1
|
Toma AI, Shah D, Roth D, Piña JO, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Accelerating Oral Wound Healing Using Bilayer Biomaterial Delivery of FTY720 Immunotherapy. Adv Healthc Mater 2024:e2401480. [PMID: 39388502 DOI: 10.1002/adhm.202401480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/27/2024] [Indexed: 10/12/2024]
Abstract
Orofacial clefts are the most common congenital craniofacial anomaly. Adverse healing following cleft palate repair can lead to oronasal fistula (ONF), a persistent connection between the oral and nasal cavities. Although human allograft tissues are currently the gold standard for ONF repair, these methods carry risks of infection and rejection, often requiring surgical revision. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. An FDA-approved immunomodulatory drug, FTY720, is repurposed to reduce lymphocyte egress and induce immune cell fate switching toward pro-regenerative phenotypes. In this study, a bilayer biomaterial system is engineered using Tegaderm to secure and control the delivery of FTY720-nanofiber scaffolds (FTY720-NF). The release kinetics of the bilayer FTY720-NF is optimized to maintain drug release for up to 7 days, ensuring safe transdermal absorption and tissue biodistribution. The comprehensive immunophenotyping results demonstrate a regenerative state transition in hybrid immune cells recruited to the wound site. Further, histological evaluations reveal a significant ONF closure in mice by day 7 following bilayer FTY720-NF implantation. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options in pediatric patients.
Collapse
Affiliation(s)
- Afra I Toma
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Daniel Shah
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Daniela Roth
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren Hymel
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Thomas Turner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Archana Kamalakar
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| | - Ken Liu
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Perry Bartsch
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Leon Jacobs
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Rena D'Souza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dennis Liotta
- Department of Chemistry, Emory University, Atlanta, GA, 30322, USA
| | - Edward Botchwey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
| | - Nick J Willett
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, 97403, USA
| | - Steven L Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA, 30322, USA
- Department of Pediatrics and Otolaryngology, Children's Healthcare of Atlanta, Atlanta, GA, 30329, USA
| |
Collapse
|
2
|
Madiyar F, Suskavcevic L, Daugherty K, Weldon A, Ghate S, O’Brien T, Melendez I, Morgan K, Boetcher S, Namilae L. Optimizing Production, Characterization, and In Vitro Behavior of Silymarin-Eudragit Electrosprayed Fiber for Anti-Inflammatory Effects: A Chemical Study. Bioengineering (Basel) 2024; 11:864. [PMID: 39329606 PMCID: PMC11428713 DOI: 10.3390/bioengineering11090864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic condition that affects approximately 1.6 million Americans. While current polyphenols for treating IBD can be expensive and cause unwanted side effects, there is an opportunity regarding a new drug/polymer formulation using silymarin and an electrospray procedure. Silymarin is a naturally occurring polyphenolic flavonoid antioxidant that has shown promising results as a pharmacological agent due to its antioxidant and hepatoprotective characteristics. This study aims to produce a drug-polymer complex named the SILS100-Electrofiber complex, using an electrospray system. The vertical set-up of the electrospray system was optimized at a 1:10 of silymarin and Eudragit® S100 polymer to enhance surface area and microfiber encapsulation. The SILS100-Electrofiber complex was evaluated using drug release kinetics via UV Spectrophotometry, Fourier-Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Differential Scanning Calorimetry (DSC). Drug loading, apparent solubility, and antioxidant activity were also evaluated. The study was successful in creating fiber-like encapsulation of the silymarin drug with strand diameters ranging from 5-7 μm, with results showing greater silymarin release in Simulated Intestinal Fluid (SIF) compared to Simulated Gastric Fluid (SGF). Moving forward, this study aims to provide future insight into the formulation of drug-polymer complexes for IBD treatment and targeted drug release using electrospray and microencapsulation.
