1
|
Li S, Chen X, Shi H, Yi M, Xiong B, Li T. Tailoring traditional Chinese medicine in cancer therapy. Mol Cancer 2025; 24:27. [PMID: 39838407 PMCID: PMC11749133 DOI: 10.1186/s12943-024-02213-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/25/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer remains a formidable global health challenge, necessitating innovative therapeutic approaches to enhance treatment efficacy and reduce adverse effects. The traditional Chinese medicine (TCM), as an embodiment of ancient wisdom, has been validated to regulate the holistic human capacity against both internal and external "evils" in accordance with TCM principles. Therefore, it stands to reason to integrate TCM into current cancer therapy paradigms, such as chemotherapy, immunotherapy, and targeted therapy. This strategy conceptually intends to circumvent the inevitable side effects derived from present treatment, alleviate the discomfort, mollify the detrimental mood and synergize tumoricidal effects of distinct approaches. However, it is still vague whether TCM exert favorable function in cancer treatment. Therefore, it is imperative to retrieve and compile the existing literature on TCM in the realm of cancer, followed by a comprehensive recapitulation and synthesis of its core findings. Recently, with the advancement of contemporary biologic and medical theory and technology, it has become both feasible and imperative to elucidate the molecular signaling mechanisms and cellular biology underlying TCM. Specifically, leveraging TCM pharmaceutic components can not only directly impact tumor biology at the molecular level, but regulate the tumor immune environment through distinct pathways. Additionally, the administration of external TCM treatments such as acupuncture and moxibustion also demonstrates beneficial effects in cancer patients. Through comprehensive analysis, we demonstrated that TCM not only potentially increases the efficacy of conventional cancer treatments, but also significantly mitigates their toxic side effects, thereby prolonging patients' prognosis and improving their living quality. Furthermore, we have underscored the challenges and prospects associated with the integration of TCM into contemporary oncological practices, placing particular emphasis on the imperative for rigorous clinical trials and molecular investigations to substantiate the efficacy and safety of these combined therapeutic approaches. This synthesis aims to pave the way for a more integrated approach to cancer treatment rooted in both traditional wisdom and cutting-edge science.
Collapse
Affiliation(s)
- Shuiquan Li
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Xi Chen
- Department of Rehabilitation, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, People's Republic of China
| | - Hui Shi
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, People's Republic of China.
| | - Bing Xiong
- Department of Rehabilitation and Traditional Chinese Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, 310000, People's Republic of China.
| |
Collapse
|
2
|
Bhardwaj H, Sahu RK, Jangde RK. Optimization and preparation of doxycycline-loaded chitosan nanoparticles using Box-Behnken design for better diabetic wound healing. J Pharm Sci 2024:S0022-3549(24)00540-9. [PMID: 39631525 DOI: 10.1016/j.xphs.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
A diabetic wound is one of the most devastating difficulties associated with diabetes and leads to significant death and morbidity. Hence, the aim was to make Doxycycline-loaded chitosan nanoparticles (DOX-CNPs) using ionic gelation with a cross-linking technique. In the Box-Behnken design, the DOX-CNPs were optimized by considering the effects of the following 3 variables independently, namely chitosan, sodium tripolyphosphate in volume ratio, strength of chitosan and sodium tripolyphosphate, among several response variables related to nanoparticle properties. The Fourier transform infrared, transmission electron microscopy, differential scanning calorimeter, X-ray diffraction, particle size, entrapment efficiency, and drug release in-vitro were used to characterized the nanoparticles. Additionally, DPPH scavenging activity and activity against Escherichia coli and Staphylococcus aureus bacteria and in vivo characterization were carried out to optimize DOX-CNPs. Then effective delivery of DOX-CNPs is incorporated in chitosan hydrogel for diabetic wounds. The findings of this study indicate that DOX-CNPs exhibit free radical scavenging properties, demonstrate significant antibacterial activity, and enhance cell viability and migration in an in vitro wound healing assay using the L929 fibroblast cell line, and in vivo demonstrate increased blood vessels, collagen deposition epithelization. Chitosan could be used as a drug carrier in a DOX-chitosan-NP system to help develop procedures that can be used in the lab and to treat diabetic wounds.
Collapse
Affiliation(s)
- Harish Bhardwaj
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal-249161, Uttarakhand, India
| | - Rajendra Kumar Jangde
- University Institute of Pharmacy, Pt. Ravishankar Shukla University Raipur, Chhattisgarh, 492010 India.
| |
Collapse
|
3
|
Rodponthukwaji K, Pingrajai P, Jantana S, Taya S, Duangchan K, Nguyen KT, Srisawat C, Punnakitikashem P. Epigallocatechin Gallate Potentiates the Anticancer Effect of AFP-siRNA-Loaded Polymeric Nanoparticles on Hepatocellular Carcinoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:47. [PMID: 38202502 PMCID: PMC10780411 DOI: 10.3390/nano14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
To develop a potential cancer treatment, we formulated a novel drug delivery platform made of poly(lactic-co-glycolic) acid (PLGA) and used a combination of an emerging siRNA technology and an extracted natural substance called catechins. The synthesized materials were characterized to determine their properties, including morphology, hydrodynamic size, charge, particle stability, and drug release profile. The therapeutic effect of AFP-siRNA and epigallocatechin gallate (EGCG) was revealed to have remarkable cytotoxicity towards HepG2 when in soluble formulation. Notably, the killing effect was enhanced by the co-treatment of AFP-siRNA-loaded PLGA and EGCG. Cell viability significantly dropped to 59.73 ± 6.95% after treatment with 12.50 μg/mL of EGCG and AFP-siRNA-PLGA. Meanwhile, 80% of viable cells were observed after treatment with monotherapy. The reduction in the survival of cells is a clear indication of the complementary action of both active EGCG and AFP-siRNA-loaded PLGA. The corresponding cell death was involved in apoptosis, as evidenced by the increased caspase-3/7 activity. The combined treatment exhibited a 2.5-fold increase in caspase-3/7 activity. Moreover, the nanoparticles were internalized by HepG2 in a time-dependent manner, indicating the appropriate use of PLGA as a carrier. Accordingly, a combined system is an effective therapeutic strategy.
Collapse
Affiliation(s)
- Kamonlatth Rodponthukwaji
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Ponpawee Pingrajai
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
| | - Saranrat Jantana
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Seri Taya
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
| | - Kongpop Duangchan
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
| | - Kytai T. Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, USA;
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; (K.R.); (S.J.); (S.T.); (K.D.); (C.S.)
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand;
- Siriraj Center of Research Excellence in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Lu M, Ma L, Li J, Li J, Tong M, Dai F, Song F, Zhang X, Qiu T. Construction of carboxymethyl chitosan-based nanoparticles of hypoxia response for co-loading doxorubicin and tanshinone IIA. Int J Biol Macromol 2023; 244:125362. [PMID: 37330079 DOI: 10.1016/j.ijbiomac.2023.125362] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
As a first-line drug for breast cancer chemotherapy, the effectiveness of doxorubicin (DOX) is challenged by high doses and high toxicity. Studies showed the combination of Tanshinone IIA (TSIIA) and DOX could enhance the efficacy of DOX for cancer and reduce the toxic effects to normal tissues. Unfortunately, free drugs are easily metabolized in the systemic circulation, which are less prone to aggregation at the tumor site to exert anticancer efficacy. In present study, we prepared a carboxymethyl chitosan-based hypoxia-responsive nanoparticles loaded with DOX and TSIIA for the treatment of breast cancer. The results demonstrated that these hypoxia-responsive nanoparticles not only improved the delivery efficiency of the drugs but also enhanced the therapeutic efficacy of DOX. The average size of nanoparticles was about 200-220 nm, the optimal drug loading and encapsulation efficiency of TSIIA in DOX/TSIIA NPs were 9.06 % and 73.59 %, respectively. Hypoxia-responsive behavior were recorded in vitro, while the synergistic efficacy is significantly exhibited in vivo and the tumor inhibitory rate was 85.87 %. Notably, TUNEL assay and immunofluorescence staining verified that the combined nanoparticles exerted a synergistic anti-tumor effect by inhibiting tumor fibrosis, decreasing the expression of HIF-1α and inducing tumor cell apoptosis. Collectively, this carboxymethyl chitosan-based hypoxia-responsive nanoparticles could have promising application prospect for effective breast cancer therapy.
