development of multiplex S-gene-targeted RT-PCR for rapid identification of SARS-CoV-2 variants by extended S-gene target failure. Clin Chim Acta 2022; 536:6-11. [PMID: 36113557 PMCID: PMC9472704 DOI: 10.1016/j.cca.2022.08.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 11/15/2022]
Abstract
Background Tracking SARS-CoV-2 variants of concern (VOC) by genomic sequencing is time-consuming. The rapid screening of VOCs is necessary for clinical laboratories. In this study, we developed a rapid screening method based on multiplex RT-PCR by extended S-gene target failure (eSGTF), a false negative result caused by S-gene mutations. Methods Three S-gene target (SGT) regions (SGT1, codons 65–72; SGT2, codons 152–159; and SGT3, codons 370–377) and an N-gene region (for internal control) were detected in single-tube. Four types of VOC (Alpha, Delta, Omicron BA.1, and Omicron BA.2) are classified by positive/negative patterns of 3 S-gene regions (eSGTF pattern). Results The eSGTF patterns of VOCs were as follows (SGT1, SGT2, SGT3; P, positive; N, negative): Alpha, NPP; Delta, PNP; Omicron BA.1, NPN pattern; and Omicron BA.2, PPN. As compared with the S-gene sequencing, eSGTF patterns were identical to the specific VOCs (concordance rate = 96.7%, N = 206/213). Seven samples with discordant results had a minor mutation in the probe binding region. The epidemics of VOCs estimated by eSGTF patterns were similar to those in Japan. Conclusions Multiplex RT-PCR and eSGTF patterns enable high-throughput screening of VOCs. It will be useful for the rapid determination of VOCs in clinical laboratories.
Collapse
Affiliation(s)
- Yuri Imaizumi
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan.
| | - Tatsuki Fujikawa
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Akiko Miyabe
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Shota Murata
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Kenji Kawasaki
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Motoi Nishimura
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Toshibumi Taniguchi
- Department of Infectious Disease, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Hidetoshi Igari
- Department of Infectious Disease, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ward, Chiba-city, Chiba 2608677, Japan
| |
Collapse
|
19
|
Lai E, Kennedy EB, Lozach J, Hayashibara K, Davis-Turak J, Becker D, Brzoska P, Cassens T, Diamond E, Gandhi M, Greninger AL, Hajian P, Leonetti NA, Nguyen JM, O’Donovan KMC, Peck T, Ramirez JM, Roychoudhury P, Sandoval E, Wesselman C, Wesselman T, White S, Williams S, Wong D, Yu Y, Creager RS. A Method for Variant Agnostic Detection of SARS-CoV-2, Rapid Monitoring of Circulating Variants, and Early Detection of Emergent Variants Such as Omicron. J Clin Microbiol 2022; 60:e0034222. [PMID: 35766514 PMCID: PMC9297815 DOI: 10.1128/jcm.00342-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/04/2022] [Indexed: 12/13/2022] Open
Abstract
The rapid emergence of SARS-CoV-2 variants raised public health questions concerning the capability of diagnostic tests to detect new strains, the efficacy of vaccines, and how to map the geographical distribution of variants to understand transmission patterns and loads on healthcare resources. Next-generation sequencing (NGS) is the primary method for detecting and tracing new variants, but it is expensive, and it can take weeks before sequence data are available in public repositories. This article describes a customizable reverse transcription PCR (RT-PCR)-based genotyping approach which is significantly less expensive, accelerates reporting, and can be implemented in any lab that performs RT-PCR. Specific single-nucleotide polymorphisms (SNPs) and indels were identified which had high positive-percent agreement (PPA) and negative-percent agreement (NPA) compared to NGS for the major genotypes that circulated through September 11, 2021. Using a 48-marker panel, testing on 1,031 retrospective SARS-CoV-2 positive samples yielded a PPA and NPA ranging from 96.3 to 100% and 99.2 to 100%, respectively, for the top 10 most prevalent World Health Organization (WHO) lineages during that time. The effect of reducing the quantity of panel markers was explored, and a 16-marker panel was determined to be nearly as effective as the 48-marker panel at lineage assignment. Responding to the emergence of Omicron, a genotyping panel was developed which distinguishes Delta and Omicron using four highly specific SNPs. The results demonstrate the utility of the condensed panel to rapidly track the growing prevalence of Omicron across the US in December 2021 and January 2022.