Collapse
Affiliation(s)
- Foram Madiyar
- Department of Physical Science, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Liam Suskavcevic
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Kaitlyn Daugherty
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Alexis Weldon
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Sahil Ghate
- Department of Electrical Engineering, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Takara O’Brien
- Department of Human Factors and Behavioral Neurobiology, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Isabel Melendez
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Karl Morgan
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Sandra Boetcher
- Department of Mechanical and Engineering Sciences, Embry Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Lasya Namilae
- Seminole High School, 2701 Ridgewood Ave, Sanford, FL 32773, USA
| |
Collapse
|
3
|
Tan SM, AbouAssi R, Dianita R, Murugaiyah V, SiokYee C. An Insight into Viscosity and Conductivity in the Formulation of Co-axial Electrospun Carica papaya Leaf Extract. Drug Dev Ind Pharm 2024:1-21. [PMID: 38530403 DOI: 10.1080/03639045.2024.2335527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Objective: This research aimed to investigate the application of the coaxial electrospun method for the production of natural extracts (papaya leaf extract) fibre films. This was achieved through utilising different polymers and with a focus on the conductivity and the viscosity of polymer solutions as critical parameters to generate successful fibres. Significance: Electrospinning is a promising trending manufacturing method for incorporating thermolabile herbal extracts using coaxial electrospun features. However, the complexity of the electrospinning process and the feasibility of the product required precise scrutiny. Methods: The electrospinning solution parameters (conductivity and viscosity) were evaluated by employing various ratios of Eudragit L100 (EL100) and Eudragit L100-55 (EL100-55) pre-spinning polymeric blend solutions. The electrospinning process and ambient parameters were optimised. Following that, the in-silico physicochemical properties of phytochemical marker, rutin, were illustrated using SwissADME web tool. Both freeze-dried Carica papaya leaf extract and its produced films were characterised using Scanning Electron Microscopy (SEM), Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), polarised light microscopy, and X-Ray Powder Diffraction (XRPD). Results: The optimal values of conductivity (≈40-44 × 10-4 S/m) and viscosity (≈32-42 × 10-3 Pa·s) were determined for producing evenly distributed and small fibre diameters in SEM images. These parameters significance was highlighted in acquiring and maintaining adequate tangential stress for fibre elongation, which would consequently affect the morphology and diameter of the fibres formed. Conclusion: In conclusion, the solution, process, and ambient parameters are significant in developing natural extracts into films via electrospinning technology, and this includes the promising Carica papaya leaf extract films produced by coaxial electrospinning.
Collapse
Affiliation(s)
- Siew Mei Tan
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Reem AbouAssi
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- EDEN Research Group, Discipline of Pharmaceutical Technology, College of Pharmacy, Al-Kitab University, Altun Kupri, Kirkuk, 36001, Iraq
| | - Roza Dianita
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Chan SiokYee
- Thoughts Formulation Lab, Discipline of Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
4
|
Jana BK, Singh M, Dutta RS, Mazumder B. Current Drug Delivery Strategies for Buccal Cavity Ailments using Mouth Dissolving Wafer Technology: A Comprehensive Review on the Present State of the Art. Curr Drug Deliv 2024; 21:339-359. [PMID: 36443976 DOI: 10.2174/1567201820666221128152010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/02/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Mouth-dissolving wafer is polymer-based matrice that incorporates various pharmaceutical agents for oral drug delivery. This polymeric wafer is ingenious in the way that it needs not be administered with water, like in conventional tablet dosage form. It has better compliance among the pediatric and geriatric groups owing to its ease of administration. OBJECTIVE The polymeric wafer dissolves quickly in the oral cavity and is highly effective for a targeted local effect in buccal-specific ailments. It is a safe, effective, and versatile drug delivery carrier for a range of drugs used to treat a plethora of oral cavity-specific ailments that inflict common people, like thrush, canker sores, periodontal disease, benign oral cavity tumors, buccal neoplasm, and malignancies. This review paper focuses thoroughly on the present state of the art in mouth-dissolving wafer technology for buccal drug delivery and targeting. Moreover, we have also addressed present-time limitations associated with wafer technology to aid researchers in future developments in the arena of buccal drug delivery. CONCLUSION This dynamic novel formulation has tremendous future implications for designing drug delivery systems to target pernicious ailments and diseases specific to the buccal mucosa. In a nutshell, this review paper aims to summarize the present state of the art in buccal targeted drug delivery.