Collapse
Affiliation(s)
- Mengli Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China.
| | - Li Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Juncan Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Miao Tong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Fuli Dai
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Feiyu Song
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Xueqiong Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Tong Qiu
- School of Materials Science and Engineering, Wuhan university of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Li M, Sun X, Yin M, Shen J, Yan S. Recent Advances in Nanoparticle-Mediated Co-Delivery System: A Promising Strategy in Medical and Agricultural Field. Int J Mol Sci 2023; 24:5121. [PMID: 36982200 PMCID: PMC10048901 DOI: 10.3390/ijms24065121] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023] Open
Abstract
Drug and gene delivery systems mediated by nanoparticles have been widely studied for life science in the past decade. The application of nano-delivery systems can dramatically improve the stability and delivery efficiency of carried ingredients, overcoming the defects of administration routes in cancer therapy, and possibly maintaining the sustainability of agricultural systems. However, delivery of a drug or gene alone sometimes cannot achieve a satisfactory effect. The nanoparticle-mediated co-delivery system can load multiple drugs and genes simultaneously, and improve the effectiveness of each component, thus amplifying efficacy and exhibiting synergistic effects in cancer therapy and pest management. The co-delivery system has been widely reported in the medical field, and studies on its application in the agricultural field have recently begun to emerge. In this progress report, we summarize recent progress in the preparation and application of drug and gene co-delivery systems and discuss the remaining challenges and future perspectives in the design and fabrication.
Collapse
Affiliation(s)
- Mingshan Li
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaowei Sun
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Hyaluronic Acid-Modified Cisplatin-Encapsulated Poly(Lactic-co-Glycolic Acid) Magnetic Nanoparticles for Dual-Targeted NIR-Responsive Chemo-Photothermal Combination Cancer Therapy. Pharmaceutics 2023; 15:pharmaceutics15010290. [PMID: 36678917 PMCID: PMC9862698 DOI: 10.3390/pharmaceutics15010290] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Combination chemo-photothermal therapy with nanomaterials can reduce the dose of chemotherapeutic drugs required for effective cancer treatment by minimizing toxic side effects while improving survival times. Toward this end, we prepare hyaluronic acid (HA)-modified poly(lactic-co-glycolic acid) (PLGA) magnetic nanoparticles (MNP) for the CD44 receptor-mediated and magnetic field-guided dual-targeted delivery of cisplatin (CDDP). By co-encapsulating the CDDP and oleic acid-coated iron oxide MNP (IOMNP) in PLGA, the PMNPc was first prepared in a single emulsification/solvent evaporation step and successively surface modified with chitosan and HA to prepare the HA/PMNPc. Spherical HA/PMNPc nanoparticles of ~300 nm diameter can be prepared with 18 and 10% (w/w) loading content of CDDP and IOMNP and a pH-sensitive drug release to facilitate the endosomal release of the CDDP after intracellular uptake. This leads to the higher cytotoxicity of the HA/PMNPc toward the U87 glioblastoma cells than free CDDP with reduced IC50, a higher cell apoptosis rate, and the enhanced expression of cell apoptosis marker proteins. Furthermore, the nanoparticles show the hyperthermia effect toward U87 after short-term near-infrared (NIR) light exposure, which can further elevate the cell apoptosis/necrosis rate and upregulate the HSP70 protein expression due to the photothermal effects. The combined cancer therapeutic efficacy was studied in vivo using subcutaneously implanted U87 cells in nude mice. By using dual-targeted chemo-photothermal combination cancer therapy, the intravenously injected HA/PMNPc under magnetic field guidance and followed by NIR laser irradiation was demonstrated to be the most effective treatment modality by inhibiting the tumor growth and prolonging the survival time of the tumor-bearing nude mice.
Collapse
|
7
|
AbouAitah K, Soliman AAF, Swiderska-Sroda A, Nassrallah A, Smalc-Koziorowska J, Gierlotka S, Lojkowski W. Co-Delivery System of Curcumin and Colchicine Using Functionalized Mesoporous Silica Nanoparticles Promotes Anticancer and Apoptosis Effects. Pharmaceutics 2022; 14:pharmaceutics14122770. [PMID: 36559264 PMCID: PMC9785757 DOI: 10.3390/pharmaceutics14122770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose: Many natural agents have a high anticancer potential, and their combination may be advantageous for improved anticancer effects. Such agents, however, often are not water soluble and do not efficiently target cancer cells, and the kinetics of their action is poorly controlled. One way to overcome these barriers is to combine natural agents with nanoparticles. Our aim in the current study was to fabricate an anticancer nanoformulation for co-delivery of two natural agents, curcumin (CR) and colchicine (CL), with a core-shell structure. Using cancer cell lines, we compared the anticancer efficacy between the combination and a nanoformulation with CL alone. Methods: For the single-drug nanoformulation, we used phosphonate groups to functionalize mesoporous silica nanoparticles (MSNs) and loaded the MSNs with CL. Additional loading of this nanoformulation with CR achieved the co-delivery format. To create the structure with a core shell, we selected a chitosan−cellulose mixture conjugated with targeting ligands of folic acid for the coating. For evaluating anticancer and apoptosis effects, we assessed changes in important genes and proteins in apoptosis (p53, caspase-3, Bax, Bcl-2) in several cell lines (MCF-7, breast adenocarcinoma; HCT-116, colon carcinoma; HOS, human osteosarcoma; and A-549, non−small cell lung cancer). Results: Nanoformulations were successfully synthesized and contained 10.9 wt.% for the CL single-delivery version and 18.1 wt.% for the CL+CR co-delivery nanoformulation. Anticancer effects depended on treatment, cell line, and concentration. Co-delivery nanoformulations exerted anticancer effects that were significantly superior to those of single delivery or free CL or CR. Anticancer effects by cell line were in the order of HCT-116 > A549 > HOS > MCF-7. The lowest IC50 value was obtained for the nanoformulation consisting of CL and CR coated with a polymeric shell conjugated with FA (equivalent to 4.1 ± 0.05 µg/mL). With dual delivery compared with the free agents, we detected strongly increased p53, caspase-3, and Bax expression, but inhibition of Bcl-2, suggesting promotion of apoptosis. Conclusions: Our findings, although preliminary, indicate that the proposed dual delivery nanoformulation consisting of nanocore: MSNs loaded with CL and CR and coated with a shell of chitosan−cellulose conjugated folic acid exerted strong anticancer and apoptotic effects with potent antitumor activity against HCT-116 colon cells. The effect bested CL alone. Evaluating and confirming the efficacy of co-delivery nanoformulations will require in vivo studies.