Collapse
Affiliation(s)
- Eric Lai
- Personalized Science, Burlington, Vermont, USA
| | | | | | | | | | | | - Pius Brzoska
- Thermo Fisher Scientific, South San Francisco, California, USA
| | | | - Evan Diamond
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Manoj Gandhi
- Thermo Fisher Scientific, South San Francisco, California, USA
| | - Alexander L. Greninger
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Pooneh Hajian
- University of Washington Medical Center, Seattle, Washington, USA
| | | | | | | | - Troy Peck
- Helix OpCo, San Diego, California, USA
| | | | - Pavitra Roychoudhury
- University of Washington Medical Center, Seattle, Washington, USA
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | | | | | | | | | | - Yufei Yu
- Biocomx, Dana Point, California, USA
| | | |
Collapse
|
20
|
Development of a simple genotyping method based on indel mutations to rapidly screen SARS-CoV-2 circulating variants: Delta, Omicron BA.1 and BA.2. J Virol Methods 2022; 307:114570. [PMID: 35724698 PMCID: PMC9212420 DOI: 10.1016/j.jviromet.2022.114570] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 11/24/2022]
Abstract
The high need of rapid and flexible tools that facilitate the identification of circulating SARS-CoV-2 Variants of Concern (VOCs) remains crucial for public health system monitoring. Here, we develop allele-specific (AS)-qPCR assays targeting three recurrent indel mutations, ΔEF156–157, Ins214EPE and ΔLPP24–26, in spike (S) gene to identify the Delta VOC and the Omicron sublineages BA.1 and BA.2, respectively. After verification of the analytical specificity of each primer set, two duplex qPCR assays with melting curve analysis were performed to screen 129 COVID-19 cases confirmed between December 31, 2021 and February 01, 2022 in Sfax, Tunisia. The first duplex assay targeting ΔEF156–157 and Ins214EPE mutations successfully detected the Delta VOC in 39 cases and Omicron BA.1 in 83 cases. All the remaining cases (n = 7) were identified as Omicron BA.2, by the second duplex assay targeting Ins214EPE and ΔLPP24–26 mutations. The results of the screening method were in perfect concordance with those of S gene partial sequencing. In conclusion, our findings provide a simple and flexible screening method for more rapid and reliable monitoring of circulating VOCs. We highly recommend its implementation to guide public health policies.
Collapse
|
21
|
Khandia R, Singhal S, Alqahtani T, Kamal MA, El-Shall NA, Nainu F, Desingu PA, Dhama K. Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic. ENVIRONMENTAL RESEARCH 2022; 209:112816. [PMID: 35093310 PMCID: PMC8798788 DOI: 10.1016/j.envres.2022.112816] [Citation(s) in RCA: 161] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/22/2022] [Accepted: 01/23/2022] [Indexed: 02/05/2023]
Abstract
Since the appearance in the late of December 2019, SARS-CoV-2 is rapidly evolving and mutating continuously, giving rise to various variants with variable degrees of infectivity and lethality. The virus that initially appeared in China later mutated several times, wreaking havoc and claiming many lives worldwide amid the ongoing COVID-19 pandemic. After Alpha, Beta, Gamma, and Delta variants, the most recently emerged variant of concern (VOC) is the Omicron (B.1.1.529) that has evolved due to the accumulation of high numbers of mutations especially in the spike protein, raising concerns for its ability to evade from pre-existing immunity acquired through vaccination or natural infection as well as overpowering antibodies-based therapies. Several theories are on the surface to explain how the Omicron has gathered such a high number of mutations within less time. Few of them are higher mutation rates within a subgroup of population and then its introduction to a larger population, long term persistence and evolution of the virus in immune-compromised patients, and epizootic infection in animals from humans, where under different immune pressures the virus mutated and then got reintroduced to humans. Multifaceted approach including rapid diagnosis, genome analysis of emerging variants, ramping up of vaccination drives and receiving booster doses, efficacy testing of vaccines and immunotherapies against newly emerged variants, updating the available vaccines, designing of multivalent vaccines able to generate hybrid immunity, up-gradation of medical facilities and strict implementation of adequate prevention and control measures need to be given high priority to handle the on-going SARS-CoV-2 pandemic successfully.