Collapse
Affiliation(s)
- Bani Kumar Jana
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Mohini Singh
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam, India
| |
Collapse
|
5
|
Tiwari S, Gidwani B, Vyas A. Quorum Sensing in Gram-Negative Bacteria: Strategies to Overcome Antibiotic Resistance in Ocular Infections. Curr Mol Med 2024; 24:876-888. [PMID: 37497706 DOI: 10.2174/1566524023666230727094635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023]
Abstract
Truly miraculous medications and antibiotics have helped save untold millions of lives. Antibiotic resistance, however, is a significant issue related to health that jeopardizes the effectiveness of antibiotics and could harm everyone's health. Bacteria, not humans or animals, become antibiotic-resistant. Bacteria use quorum-sensing communication routes to manage an assortment of physiological exercises. Quorum sensing is significant for appropriate biofilm development. Antibiotic resistance occurs when bacteria establish a biofilm on a surface, shielding them from the effects of infection-fighting drugs. Acylated homoserine lactones are used as autoinducers by gram-negative microscopic organisms to impart. However, antibiotic resistance among ocular pathogens is increasing worldwide. Bacteria are a significant contributor to ocular infections around the world. Gram-negative microscopic organisms are dangerous to ophthalmic tissues. This review highlights the use of elective drug targets and treatments, for example, combinational treatment, to vanquish antibiotic-resistant bacteria. Also, it briefly portrays anti-biotic resistance brought about by gram-negative bacteria and approaches to overcome resistance with the help of quorum sensing inhibitors and nanotechnology as a promising medication conveyance approach to give insurance of anti-microbials and improve pathways for the administration of inhibitors of quorum sensing with a blend of anti-microbials to explicit target destinations and penetration through biofilms for treatment of ocular infections. It centres on the methodologies to sidestep the confinements of ocular anti-biotic delivery with new visual innovation.
Collapse
Affiliation(s)
- Sakshi Tiwari
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| | - Bina Gidwani
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | - Amber Vyas
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India
| |
Collapse
|
6
|
Toma AI, Shah D, Roth D, Oliver Piña J, Hymel L, Turner T, Kamalakar A, Liu K, Bartsch P, Jacobs L, D'Souza R, Liotta D, Botchwey E, Willett NJ, Goudy SL. Harnessing Bilayer Biomaterial Delivery of FTY720 as an Immunotherapy to Accelerate Oral Wound Healing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573096. [PMID: 38187740 PMCID: PMC10769397 DOI: 10.1101/2023.12.22.573096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Orofacial clefts are the most common craniofacial congenital anomaly. Following cleft palate repair, up to 60% of surgeries have wound healing complications leading to oronasal fistula (ONF), a persistent connection between the roof of the mouth and the nasal cavity. The current gold standard methods for ONF repair use human allograft tissues; however, these procedures have risks of graft infection and/or rejection, requiring surgical revisions. Immunoregenerative therapies present a novel alternative approach to harness the body's immune response and enhance the wound healing environment. We utilized a repurposed FDA-approved immunomodulatory drug, FTY720, to reduce the egress of lymphocytes and induce immune cell fate switching toward pro-regenerative phenotypes. Here, we engineered a bilayer biomaterial system using Tegaderm™, a liquid-impermeable wound dressing, to secure and control the delivery of FTY720- nanofiber scaffolds (FTY720-NF). We optimized release kinetics of the bilayer FTY720-NF to sustain drug release for up to 7d with safe, efficacious transdermal absorption and tissue biodistribution. Through comprehensive immunophenotyping, our results illustrate a pseudotime pro-regenerative state transition in recruited hybrid immune cells to the wound site. Additional histological assessments established a significant difference in full thickness ONF closure in mice on Day 7 following treatment with bilayer FTY720-NF, compared to controls. These findings demonstrate the utility of immunomodulatory strategies for oral wound healing, better positing the field to develop more efficacious treatment options for pediatric patients. One Sentence Summary Local delivery of bilayer FTY720-nanofiber scaffolds in an ONF mouse model promotes complete wound closure through modulation of pro-regenerative immune and stromal cells.