Collapse
Affiliation(s)
- Khaled AbouAitah
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth Street, Dokki, Giza 12622, Egypt
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| | - Ahmed A. F. Soliman
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre (NRC), 33 El-Behouth St, Dokki, Giza 12622, Egypt
| | - Anna Swiderska-Sroda
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Amr Nassrallah
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Julita Smalc-Koziorowska
- Laboratory of Semiconductor Characterization, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Stanislaw Gierlotka
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
| | - Witold Lojkowski
- Laboratory of Nanostructures and Nanomedicine, Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland
- Correspondence: (K.A.); (W.L.); Tel.: +20-233371635 (K.A.); +48-22-888-0429 or +48-22-632-4302 (W.L.); Fax: +20-233371010 (K.A.); +48-22-632-4218 (W.L.)
| |
Collapse
|
8
|
Al Bostami RD, Abuwatfa WH, Husseini GA. Recent Advances in Nanoparticle-Based Co-Delivery Systems for Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2672. [PMID: 35957103 PMCID: PMC9370272 DOI: 10.3390/nano12152672] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/20/2022]
Abstract
Cancer therapies have advanced tremendously throughout the last decade, yet multiple factors still hinder the success of the different cancer therapeutics. The traditional therapeutic approach has been proven insufficient and lacking in the suppression of tumor growth. The simultaneous delivery of multiple small-molecule chemotherapeutic drugs and genes improves the effectiveness of each treatment, thus optimizing efficacy and improving synergistic effects. Nanomedicines integrating inorganic, lipid, and polymeric-based nanoparticles have been designed to regulate the spatiotemporal release of the encapsulated drugs. Multidrug-loaded nanocarriers are a potential strategy to fight cancer and the incorporation of co-delivery systems as a feasible treatment method has projected synergistic benefits and limited undesirable effects. Moreover, the development of co-delivery systems for maximum therapeutic impact necessitates better knowledge of the appropriate therapeutic agent ratio as well as the inherent heterogeneity of the cancer cells. Co-delivery systems can simplify clinical processes and increase patient quality of life, even though such systems are more difficult to prepare than single drug delivery systems. This review highlights the progress attained in the development and design of nano carrier-based co-delivery systems and discusses the limitations, challenges, and future perspectives in the design and fabrication of co-delivery systems.
Collapse
Affiliation(s)
- Rouba D. Al Bostami
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
9
|
Yang J, Li X, Tong Y, Yang Y, Zhao L, Zhou Q, Xu J, Dong L, Jiang Y. Targeting co-delivery of doxorubicin and gefitinib by biotinylated Au NCs for overcoming multidrug resistance in imaging-guided anticancer therapy. Colloids Surf B Biointerfaces 2022; 217:112608. [PMID: 35679735 DOI: 10.1016/j.colsurfb.2022.112608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 11/30/2022]
Abstract
Drug resistance and potential cardiotoxicity severely limit the DOX-mediated chemotherapy in clinical. Multi-drug combination is conducive to the realization of multi-modal synergy at the molecular level, which is crucial in drug dose optimization and improvement of therapeutic effect. In this work, fluorescent biotinylated Au Nanoclusters as an active targeting carrier was developed to realize real-time biological imaging and dual-drug delivery simultaneously. DNA toxin doxorubicin (DOX) and tyrosinase inhibitor gefitinib (GEF) were selected as dual-drug models for the treatment of human non-small cell lung cancer. The in vitro and in vivo results showed that dual-drug combination suppressed cancer cell growth more efficiently than any single formula at the same concentrations. GEF can block signaling in target cancer cells with mutated and overactive EGFR, thereby inhibiting tumor growth and metastasis and promoting tumor cell apoptosis. Combined with DOX chemotherapy, it will effectively overcome the problem of DOX resistance. In addition, the dual-drug delivery system produced excellent synergistic therapeutic effects without extra adverse toxicities. It provides a reference for the design and clinical application of the dual-drug delivery system.
Collapse
Affiliation(s)
- Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaofeng Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Yao Tong
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yufei Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China
| | - Qian Zhou
- Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal Child Health Hospital of Shandong Province, Jinan, China
| | - Jiawen Xu
- Department of Pathology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Lun Dong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong Province, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen 518057, China.
| |
Collapse
|
10
|
Praziquantel-encapsulated niosomes against Schistosoma mansoni with reduced sensitivity to praziquantel. BIOMÉDICA 2022; 42:67-84. [PMID: 35471171 PMCID: PMC9059922 DOI: 10.7705/biomedica.5913] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/21/2022]
Abstract
Introduction: Praziquantel (PZQ) is the only commercially available drug for schistosomiasis. The current shortage of alternative effective drugs and the lack of successful preventive measures enhance its value. The increase in the prevalence of PZQ resistance under sustained drug pressure is, therefore, an upcoming issue. Objective: To overcome the tolerance to PZQ using nanotechnology after laboratory induction of a Schistosoma mansoni isolate with reduced sensitivity to the drug during the intramolluscan phase. Materials and methods: Shedding snails were treated with PZQ doses of 200 mg/kg twice/ week followed by an interval of one week and then repeated twice in the same manner. The success of inducing reduced sensitivity was confirmed in vitro via the reduction of cercarial response to PZQ regarding their swimming activity and death percentage at different examination times. Results: Oral treatment with a single PZQ dose of 500 mg/kg in mice infected with cercariae with reduced sensitivity to PZQ revealed a non-significant reduction (35.1%) of total worm burden compared to non-treated control mice. Orally inoculated PZQ- encapsulated niosomes against S. mansoni with reduced sensitivity to PZQ successfully regained the pathogen’s sensitivity to PZQ as evidenced by measuring different parameters in comparison to the non-treated infected animals with parasites with reduced sensitivity to PZQ. The mean total worm load was 1.33 ± 0.52 with a statistically significant reduction of 94.09% and complete eradication of male worms. We obtained a remarkable increase in the percentage reduction of tissue egg counts in the liver and intestine (97.68% and 98.56%, respectively) associated with a massive increase in dead eggs and the complete absence of immature stages. Conclusion: PZQ-encapsulated niosomes restored the drug sensitivity against laboratory- induced S. mansoni adult worms with reduced sensitivity to PZQ.
Collapse
|
11
|
Wang W, Zhou M, Xu Y, Peng W, Zhang S, Li R, Zhang H, Zhang H, Cheng S, Wang Y, Wei X, Yue C, Yang Q, Chen C. Resveratrol-Loaded TPGS-Resveratrol-Solid Lipid Nanoparticles for Multidrug-Resistant Therapy of Breast Cancer: In Vivo and In Vitro Study. Front Bioeng Biotechnol 2021; 9:762489. [PMID: 34950642 PMCID: PMC8688991 DOI: 10.3389/fbioe.2021.762489] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) is a serious problem during cancer therapy. The purpose of the present study was to formulate D-α-Tocopheryl polyethylene glycol 1000 succinate-resveratrol-solid lipid nanoparticles (TPGS-Res-SLNs) to improve its therapeutic efficacy against breast cancer. In this study, the solvent injection method was used to prepare the TPGS-Res-SLNs. It was found that the TPGS-Res-SLNs exhibited zeta potential and drug-loading of -25.6 ± 1.3 mV and 32.4 ± 2.6%, respectively. Therefore, it was evident that the TPGS-Res-SLNs can increase cellular uptake of chemotherapeutic drugs, induce mitochondrial dysfunction, and augment tumor treatment efficiency by inducing apoptosis. Moreover, it was found that SKBR3/PR cells treated with TPGS-Res-SLNs exhibited significant inhibition of cell migration and invasion, as compared with free resveratrol. In addition, results from in vivo SKBR3/PR xenograft tumor models revealed that TPGS-Res-SLNs has better efficacy in promoting apoptosis of tumor cells owing to high therapeutic outcomes on tumors when compared with the efficacy of free resveratrol. In conclusion, the findings of the present study indicate significant potential for use of TPGS-Res-SLNs as an efficient drug delivery vehicle to overcome drug resistance in breast cancer therapy.