Collapse
Affiliation(s)
- Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India.
| | - Shailja Singhal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, 462026, MP, India
| | - Taha Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, 62529, Abha, Saudi Arabia
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Bangladesh; Enzymoics, 7 Peterlee place, Hebersham, NSW, 2770, Novel Global Community Educational Foundation, Australia
| | - Nahed A El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, 22758, Egypt
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | - Perumal Arumugam Desingu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, 560012, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| |
Collapse
|
22
|
Yeung PSW, Wang H, Sibai M, Solis D, Yamamoto F, Iwai N, Jiang B, Hammond N, Truong B, Bihon S, Santos S, Mar M, Mai C, Mfuh KO, Miller JA, Huang C, Sahoo MK, Zehnder JL, Pinsky BA. Evaluation of a Rapid and Accessible Reverse Transcription-Quantitative PCR Approach for SARS-CoV-2 Variant of Concern Identification. J Clin Microbiol 2022; 60:e0017822. [PMID: 35465708 PMCID: PMC9119066 DOI: 10.1128/jcm.00178-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022] Open
Abstract
The ability to distinguish between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) is of ongoing interest due to differences in transmissibility, responses to vaccination, clinical prognosis, and therapy. Although detailed genetic characterization requires whole-genome sequencing (WGS), targeted nucleic acid amplification tests can serve a complementary role in clinical settings, as they are more rapid and accessible than sequencing in most laboratories. We designed and analytically validated a two-reaction multiplex reverse transcription-quantitative PCR (RT-qPCR) assay targeting spike protein mutations L452R, E484K, and N501Y in reaction 1 and del69-70, K417N, and T478K in reaction 2. This assay had 95 to 100% agreement with WGS for 502 upper respiratory tract swab samples collected between 26 April 2021 and 1 August 2021, consisting of 43 Alpha, 2 Beta, 20 Gamma, 378 Delta, and 59 non-VOC infections. Validation in a separate group of 230 WGS-confirmed Omicron variant samples collected in December 2021 and January 2022 demonstrated 100% agreement. This RT-qPCR-based approach can be implemented in clinical laboratories already performing SARS-CoV-2 nucleic acid amplification tests to assist in local epidemiological surveillance and clinical decision-making.
Collapse
Affiliation(s)
- Priscilla S.-W. Yeung
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Hannah Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Mamdouh Sibai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Solis
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Fumiko Yamamoto
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Naomi Iwai
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Becky Jiang
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Nathan Hammond
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Bernadette Truong
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Selamawit Bihon
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Suzette Santos
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Marilyn Mar
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Claire Mai
- Clinical Genomics Laboratory, Stanford Health Care, Stanford, California, USA
| | - Kenji O. Mfuh
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
| | - Jacob A. Miller
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - ChunHong Huang
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Malaya K. Sahoo
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - James L. Zehnder
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Benjamin A. Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
- Clinical Virology Laboratory, Stanford Health Care, Stanford, California, USA
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
23
|
Bozidis P, Tsaousi ET, Kostoulas C, Sakaloglou P, Gouni A, Koumpouli D, Sakkas H, Georgiou I, Gartzonika K. Unusual N Gene Dropout and Ct Value Shift in Commercial Multiplex PCR Assays Caused by Mutated SARS-CoV-2 Strain. Diagnostics (Basel) 2022; 12:973. [PMID: 35454022 PMCID: PMC9029054 DOI: 10.3390/diagnostics12040973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Several SARS-CoV-2 variants have emerged and early detection for monitoring their prevalence is crucial. Many identification strategies have been implemented in cases where sequencing data for confirmation is pending or not available. The presence of B.1.1.318 among prevalent variants was indicated by an unusual amplification pattern in various RT-qPCR commercial assays. Positive samples for SARS-CoV-2, as determined using the Allplex SARS-CoV-2 Assay, the Viasure SARS-CoV-2 Real Time Detection Kit and the GeneFinder COVID-19 Plus RealAmp Kit, presented a delay or failure in the amplification of the N gene, which was further investigated. Whole-genome sequencing was used for variant characterization. The differences between the mean Ct values for amplification of the N gene vs. other genes were calculated for each detection system and found to be at least 14 cycles. Sequencing by WGS revealed that all the N gene dropout samples contained the B.1.1.318 variant. All the isolates harbored three non-synonymous mutations in the N gene, which resulted in four amino acid changes (R203K, G204R, A208G, Met234I). Although caution should be taken when the identification of SARS-CoV-2 variants is based on viral gene amplification failure, such patterns could serve as a basis for rapid and cost-effective screening, functioning as indicators of community circulation of specific variants, requiring subsequent verification via sequencing.