Collapse
|
7
|
Samiraninezhad N, Rezaee M, Gholami A, Amanati A, Mardani M. A novel chitosan-based doxepin nano-formulation for chemotherapy-induced oral mucositis: a randomized, double-blinded, placebo-controlled clinical trial. Inflammopharmacology 2023; 31:2411-2420. [PMID: 37668810 DOI: 10.1007/s10787-023-01325-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/20/2023] [Indexed: 09/06/2023]
Abstract
OBJECTIVES Considering the prevalence of oral mucositis, we aimed to use the analgesic effects of doxepin with chitosan's antimicrobial and bio-adhesive nature to fabricate a nano-formulation for treating chemotherapy-induced oral mucositis. MATERIALS AND METHODS Nanogel was fabricated via ionic gelation and characterized. Sixty patients were randomly divided and received four different treatments for 14 days: diphenhydramine + aluminum-magnesium mouthwash (control), doxepin mouthwash (DOX MW), chitosan nanogel (CN), and doxepin/chitosan nanogel (CN + DOX). Lesions were assessed with four indices, National Cancer Institute (NCI), World Health Organization (WHO), World Conference on Clinical and Research in Nursing (WCCNR) and visual analog scale (VAS) before and 3, 7, and 14 days after interventions. Kruskal-Wallis test was used for pairwise comparison. RESULTS CN had semisolid consistency, uniform spherical shape, an average size of 47.93 ± 21.69 nm, and a zeta potential of + 1.02 ± 0.16 mV. CN + DOX reduced WHO, WCCNR, and VAS scores significantly more than the control three days after the intervention. Seven days after the intervention, CN + DOX reduced NCI and WCCNR considerably more than the control; it reduced WCCNR significantly more than CN. Fourteen days after the intervention, CN + DOX decreased NCI markedly more than the control. CONCLUSION Chitosan-based doxepin nano-formulation might be a promising alternative for routine treatments of oral mucositis.
Collapse
Affiliation(s)
| | - Mostafa Rezaee
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ahmad Gholami
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Ali Amanati
- Department of Pediatrics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Mardani
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Misra SK, Pandey H, Patil S, Virmani T, Virmani R, Kumar G, Alhalmi A, Noman OM, Alshahrani SS, Mothana RA. Graphene Scaffolds: A Striking Approach to Combat Dermatophytosis. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2305. [PMID: 37630890 PMCID: PMC10458241 DOI: 10.3390/nano13162305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Exclusive physicochemical and biological properties of carbon allotrope graphene have attracted the peer attention of researchers for the synthesis and development of newer topical remedies including films, scaffolds, microspheres, and hydrogels. Here, graphene nanoplatelets (GN) were embedded into a different ratio of polymeric ERL100/ERS100 solution and fabricated in the form of a scaffold through the electrospinning process. FTIR spectra displayed characteristic similar peaks present both in GN and GN-loaded scaffold owing to the compatibility of GN and polymeric mixture. XRD curve revealed a distinct GN peak at nearly 26° whereas from DSC/TGA thermal stability was observed between polymers and graphene nanoplatelets. FESEM images showed ultrathin architecture of GN-loaded scaffold in a range of 280 ± 90 nm. The fabricated scaffold exhibited hydrophilicity (contact angle 48.8 ± 2.8°) and desirable swelling index (646% in skin pH media) which were desired criteria for the scaffold for topical application. In vitro, antifungal activity was conducted through the broth microdilution method against different virulent dermatophytes i.e., Microsporum gypseum, M. canis, M. fulvum, and Trychophyton rubrum. For in vivo evaluation, T. rubrum inoculum was applied on the dorsal surface of each group of Swiss albino mice, and the degree and intensity of mycelial growth or erythema on skin surfaces was visually investigated. The study depicted complete signs of cure after 14 days of application of G3-loaded scaffold on the infected dorsal site. Hence graphene-loaded scaffold represented a possible alternative for the treatment of topical fungal infections caused by dermatophytes.