Collapse
Affiliation(s)
- Wenrui Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Mengyang Zhou
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China.,Department of Life Sciences, Anhui Medical University, Anhui, China
| | - Yang Xu
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Wei Peng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shiwen Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Rongjie Li
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Han Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Hui Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Shumin Cheng
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Youjing Wang
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Xinyu Wei
- Department of Biochemistry, School of Laboratory Medicine Bengbu Medical College, Anhui, China
| | - Chengxu Yue
- Anhui Province Key Laboratory of Translational Cancer Research, Department of Biotechnology, Bengbu Medical College, Anhui, China
| | - Qingling Yang
- Department of Biochemistry, School of Laboratory Medicine Bengbu Medical College, Anhui, China
| | - Changjie Chen
- Department of Biochemistry, School of Laboratory Medicine Bengbu Medical College, Anhui, China
| |
Collapse
|
12
|
Ghosh AK, Thapa R, Hariani HN, Volyanyuk M, Ogle SD, Orloff KA, Ankireddy S, Lai K, Žiniauskaitė A, Stubbs EB, Kalesnykas G, Hakkarainen JJ, Langert KA, Kaja S. Poly(lactic-co-glycolic acid) Nanoparticles Encapsulating the Prenylated Flavonoid, Xanthohumol, Protect Corneal Epithelial Cells from Dry Eye Disease-Associated Oxidative Stress. Pharmaceutics 2021; 13:1362. [PMID: 34575438 PMCID: PMC8471707 DOI: 10.3390/pharmaceutics13091362] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress is a known contributor to the progression of dry eye disease pathophysiology, and previous studies have shown that antioxidant intervention is a promising therapeutic approach to reduce the disease burden and slow disease progression. In this study, we evaluated the pharmacological efficacy of the naturally occurring prenylated chalconoid, xanthohumol, in preclinical models for dry eye disease. Xanthohumol acts by promoting the transcription of phase II antioxidant enzymes. In this study, xanthohumol prevented tert-butyl hydroperoxide-induced loss of cell viability in human corneal epithelial (HCE-T) cells in a dose-dependent manner and resulted in a significant increase in expression of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), the master regulator of phase II endogenous antioxidant enzymes. Xanthohumol-encapsulating poly(lactic-co-glycolic acid) nanoparticles (PLGA NP) were cytoprotective against oxidative stress in vitro, and significantly reduced ocular surface damage and oxidative stress-associated DNA damage in corneal epithelial cells in the mouse desiccating stress/scopolamine model for dry eye disease in vivo. PLGA NP represent a safe and efficacious drug delivery vehicle for hydrophobic small molecules to the ocular surface. Optimization of NP-based antioxidant formulations with the goal to minimize instillation frequency may represent future therapeutic options for dry eye disease and related ocular surface disease.
Collapse
Affiliation(s)
- Anita Kirti Ghosh
- Graduate Program in Biochemistry and Molecular Biology, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
| | - Rubina Thapa
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Harsh Nilesh Hariani
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Michael Volyanyuk
- Graduate Program in Neuroscience, Health Sciences Campus, Loyola University Chicago, Maywood, IL 60153, USA;
| | - Sean David Ogle
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karoline Anne Orloff
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Samatha Ankireddy
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Karen Lai
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Agnė Žiniauskaitė
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- State Research Institute Centre for Innovative Medicine, Santariskiu 5, LT-08406 Vilnius, Lithuania
| | - Evan Benjamin Stubbs
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Giedrius Kalesnykas
- Research & Development Division, UAB Experimentica, LT-10223 Vilnius, Lithuania;
| | - Jenni Johanna Hakkarainen
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
| | - Kelly Ann Langert
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
| | - Simon Kaja
- Visual Neurobiology and Signal Transduction Laboratory, Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA; (H.N.H.); (S.D.O.)
- Research Service, Edward Hines Jr. VA Hospital, Hines, IL 60141, USA; ; (K.A.L.)
- Research & Development Division, Experimentica Ltd., 70211 Kuopio, Finland; (R.T.); (A.Ž.); (J.J.H.)
- Department of Molecular Pharmacology & Neuroscience, Loyola University Chicago, Maywood, IL 60153, USA; (K.A.O.); (S.A.); (K.L.)
- Department of Ophthalmology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX 76107, USA
| |
Collapse
|
13
|
Oliveira C, Reis RL, Martins A, Silva TH. Marine-derived polymeric nanostructures for cancer treatment. Nanomedicine (Lond) 2021; 16:1931-1935. [PMID: 34369828 DOI: 10.2217/nnm-2021-0175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Catarina Oliveira
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Tiago H Silva
- 3B´s Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables & Biomimetics of University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine; AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|
15
|
Feng QP, Zhu YT, Yuan YZ, Li WJ, Yu HH, Hu MY, Xiang SY, Yu SQ. Oral administration co-delivery nanoparticles of docetaxel and bevacizumab for improving intestinal absorption and enhancing anticancer activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112039. [PMID: 33947539 DOI: 10.1016/j.msec.2021.112039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/21/2023]
Abstract
In this study, to improve the intestinal absorption of small molecule chemotherapeutic drug docetaxel (DTX) and macromolecular monoclonal antibody drug bevacizumab (BVZ), we designed and prepared a type of co-delivery nanoparticles for the oral administration of DTX and BVZ. Carboxymethyl chitosan (CMC) and poly(lactic-co-glycolic acid) (PLGA) were used as the carrier of DTX nanoparticles (CPNPDTX), and methoxy polyethylene glycol-poly (β-amino ester) (mPEG-PAE) was used as the carrier of BVZ nanoparticles (PPNPBVZ). Then, the two nanoparticles were physically mixed in mass ratios to form mixed co-delivery nanoparticles, which was named as CPNPDTX&PPNPBVZ. The nanoparticles were characterized with pH-sensitive drug release property. CPNPDTX&PPNPBVZ could significantly increase the bioavailability of DTX and BVZ according to the more cellular uptake in Caco-2 cells and the higher absorption in the intestinal tissue. Compared with free DTX and BVZ, CPNPDTX&PPNPBVZ showed excellent cytotoxic effects on A549 cells. Our study revealed the potential of co-delivery nanoparticles of binary mixture of chemotherapeutic small molecule and macromolecular antibody drug as an oral administration therapeutic system.