Collapse
Affiliation(s)
- Petros Bozidis
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Eleni T. Tsaousi
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
| | - Charilaos Kostoulas
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Prodromos Sakaloglou
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Athanasia Gouni
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Despoina Koumpouli
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Hercules Sakkas
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| | - Ioannis Georgiou
- Laboratory of Medical Genetics in Clinical Practice, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (C.K.); (I.G.)
| | - Konstantina Gartzonika
- Department of Microbiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece; (E.T.T.); (P.S.); (K.G.)
- Department of Microbiology, University Hospital of Ioannina, 45500 Ioannina, Greece; (A.G.); (D.K.)
| |
Collapse
|
24
|
Viral and Host Genetic and Epigenetic Biomarkers Related to SARS-CoV-2 Cell Entry, Infection Rate, and Disease Severity. BIOLOGY 2022; 11:biology11020178. [PMID: 35205046 PMCID: PMC8869311 DOI: 10.3390/biology11020178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 12/23/2022]
Abstract
The rapid spread of COVID-19 outbreak lead to a global pandemic declared in March 2020. The common features of corona virus family helped to resolve structural characteristics and entry mechanism of SARS-CoV-2. However, rapid mutagenesis leads to the emergence of new strains that may have different reproduction rates or infectivity and may impact the course and severity of the disease. Host related factors may also play a role in the susceptibility for infection as well as the severity and outcomes of the COVID-19. We have performed a literature and database search to summarize potential viral and host-related genomic and epigenomic biomarkers, such as genetic variability, miRNA, and DNA methylation in the molecular pathway of SARS-CoV-2 entry into the host cell, that may be related to COVID-19 susceptibility and severity. Bioinformatics tools may help to predict the effect of mutations in the spike protein on the binding to the ACE2 receptor and the infectivity of the strain. SARS-CoV-2 may also target several transcription factors and tumour suppressor genes, thus influencing the expression of different host genes and affecting cell signalling. In addition, the virus may interfere with RNA expression in host cells by exploiting endogenous miRNA and its viral RNA. Our analysis showed that numerous human miRNA may form duplexes with different coding and non-coding regions of viral RNA. Polymorphisms in human genes responsible for viral entry and replication, as well as in molecular damage response and inflammatory pathways may also contribute to disease prognosis and outcome. Gene ontology analysis shows that proteins encoded by such polymorphic genes are highly interconnected in regulation of defense response. Thus, virus and host related genetic and epigenetic biomarkers may help to predict the course of the disease and the response to treatment.
