1
|
Lee I, Lupfer CR. Lessons Learned From Clinical Trials of Immunotherapeutics for COVID-19. Immunol Rev 2025; 329:e13422. [PMID: 39548889 DOI: 10.1111/imr.13422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/18/2024]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 virus was arguably one of the worst public health disasters of the last 100 years. As many infectious disease experts were focused on influenza, MERS, ZIKA, or Ebola as potential pandemic-causing agents, SARS-CoV-2 appeared to come from nowhere and spread rapidly. As with any zoonotic agent, the initial pathogen was able to transmit to a new host (humans), but it was poorly adapted to the immune environment of the new host and resulted in a maladapted immune response. As the host-pathogen interaction evolved, subsequent variants of SARS-CoV-2 became less pathogenic and acquired immunity in the host provided protection, at least partial protection, to new variants. As the host-pathogen interaction has changed since the beginning of the pandemic, it is possible the clinical results discussed here may not be applicable today as they were at the start of the pandemic. With this caveat in mind, we present an overview of the immune response of severe COVID-19 from a clinical research perspective and examine clinical trials utilizing immunomodulating agents to further elucidate the importance of hyperinflammation as a factor contributing to severe COVID-19 disease.
Collapse
Affiliation(s)
- Inyeong Lee
- R&D Department, QoolAbs, Carlsbad, California, USA
| | | |
Collapse
|
2
|
van der Mescht MA, Steel HC, de Beer Z, Masenge A, Abdullah F, Ueckermann V, Anderson R, Rossouw TM. T-Cell Phenotypes and Systemic Cytokine Profiles of People Living with HIV Admitted to Hospital with COVID-19. Microorganisms 2024; 12:2149. [PMID: 39597537 PMCID: PMC11596914 DOI: 10.3390/microorganisms12112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/29/2024] Open
Abstract
Whether SARS-CoV-2 infection leads to a higher mortality and morbidity in people living with HIV (PLWH) in Africa remains inconclusive. In this study, we explored the differences in the T-cell phenotypes between people with and without HIV on the day of admission (V1) and ±7 days later (V2), as well as their cytokine/chemokine profiles on V1. Patients admitted with COVID-19 were recruited between May 2020 and December 2021 from the Steve Biko Academic and Tshwane District Hospitals in Pretoria, South Africa. Of 174 patients, 37 (21%) were PLWH. T-cell profiles were determined by flow cytometry, and cytokine levels were determined using a multiplex suspension bead array. PLWH were significantly younger than those without HIV, and were more likely to be female. In an adjusted analysis, PLWH had higher percentages of CD4+ central memory (CM) programmed cell death protein 1 (PD-1)+, CD8+ effector memory (EM)2, and CD8+ EM4 CD57+ cells, as well as higher concentrations of interleukin (IL)-35 at admission. PLWH with CD4+ T-cell counts of >200 cells/mm3 had altered CD4+ and CD8+ T-cell profiles, lower levels of systemic inflammation measured by plasma ferritin and PCT levels, and less severe disease. PLWH with CD4+ T-cell counts of <200 cells/mm3 on admission had higher concentrations of IL-6 and lower levels of IL-29. At V2, the percentages of CD4+ CM PD-1+ T-cells and CD8+ EM4 T-cells co-expressing CD57 and PD-1 remained higher in PLWH, while all other CD8+ EM populations were lower. Fewer CD8+ EM T-cells after ±7 days of admission may be indicative of mechanisms inhibiting EM T-cell survival, as indicated by the higher expression of IL-35 and the T-cell maturation arrest observed in PLWH. This profile was not observed in PLWH with severe immunodeficiency, highlighting the need for differentiated care in the broader PLWH population.
Collapse
Affiliation(s)
- Mieke A. van der Mescht
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Helen C. Steel
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Zelda de Beer
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
- Tshwane District Hospital, Pretoria 0084, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0001, South Africa;
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
- Office of AIDS and TB Research, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa; (F.A.); (V.U.)
| | - Ronald Anderson
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| | - Theresa M. Rossouw
- Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa; (M.A.v.d.M.); (H.C.S.); (Z.d.B.); (R.A.)
| |
Collapse
|
3
|
van der Mescht MA, de Beer Z, Steel HC, Anderson R, Masenge A, Moore PL, Bastard P, Casanova JL, Abdullah F, Ueckermann V, Rossouw TM. Aberrant innate immune profile associated with COVID-19 mortality in Pretoria, South Africa. Clin Immunol 2024; 266:110323. [PMID: 39029640 DOI: 10.1016/j.clim.2024.110323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
The African continent reported the least number of COVID-19 cases and deaths of all the continents, although the exact reasons for this are still unclear. In addition, little is known about the immunological profiles associated with COVID-19 mortality in Africa. The present study compared clinical and immunological parameters, as well as treatment outcomes in patients admitted with COVID-19 in Pretoria, South Africa, to determine if these parameters correlated with mortality in this population. The in-hospital mortality rate for the cohort was 15.79%. The mortality rate in people living with HIV (PLWH) was 10.81% and 17.16% in people without HIV (p = 0.395). No differences in age (p = 0.099), gender (p = 0.127) or comorbidities were found between deceased patients and those who survived. All four of the PLWH who died had a CD4+ T-cell count <200 cells/mm3, a significantly higher HIV viral load than those who survived (p = 0.009), and none were receiving antiretroviral therapy. Seven of 174 (4%) patients had evidence of auto-antibodies neutralizing Type 1 interferons (IFNs). Two of the them died, and their presence was significantly associated with mortality (p = 0.042). In the adjusted model, the only clinical parameters associated with mortality were: higher fraction of inspired oxygen (FiO2) (OR: 3.308, p = 0.011) indicating a greater need for oxygen, high creatinine (OR: 4.424, p = 0.001) and lower platelet counts (OR: 0.203, p = 0.009), possibly secondary to immunothrombosis. Overall, expression of the co-receptor CD86 (p = 0.021) on monocytes and percentages of CD8+ effector memory 2 T-cells (OR: 0.45, p = 0.027) was lower in deceased patients. Decreased CD86 expression impairs the development and survival of effector memory T-cells. Deceased patients had higher concentrations of RANTES (p = 0.003), eotaxin (p = 0.003) and interleukin (IL)-8 (p < 0.001), all involved in the activation and recruitment of innate immune cells. They also had lower concentrations of transforming growth factor (TGF)-β1 (p = 0.40), indicating an impaired anti-inflammatory response. The immunological profile associated with COVID-19 mortality in South Africa points to the role of aberrate innate immune responses.