Collapse
Affiliation(s)
- Qiu-Ping Feng
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Yu-Ting Zhu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yi-Zhen Yuan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Wen-Jie Li
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Hao-Han Yu
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng-Yuan Hu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Su-Yun Xiang
- College of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
16
|
Lakkakula JR, Gujarathi P, Pansare P, Tripathi S. A comprehensive review on alginate-based delivery systems for the delivery of chemotherapeutic agent: Doxorubicin. Carbohydr Polym 2021; 259:117696. [PMID: 33673985 DOI: 10.1016/j.carbpol.2021.117696] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/16/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
Doxorubicin (DOX), an anthracycline drug, is widely used for the treatment of several cancers like osteosarcoma, cervical carcinoma, breast cancer, etc. DOX lacks target specificity; thereby it also affects normal cells thus resulting in several side-effects. A drug delivery system (DDS) can be used to deliver the drug in a controlled and sustained manner at a targeted site within the body. Various DDS like nanoemulsions, polymeric nanoparticles, and liposomes are used for loading DOX. Alginate, a polysaccharide is widely used for fabricating DDS due to its biodegradable and bio-compatible properties. Alginates, in combination with other biomaterials, have been extensively used as a novel drug delivery carrier for DOX. Alginate provides a platform for drug delivery in different forms like hydrogels, nanogels, nanoparticles, microparticles, graphene oxide systems, magnetic systems, etc. Herein, we briefly describe alginate in combination with other materials as a nanocarrier for targeted delivery of DOX for anti-cancer treatment.
Collapse
Affiliation(s)
- Jaya R Lakkakula
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India.
| | - Pratik Gujarathi
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| | - Prachi Pansare
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| | - Swastika Tripathi
- Amity University Maharashtra, Mumbai - Pune Expressway, Bhatan Post - Somathne, Panvel, Mumbai, Maharashtra 410206, India
| |
Collapse
|
17
|
|
18
|
Synergistic antitumor efficacy of doxorubicin and gambogic acid-encapsulated albumin nanocomposites. Colloids Surf B Biointerfaces 2020; 196:111286. [DOI: 10.1016/j.colsurfb.2020.111286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 01/22/2023]
|
19
|
Binary blended co-delivery nanoparticles with the characteristics of precise pH-responsive acting on tumor microenvironment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111370. [PMID: 32919698 DOI: 10.1016/j.msec.2020.111370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 01/12/2023]
Abstract
Although combined chemotherapy had achieved the ideal efficacy in clinical anti-cancer therapeutic, the issues that need to be addressed are non-targeting and toxic-side effects of small molecule chemical drug (SMCD). In this study, we designed and prepared a novel binary blended co-delivered nanoparticles (BBCD NPs) with pH-responsive feature on tumor microenvironment. The BBCD NPs consists of two kind of drug-loaded NPs, in one of which carboxymethyl chitosan (CMC) and Poly (lactic-co-glycolic acid) (PLGA) were chosen as delivery carrier to load anti-cancer drug vincristine (VCR), named CMC-PLGA-VCR NPs (or CPNPVCR); and in the other of which methoxy poly(ethylene glycol)-poly(β-amino ester) (mPEG-PAE) were chosen as delivery carrier to load anti-fibrotic drug pirfenidone (PFD), named mPEG-PAE-PFD NPs (or PPNPPFD). Then, the two types of NPs (CPNPVCR and PPNPPFD) were physically mixed in mass ratios to form BBCD NPs, which was named CPNPVCR&PPNPPFD. CPNPVCR&PPNPPFD had good encapsulation efficiency and loading capacity, and the particle size distribution was uniform. In cytotoxicity experiments and non-contact co-culture studies in vitro, the model drugs loaded in CPNPVCR&PPNPPFD could respectively target cancer cell and cancer associated fibroblast (CAF) owing to the precise pH-sensitive drug release in the pharmacological targets and show stronger synergism than that of the combined treatment of two free drugs. As a modularity and assemble ability feature in design, BBCD NPs would have the advantages on the terms of concise on preparation process, controllable on quality standard, stable in natural environment storage. The research results can provide scientific evidence for the further development of a novel drug co-delivery system with multi-type cell targets.
Collapse
|
20
|
Abstract
The presented paper is a review article discussing existing synthesis methods and different applications of nanosized magnetic nanoparticles. It was shown that, in addition to the spectrum of properties typical for nanomaterials (primarily a large specific surface area and a high fraction of surface atoms), magnetic nanoparticles also possess superparamagnetic properties that contribute to their formation of an important class of biomedical functional nanomaterials. This primarily concerns iron oxides magnetite and maghemite, for which in vitro and in vivo studies have shown low toxicity and high biocompatibility in comparison with other magnetic nanomaterials. Due to their exceptional chemical, biological, and physical properties, they are widely used in various areas, such as magnetic hyperthermia, targeted drug delivery, tissue engineering, magnetic separation of biological objects (cells, bacteria, viruses, DNA, and proteins), and magnetic diagnostics (they are used as agents for MRS and immunoassay). In addition to discussing the main problems and prospects of using nanoparticles of magnetic iron oxides for advanced biomedical applications, information is also reflected on their structure, production methods, and properties.
Collapse
|
21
|
Hong Y, Che S, Hui B, Wang X, Zhang X, Ma H. Combination Therapy of Lung Cancer Using Layer-by-Layer Cisplatin Prodrug and Curcumin Co-Encapsulated Nanomedicine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2263-2274. [PMID: 32606596 PMCID: PMC7293387 DOI: 10.2147/dddt.s241291] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/28/2020] [Indexed: 12/17/2022]
Abstract
Purpose Lung cancer remains the leading cancer-associated deaths worldwide. Cisplatin (CDDP) was used in combination with curcumin (CUR) for the treatment of non-small cell lung cancer. The aim of this study was to prepare and characterize CDDP prodrug and CUR co-encapsulated layer-by-layer nanoparticles (CDDP-PLGA/CUR LBL NPs) to induce cooperative response, maximize the therapeutic effect, overcome drug resistance, and reduce adverse side effects. Methods CDDP prodrug (CDDP-PLGA) was synthesized. CDDP-PLGA/CUR LBL NPs were constructed and their physicochemical properties were investigated by particle-size analysis, zeta potential measurement, drug loading, drug entrapment efficiency, and in vitro drug release behavior. In vitro cytotoxicity against human lung adenocarcinoma cell line (A549 cells) was investigated, and in vivo anti-tumor efficiency of CDDP-PLGA/CUR LBL NPs was evaluated on mice bearing A549 cell xenografts. Results CDDP-PLGA/CUR LBL NPs have a size of 179.6 ± 6.7 nm, a zeta potential value of −29.9 ± 3.2 mV, high drug entrapment efficiency of 85.6 ± 3.9% (CDDP) and 82.1 ± 2.8% (CUR). The drug release of LBL NPs exhibited a sustained behavior, which made it an ideal vehicle for drug delivery. Furthermore, CDDP-PLGA/CUR LBL NPs could significantly enhance in vitro cytotoxicity and in vivo antitumor effect against A549 cells and lung cancer animal model compared to the single drug-loaded LBL NPs and free drug groups. Conclusion CDDP-PLGA/CUR LBL NPs were reported for the first time in the combination therapy of lung cancer. The results demonstrated that the CDDP-PLGA/CUR LBL NPs might be a novel promising system for the synergetic treatment of lung carcinoma.