Collapse
|
25
|
Chang CK, Jian MJ, Chung HY, Lin JC, Hsieh SS, Tang S, Perng CL, Chen CW, Hung KS, Chang FY, Shang HS. Clinical Comparative Evaluation of the LabTurbo TM AIO ® Reverse Transcription-Polymerase Chain Reaction and World Health Organization-Recommended Assays for the Detection of Emerging SARS-CoV-2 Variants of Concern. Infect Drug Resist 2022; 15:595-603. [PMID: 35237052 PMCID: PMC8882663 DOI: 10.2147/idr.s349669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/05/2022] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent behind coronavirus disease-2019 (COVID-19). Single-plex reverse transcription-polymerase chain reaction (RT-PCR)-based assays are widely used for COVID-19 detection but exhibit decreased sensitivity and specificity in detecting the rapidly spreading SARS-CoV-2 variants; in contrast, multiplex RT-PCR reportedly yields better results. Here, we aimed at comparatively analyzing the clinical performance of the LabTurboTM AIO COVID-19 RNA testing kit, a multiplex quantitative RT-PCR kit, including a three-target (E, N1, and RNase P), single-reaction, triplex assay used for SARS-CoV-2 detection, with that of the WHO-recommended RT-PCR assay. MATERIALS AND METHODS Residual, natural, nasopharyngeal swabs obtained from universal transport medium specimens at SARS-CoV-2 testing centers (n = 414) were collected from May to October 2021. For SARS-CoV-2 qRT-PCR, total viral nucleic acid was extracted. The limit of detection (LOD) and the comparative clinical performances of the LabTurboTM AIO COVID-19 RNA kit and the WHO-recommended RT-PCR assay were assessed. Statistical analysis of the correlation was performed and results with R2 values >0.9 were considered to be highly correlated. RESULTS The LOD of the LabTurboTM AIO COVID-19 RNA kit was 9.4 copies/reaction for the target genes N1 and E. The results obtained from 102 SARS-CoV-2-positive and 312 SARS-CoV-2-negative samples showed 100% correlation with previous WHO-recommended RT-PCR assay results. CONCLUSION Multiplex qRT-PCR is a critical tool for detecting unknown pathogens and employs multiple target genes. The LabTurboTM AIO COVID-19 RNA testing kit provides an effective and efficient assay for SARS-CoV-2 detection and is highly compatible with SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Chih-Kai Chang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Ming-Jr Jian
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hsing-Yi Chung
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Jung-Chung Lin
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shan-Shan Hsieh
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Sheng‐Hui Tang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Cherng-Lih Perng
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Chien-Wen Chen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Kuo-Sheng Hung
- Center for Precision Medicine and Genomics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Feng-Yee Chang
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Hung-Sheng Shang
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, Republic of China
- Correspondence: Hung-Sheng Shang; Feng-Yee Chang, Tel +886920713130, Fax +886287927226, Email ;
| |
Collapse
|
26
|
Neagu M, Constantin C, Surcel M. Testing Antigens, Antibodies, and Immune Cells in COVID-19 as a Public Health Topic—Experience and Outlines. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413173. [PMID: 34948782 PMCID: PMC8700871 DOI: 10.3390/ijerph182413173] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/14/2022]
Abstract
The current COVID-19 pandemic has triggered an accelerated pace in all research domains, including reliable diagnostics methodology. Molecular diagnostics of the virus and its presence in biological samples relies on the RT-PCR method, the most used and validated worldwide. Nonconventional tests with improved parameters that are in the development stages will be presented, such as droplet digital PCR or CRISPR-based assays. These molecular tests were followed by rapid antigen testing along with the development of antibody tests, whether based on ELISA platform or on a chemiluminescent microparticle immunoassay. Less-conventional methods of testing antibodies (e.g., lateral flow immunoassay) are presented as well. Left somewhere in the backstage of COVID-19 research, immune cells and, furthermore, immune memory cells, are gaining the spotlight, more so in the vaccination context. Recently, methodologies using flow-cytometry evaluate circulating immune cells in infected/recovered patients. The appearance of new virus variants has triggered a surge for tests improvement. As the pandemic has entered an ongoing or postvaccination era, all methodologies that are used to monitor public health focus on diagnostic strategies and this review points out where gaps should be filled in both clinical and research settings.
Collapse
Affiliation(s)
- Monica Neagu
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Doctoral School of Biology, Faculty of Biology, University of Bucharest, 91-93 Splaiul Independentei, 050095 Bucharest, Romania
| | - Carolina Constantin
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
- Pathology Department, Colentina University Hospital, 19-21 Șoseaua Ștefan cel Mare, 020125 Bucharest, Romania
- Correspondence:
| | - Mihaela Surcel
- Immunology Laboratory, Victor Babes National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania; (M.N.); (M.S.)
| |
Collapse
|