Collapse
Affiliation(s)
- Mieke A van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Zelda de Beer
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa; Tshwane District Hospital, Pretoria, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Ronald Anderson
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Andries Masenge
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Penny L Moore
- MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France; Howard Hughes Medical Institute, New York, NY, USA
| | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa; Office of AIDS and TB Research, South African Medical Research Council, Pretoria, South Africa; Department of Public Health Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
4
|
Xi AR, Luo YJ, Guan JT, Wang WJ, Xu ZH. Efficacy and safety of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in COVID-19 patients: a meta-analysis. Inflammopharmacology 2023; 31:275-285. [PMID: 36445552 PMCID: PMC9707187 DOI: 10.1007/s10787-022-01105-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
OBJECTIVE This study aims to determine the efficacy and safety of granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in COVID-19 patients. METHODS We searched Cochrane Library, PubMed, Embase, and ClinicalTrials.gov databases until July 27, 2022. Both randomized control trials (RCTs) and cohort studies were included and analyzed separately. The outcomes included mortality, incidence of invasive mechanical ventilation (IMV), ventilation improvement rate (need oxygen therapy to without oxygen therapy), secondary infection, and adverse events (AEs). The odds ratio (OR) with a 95% confidence interval (CI) was calculated by a random-effects meta-analysis model. RESULTS Five RCTs and 2 cohort studies with 1726 COVID-19 patients were recruited (n = 866 in the GM-CSF antibody group and n = 891 in the control group). GM-CSF antibodies treatment reduced the incidence of IMV, which was supported by two cohort studies (OR 0.16; 95% CI 0.03, 0.74) and three RCTs (OR 0.62; 95% CI 0.41, 0.94). GM-CSF antibodies resulted in slight but not significant reductions in mortality (based on two cohort studies and five RCTs) and ventilation improvement (based on one cohort study and two RCTs). The sensitive analysis further showed the results of mortality and ventilation improvement rate became statistically significant when one included study was removed. Besides, GM-CSF antibodies did not increase the risks of the second infection (based on one cohort study and five RCTs) and AEs (based on five RCTs). CONCLUSION GM-CSF antibody treatments may be an efficacious and well-tolerant way for the treatment of COVID-19. Further clinical evidence is still warranted.
Collapse
Affiliation(s)
- An-Ran Xi
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Yi-Jun Luo
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China
| | - Jin-Tao Guan
- First People's Hospital of Taizhou, Taizhou, 318020, Zhejiang, China
| | - Wei-Jie Wang
- The Second Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310053, Zhejiang, China
| | - Zheng-Hao Xu
- Laboratory of Rheumatology and Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Binwen Road 548, Hangzhou, 310053, Zhejiang, China.
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
5
|
Murayama Y, Ishimine T, Sasano M, Todaka T, Matsumoto T, Shimabukuro T, Yonaha R. Pneumococcal meningitis in a patient with severe COVID-19 on dexamethasone and tocilizumab: A case report. IDCases 2023; 32:e01727. [PMID: 36896031 PMCID: PMC9981263 DOI: 10.1016/j.idcr.2023.e01727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Although various therapeutic agents have been tried for coronavirus disease-2019 (COVID-19) and evidence has accumulated, the risk of secondary infection is increased by underlying disease and immunosuppressive drugs. We report a case of pneumococcal meningitis in a patient with severe COVID-19 who was receiving dexamethasone and tocilizumab. The patient's symptoms improved with appropriate diagnosis and antimicrobial therapy, and she fortunately returned to society without any neurological sequelae of meningitis.
Collapse
Affiliation(s)
- Yoshiaki Murayama
- Department of Respiratory Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
- Corresponding author.
| | - Tomohiko Ishimine
- Department of Respiratory Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| | - Mikio Sasano
- Department of Critical Care Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| | - Takafumi Todaka
- Department of Critical Care Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| | - Takashi Matsumoto
- Department of Critical Care Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| | - Taiga Shimabukuro
- Department of Respiratory Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| | - Risa Yonaha
- Department of Respiratory Medicine, Nakagami Hospital, 610 Noborikawa, Okinawa city, Okinawa 904-2142, Japan
| |
Collapse
|