Collapse
Affiliation(s)
- Yuan Hong
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shaomin Che
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Beina Hui
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaoli Wang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xiaozhi Zhang
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hailin Ma
- Department of Oncology Radiotherapy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Pilch J, Matysiak-Brynda E, Kowalczyk A, Bujak P, Mazerska Z, Nowicka AM, Augustin E. New Unsymmetrical Bisacridine Derivatives Noncovalently Attached to Quaternary Quantum Dots Improve Cancer Therapy by Enhancing Cytotoxicity toward Cancer Cells and Protecting Normal Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17276-17289. [PMID: 32208730 DOI: 10.1021/acsami.0c02621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The use of nanoparticles for the controlled drug delivery to cells has emerged as a good alternative to traditional systemic delivery. Quantum dots (QDs) offer potentially invaluable societal benefits such as drug targeting and in vivo biomedical imaging. In contrast, QDs may also pose risks to human health and the environment under certain conditions. Here, we demonstrated that a unique combination of nanocrystals core components (Ag-In-Zn-S) would eliminate the toxicity problem and increase their biomedical applications. The alloyed quaternary nanocrystals Ag-In-Zn-S (QDgreen, Ag1.0In1.2Zn5.6S9.4; QDred, Ag1.0In1.0Zn1.0S3.5) were used to transport new unsymmetrical bisacridine derivatives (UAs, C-2028 and C-2045) into lung H460 and colon HCT116 cancer cells for improving the cytotoxic and antitumor action of these compounds. UAs were coupled with QD through physical adsorption. The obtained results clearly indicate that the synthesized nanoconjugates exhibited higher cytotoxic activity than unbound compounds, especially toward lung H460 cancer cells. Importantly, unsymmetrical bisacridines noncovalently attached to QD strongly protect normal cells from the drug action. It is worth pointing out that QDgreen or QDred without UAs did not influence the growth of cancer and normal cells, which is consistent with in vivo results. In noncellular systems, at pH 5.5 and 4.0, which relates to the conditions of endosomes and lysosomes, the UAs were released from QD-UAs nanoconjugates. An increase of total lysosomes content was observed in H460 cells treated with QDs-UAs which can affect the release of the UAs from the conjugates. Moreover, confocal laser scanning microscopy analyses revealed that QD-UAs nanoconjugates enter H460 cells more efficiently than to HCT116 and normal cells, which may be the reason for their higher cytotoxicity against lung cancer. Summarizing, the noncovalent attachment of UAs to QDs increases the therapeutic efficiency of UAs by improving cytotoxicity toward lung H460 cancer cells and having protecting effects on normal cells.
Collapse
Affiliation(s)
- Joanna Pilch
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Edyta Matysiak-Brynda
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Piotr Bujak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Zofia Mazerska
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL-02-093 Warsaw, Poland
| | - Ewa Augustin
- Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
23
|
Ma W, Sun J, Xu J, Luo Z, Diao D, Zhang Z, Oberly PJ, Minnigh MB, Xie W, Poloyac SM, Huang Y, Li S. Sensitizing Triple Negative Breast Cancer to Tamoxifen Chemotherapy via a Redox-Responsive Vorinostat-containing Polymeric Prodrug Nanocarrier. Am J Cancer Res 2020; 10:2463-2478. [PMID: 32194813 PMCID: PMC7052901 DOI: 10.7150/thno.38973] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/15/2019] [Indexed: 01/07/2023] Open
Abstract
There is an urgent and unmet need to develop effective therapies for triple negative breast cancers (TNBCs) which are much more aggressive and have poor prognosis due to lack of receptor targets for Her2-targeted and endocrine therapy. In this study we systematically evaluated the effect of Vorinostat (SAHA, a pan-HDAC inhibitor) in reactivating the expression of functional estrogen receptor α (ERα) and synergizing with tamoxifen (TAM, a selective estrogen-receptor modulator) in antitumor activity. In addition, a SAHA prodrug-based dual functional nanocarrier was developed for codelivery of SAHA and TAM for effective combination therapy. Methods: A SAHA-containing polymeric nanocarrier, POEG-co-PVDSAHA was developed via reversible addition-fragmentation transfer (RAFT) polymerization with SAHA incorporated into the polymer through a redox-responsive disulfide linkage. The effect of both free SAHA and POEG-co-PVDSAHA on reactivating the expression of functional ERα was investigated in several human and murine TNBC cell lines via examining the mRNA and protein expression of ERα target genes. The cytotoxicity of free SAHA and TAM combination and TAM-loaded POEG-co-PVDSAHA micelles was examined via MTT assay. The in vivo antitumor activity of TAM-loaded POEG-co-PVDSAHA was investigated in a murine breast cancer model (4T1.2). Results: Both free SAHA and POEG-co-PVDSAHA were effective in inducing the reexpression of functional estrogen receptor α (ERα), which may have helped to sensitize TNBCs to TAM. More importantly, POEG-co-PVDSAHA self-assembled to form small-sized micellar carrier that is effective in formulating and codelivery of TAM. TAM-loaded POEG-co-PVDSAHA micelles exhibited enhanced and synergistic cytotoxicity against TNBC cell lines compared with free SAHA, free TAM and TAM loaded into a pharmacologically inert control carrier (POEG-co-PVMA). In addition, codelivery of TAM via POEG-co-PVDSAHA micelles led to significantly improved antitumor efficacy in 4T1.2 tumor model compared with other groups such as combination of free SAHA and TAM and TAM-loaded POEG-co-PVMA micelles. Conclusion: Our prodrug-based co-delivery system may provide an effective and simple strategy to re-sensitize TNBCs to TAM-based hormone therapy.
Collapse
|
24
|
Villar-Alvarez E, Cambón A, Pardo A, Arellano L, Marcos AV, Pelaz B, Del Pino P, Bouzas Mosquera A, Mosquera VX, Almodlej A, Prieto G, Barbosa S, Taboada P. Combination of light-driven co-delivery of chemodrugs and plasmonic-induced heat for cancer therapeutics using hybrid protein nanocapsules. J Nanobiotechnology 2019; 17:106. [PMID: 31615570 PMCID: PMC6794818 DOI: 10.1186/s12951-019-0538-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Improving the water solubility of hydrophobic drugs, increasing their accumulation in tumor tissue and allowing their simultaneous action by different pathways are essential issues for a successful chemotherapeutic activity in cancer treatment. Considering potential clinical application in the future, it will be promising to achieve such purposes by developing new biocompatible hybrid nanocarriers with multimodal therapeutic activity. RESULTS We designed and characterised a hybrid nanocarrier based on human serum albumin/chitosan nanoparticles (HSA/chitosan NPs) able to encapsulate free docetaxel (DTX) and doxorubicin-modified gold nanorods (DOXO-GNRs) to simultaneously exploit the complementary chemotherapeutic activities of both antineoplasic compounds together with the plasmonic optical properties of the embedded GNRs for plasmonic-based photothermal therapy (PPTT). DOXO was assembled onto GNR surfaces following a layer-by-layer (LbL) coating strategy, which allowed to partially control its release quasi-independently release regarding DTX under the use of near infrared (NIR)-light laser stimulation of GNRs. In vitro cytotoxicity experiments using triple negative breast MDA-MB-231 cancer cells showed that the developed dual drug encapsulation approach produces a strong synergistic toxic effect to tumoral cells compared to the administration of the combined free drugs; additionally, PPTT enhances the cytostatic efficacy allowing cell toxicities close to 90% after a single low irradiation dose and keeping apoptosis as the main cell death mechanism. CONCLUSIONS This work demonstrates that by means of a rational design, a single hybrid nanoconstruct can simultaneously supply complementary therapeutic strategies to treat tumors and, in particular, metastatic breast cancers with good results making use of its stimuli-responsiveness as well as its inherent physico-chemical properties.
Collapse
Affiliation(s)
- E Villar-Alvarez
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - A Cambón
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A Pardo
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - L Arellano
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A V Marcos
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - B Pelaz
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - P Del Pino
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CiQUS), Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - A Bouzas Mosquera
- Departamento de Cirugía Cardíaca, Complexo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - V X Mosquera
- Departamento de Cirugía Cardíaca, Complexo Hospitalario Universitario A Coruña, Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - A Almodlej
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - G Prieto
- Grupo de Biofísica e Interfases, Departamento de Física Aplicada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - S Barbosa
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - P Taboada
- Grupo de Física de Coloides y Polímeros, Departamento de Física de la Materia Condensada, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias (IDIS) y Agrupación Estratégica de Materiales, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
25
|
Gonçalves Lopes RCF, Silvestre OF, Faria AR, C do Vale ML, Marques EF, Nieder JB. Surface charge tunable catanionic vesicles based on serine-derived surfactants as efficient nanocarriers for the delivery of the anticancer drug doxorubicin. NANOSCALE 2019; 11:5932-5941. [PMID: 30556563 DOI: 10.1039/c8nr06346j] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembled vesicles composed of amino acid-based cationic/anionic surfactant mixtures show promise as novel effective drug nanocarriers. Here, we report the in vitro performance of vesicles based on cationic (16Ser) and anionic (8-8Ser) serine-based surfactants using a cancer cell model for the delivery of the anticancer drug doxorubicin (DOX). This catanionic mixture yields both negatively (0.20 in the cationic surfactant molar fraction, x16Ser) and positively (x16Ser = 0.58) charged vesicles, hence providing a surface charge tunable system. Low toxicity is confirmed for concentration ranges below 32 μM in both formulations. DOX is successfully encapsulated in the vesicles, resulting in a surface charge switch to negative for the (0.58) system, making both (0.20) and (0.58) DOX-loaded vesicles highly interesting for systemic administration. High uptake by cells was demonstrated using flow cytometry and confocal microscopy. Drug accumulation results in an increase of cell uptake up to 250% and 200% for the (0.20) and (0.58) vesicles, respectively, compared to free DOX and with localizations near the nuclear regions in the cells. The in vitro cytotoxicity studies show that DOX-loaded vesicles induce cell death, confirming the therapeutic potential of the formulations. Furthermore, the efficient accumulation of the drug inside the cell compartments harbors the potential for optimization strategies including phased delivery for prolonged treatment periods or even on-demand release.
Collapse
Affiliation(s)
- Raquel C F Gonçalves Lopes
- Department of Nanophotonics, Ultrafast Bio- and Nanophotonics group, INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal.
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
The field of nanomedicine has made substantial strides in the areas of therapeutic and diagnostic development. For example, nanoparticle-modified drug compounds and imaging agents have resulted in markedly enhanced treatment outcomes and contrast efficiency. In recent years, investigational nanomedicine platforms have also been taken into the clinic, with regulatory approval for Abraxane® and other products being awarded. As the nanomedicine field has continued to evolve, multifunctional approaches have been explored to simultaneously integrate therapeutic and diagnostic agents onto a single particle, or deliver multiple nanomedicine-functionalized therapies in unison. Similar to the objectives of conventional combination therapy, these strategies may further improve treatment outcomes through targeted, multi-agent delivery that preserves drug synergy. Also, similar to conventional/unmodified combination therapy, nanomedicine-based drug delivery is often explored at fixed doses. A persistent challenge in all forms of drug administration is that drug synergy is time-dependent, dose-dependent and patient-specific at any given point of treatment. To overcome this challenge, the evolution towards nanomedicine-mediated co-delivery of multiple therapies has made the potential of interfacing artificial intelligence (AI) with nanomedicine to sustain optimization in combinatorial nanotherapy a reality. Specifically, optimizing drug and dose parameters in combinatorial nanomedicine administration is a specific area where AI can actionably realize the full potential of nanomedicine. To this end, this review will examine the role that AI can have in substantially improving nanomedicine-based treatment outcomes, particularly in the context of combination nanotherapy for both N-of-1 and population-optimized treatment.
Collapse
Affiliation(s)
- Dean Ho
- Department of Biomedical Engineering, NUS Engineering, National University of Singapore, Singapore.
| | | | | |
Collapse
|
27
|
Sun JH, Ye C, Bai EH, Zhang LL, Huo SJ, Yu HH, Xiang SY, Yu SQ. Co-delivery nanoparticles of doxorubicin and chloroquine for improving the anti-cancer effect in vitro. NANOTECHNOLOGY 2019; 30:085101. [PMID: 30523865 DOI: 10.1088/1361-6528/aaf51b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To increase the efficacy of small molecule chemotherapeutic drug (SMCD) and reduce its toxic and side effects, we selected two model drugs doxorubicin (DOX) and chloroquine (CQ). DOX is a SMCD and CQis a chemosensitizer with autophagy inhibition. Poly(lactic-co-glycolic acid) (PLGA) and alpha-tocopherol polyethylene glycol 1000 succinate were chosen as delivery carriers to design and prepare a novel type of drug co-delivery single-nanoparticles by emulsification-solvent volatilisation, named NPDOX+CQ. The physicochemical properties of NPDOX+CQ were characterised. Then A549 cells and A549/Taxol cells were used for the in vitro anti-cancer effect study. At the same time, cellular uptake, intracellular migration and anti-cancer mechanism of nanoparticles were studied. The NPs showed a uniform spherical shape with good dispersibility, and both drugs had good encapsulation efficiency and loading capacity. In all formulations, NPDOX+CQ showed the highest in vitro cytotoxicity. The results showed that NPs could protect drugs from being recognised and excluded by P-glycoprotein (P-gp). Moreover, the results of the mechanistic study demonstrated that NPs were transported by autophagy process after being taken up by the cells. Therefore, during the migration of NPDOX+CQ, CQ could exert its efficacy and block autophagy so that DOX would not be hit by autophagy. Western Blot results showed that NPDOX+CQ had the best inhibition effect of autophagy. It can be concluded that the system can prevent the drug from being recognised and excluded by P-gp, and CQ blocks the process of autophagy so that the DOX is protected and more distributed to the nucleus of multidrug resistance (MDR) cell. The NPDOX+CQ constructed in this study provides a feasible strategy for reversing MDR in tumour cells.
Collapse
Affiliation(s)
- Jia-Hui Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lu B, Lv X, Le Y. Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery. Polymers (Basel) 2019; 11:E304. [PMID: 30960288 PMCID: PMC6419218 DOI: 10.3390/polym11020304] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/09/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023] Open
Abstract
Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) are well recognized as an ideal drug delivery carrier for their biocompatibility and biodegradability. In order to overcome the disadvantage of drug burst release, chitosan (CS) was used to modify the PLGA nanoparticles. In this work, CS-PLGA nanoparticles with different ratio of CS to PLGA were prepared using high-gravity rotating packed bed (RPB). With the increase of amount of CS, the particle size increased from 132.8 ± 1.5 nm to 172.7 ± 3.2 nm, zeta potential increased from -20.8 ± 1.1 mV to 25.6 ± 0.6 mV, and drug encapsulation efficiency increased from 65.8% to 87.1%. The initial burst release of PLGA NPs reduced after being modified by CS, and the cumulative release was 66.9%, 41.9%, 23.8%, and 14.3%, after 2 h, respectively. The drug release of CS-modified PLGA NPs was faster at pH5.5 than that at pH 7.4. The cellular uptake of CS-modified PLGA NPs increased compared with PLGA NPs, while cell viability was reduced. In conclusion, these results indicated that CS-modified, PTX-loaded PLGA NPs have the advantages of sustained drug release and enhanced drug toxicity, suggesting that CS-modified NPs can be used as carriers of anticancer drugs.
Collapse
Affiliation(s)
- Boting Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xikun Lv
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
29
|
Zhou K, Li C, Chen D, Pan Y, Tao Y, Qu W, Liu Z, Wang X, Xie S. A review on nanosystems as an effective approach against infections of Staphylococcus aureus. Int J Nanomedicine 2018; 13:7333-7347. [PMID: 30519018 PMCID: PMC6233487 DOI: 10.2147/ijn.s169935] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic bacteria and hazardous for the health of human beings and livestock globally. The characteristics like biofilm forming, facultative intracellular survival, and growing resistance of S. aureus pose a great challenge to its use in therapy. Nanoparticles are considered as a promising way to overcome the infections’ therapeutic problems caused by S. aureus. In this paper, the present progress and challenges of nanoparticles in the treatment of S. aureus infection are focused on stepwise. First, the survival and infection mechanism of S. aureus are analyzed. Second, the treatment challenges posed by S. aureus are provided, which is followed by the third step including the advantages of nanoparticles in improving the penetration and accumulation ability of their payload antibiotics into cell, inhibiting S. aureus biofilm formation, and enhancing the antibacterial activity against resistant isolates. Finally, the challenges and future perspective of nanoparticles for S. aureus infection therapy are introduced. This review will help the readers to realize that the nanosystems can effectively fight against the S. aureus infection by inhibiting biofilm formation, enhancing intracellular delivery, and improving activity against methicillin-resistant S. aureus and small colony variant phenotypes as well as aim to help researchers looking for more efficient nano-systems to combat the S. aureus infections.
Collapse
Affiliation(s)
- Kaixiang Zhou
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Chao Li
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Dongmei Chen
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Yuanhu Pan
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| | - Yanfei Tao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Wei Qu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Wuhan, Hubei, China
| | - Xiaofang Wang
- Animal Husbandry and Veterinary Institute of Hebei Province, Baoding, Hebei, China,
| | - Shuyu Xie
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, China,
| |
Collapse
|
30
|
Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res 2018; 8:617-632. [PMID: 29637488 PMCID: PMC5937873 DOI: 10.1007/s13346-018-0498-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.
Collapse
|
31
|
Yin J, Wang P, Yin Y, Hou Y, Song X. Optimization on biodistribution and antitumor activity of tripterine using polymeric nanoparticles through RES saturation. Drug Deliv 2018; 24:1891-1897. [PMID: 29191042 PMCID: PMC8241100 DOI: 10.1080/10717544.2017.1410260] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Systemic delivery of tripterine (TPR) is challenged by its insoluble property and unsuitable pharmacokinetics. This work aimed to develop polymeric nanoparticles (NPs) combined with the reticuloendothelial system (RES) saturation to improve the in vivo distribution and antitumor activity of TPR. TPR-loaded nanoparticles (TPR-NPs) were prepared by the low-energy emulsification/evaporation method and characterized with particle size, entrapment efficiency, and morphology. The resulting TPR-NPs were 75 nm around in particle size and displayed a sustained drug release in pH 7.4 medium. Pharmacokinetic studies revealed that TPR-NPs had the advantage in bettering the pharmacokinetic properties of TPR over the solution formulation. However, the ameliorative effect on pharmacokinetics was more significant in the case of RES saturation (i.e. preinjection of blank NPs). Preinjection of blank NPs followed by injection of TPR-NPs resulted in higher distribution of TPR into the tumor due to reduced sequestration of TPR-NPs by RES. In tumor-bearing mice (prostatic cancer model), TPR-NPs treatment with RES saturation exhibited a superior antitumor efficacy to free TPR and TPR-NPs alone. It can be concluded that formulating TPR into polymeric NPs in combination with RES saturation is an effective means to address the systemic delivery of TPR.
Collapse
Affiliation(s)
- Juntao Yin
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| | - Peiqing Wang
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| | - Yuyun Yin
- b Henan Provincial Institute of Food and Drug Control , Zhengzhou , PR China
| | - Yantao Hou
- c Henan Vocational College of Applied Technology , Dongjing Avenue , Kaifeng , PR China
| | - Xiaoyong Song
- a Department of Pharmaceutics , Huaihe Hospital Affiliated to Henan University , Kaifeng , PR China
| |
Collapse
|
32
|
Indomethacin-based stimuli-responsive micelles combined with paclitaxel to overcome multidrug resistance. Oncotarget 2017; 8:111281-111294. [PMID: 29340053 PMCID: PMC5762321 DOI: 10.18632/oncotarget.22781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/19/2017] [Indexed: 01/17/2023] Open
Abstract
Development of multidrug resistance against antitumor agents is a major limiting factor for the successful chemotherapy. Currently, both amphiphilic polymeric micelles and chemosensitizers have been proposed to overcome MDR during chemotherapy. Herein, the redox-responsive polymeric micelles composed of dextran and indomethacin (as chemosensitizer) using a disulfide bond as the linker are prepared (DEX-SS-IND) for delivery of antitumor agent paclitaxel (PTX). The high level of glutathione in tumor cells selectively breaks the disulfide bond, leading to the rapid breakdown and deformation of redox-responsive polymeric micelles. The data show that DEX-SS-IND can spontaneously form the stable micelles with high loading content (9.48 ± 0.41%), a favorable size of 45 nm with a narrow polydispersity (0.157), good stability, and glutathione-triggered drug release behavior due to the rapid breakdown of disulfide bond between DEX and IND. In vitro antitumor assay shows DEX-SS-IND/PTX micelles effectively inhibit the proliferation of PTX-resistant breast cancer (MCF-7/PTX) cells. More impressively, DEX-SS-IND/PTX micelles possess the improved plasma pharmacokinetics, enhanced antitumor efficacy on tumor growth in the xenograft models of MCF-7/PTX cells, and better in vivo safety. Overall, DEX-SS-IND/PTX micelles display a great potential for cancer treatment, especially for multidrug resistance tumors.
Collapse
|
33
|
Qi SS, Sun JH, Yu HH, Yu SQ. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv 2017; 24:1909-1926. [PMID: 29191057 PMCID: PMC8241150 DOI: 10.1080/10717544.2017.1410256] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/17/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
To achieve superior therapeutic efficacy, the combination chemotherapy using two or more anticancer drugs in clinical practice has been generally accepted as a feasible strategy. On account of the concept of combination chemotherapy, co-delivery of anticancer drugs with nanotechnology gradually becomes a desired strategy and one of the research frontiers on modern drug delivery. In recent years, nano drug co-delivery system (NDCDS), which loads at least two anticancer drugs with different physicochemical and pharmacological properties into a combination delivery system, has achieved rapid development. NDCDS synergistically inhibited the growth of the tumor compared with the free drugs. In this review, we highlighted the current state of co-delivery nanoparticles and the most commonly used nanomaterial, discussed challenges and strategies, and prospect future development.
Collapse
Affiliation(s)
- Shan-Shan Qi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
- Cancer Pharmacology Crown Bioscience Inc, Taicang, The People’s Republic of China
| | - Jia-Hui Sun
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
| | - Hao-Han Yu
- Nanjing DeBioChem Inc, Nanjing, The People’s Republic of China
| | - Shu-Qin Yu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, The People’s Republic of China
| |
Collapse
|