Collapse
Affiliation(s)
- Shashi Kiran Misra
- School of Pharmaceutical Sciences, Department of pharmacy, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, India
| | - Himanshu Pandey
- Center for Teacher Education, Central Institute of Higher Tibetan Studies, Sarnath, Varanasi 221007, India;
| | - Sandip Patil
- E-Spin NanoTech Private Ltd., SIDBI Innovation & Incubation Center, Indian Institute of Technology, Kanpur 208016, India;
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (R.V.); (G.K.)
| | - Reshu Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (R.V.); (G.K.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (R.V.); (G.K.)
| | - Abdulsalam Alhalmi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Omar M. Noman
- Department of Pharmaceutical Biology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany;
| | - Saad S. Alshahrani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.); (R.A.M.)
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.S.A.); (R.A.M.)
| |
Collapse
|
9
|
Yu Z, Xiong Y, Fan M, Li J, Liang K. Metronidazole and Ketoprofen-Loaded Mesoporous Magnesium Carbonate for Rapid Treatment of Acute Periodontitis In Vitro. ACS OMEGA 2023; 8:25441-25452. [PMID: 37483201 PMCID: PMC10357566 DOI: 10.1021/acsomega.3c02968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
In the clinical pharmacological treatment of acute periodontitis, local periodontal administration is expected to be preferable to systemic administration. However, the action of the active medicine component is hindered and diminished by the limitation of drug solubility, which does not provide timely relief of the enormous pain being suffered by patients. This study aimed to develop a mesoporous magnesium carbonate (MMC) medicine loading system consisting of MMC, metronidazole (MET), and ketoprofen (KET), which was noted as MET-KET@MMC. A solvent evaporation process was utilized to load MET and KET in MMC. Scanning electron microscopy, nitrogen sorption, thermogravimetric analysis, and X-ray diffraction were performed on the MET-KET@MMC. The rapid drug release properties were also investigated through the drug release curve. The rapid antiseptic property against Porphyromonas gingivalis (P. gingivalis) and the rapid anti-inflammatory property (within 1 min) were analyzed in vitro. The cytotoxicity of MET-KET@MMC was tested in direct contact with human gingival cells and human oral keratinocytes. Crystallizations of MET and KET were completely suppressed in MMC. As compared to crystalline MET and KET, MMC induced higher apparent solubility and rapid drug release, resulting in 8.76 times and 3.43 times higher release percentages of the drugs, respectively. Over 70.11% of MET and 85.97% of KET were released from MMC within 1 min, resisting bacteria and reducing inflammation. MET-KET@MMC nanoparticles enhanced the solubility of drugs and possess rapid antimicrobial and anti-inflammatory properties. The MET-KET@MMC is a promising candidate for the pharmacotherapy of acute periodontitis with drugs, highlighting a significant clinical potential of MMC-based immediate drug release systems.
Collapse
Affiliation(s)
- Zhaohan Yu
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yan Xiong
- Orthopedic
Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Menglin Fan
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jiyao Li
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kunneng Liang
- State
Key Laboratory of Oral Diseases, National Clinical Research Center
for Oral Diseases, Department of Cariology and Endodontics, West China
Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Kida D, Konopka T, Jurczyszyn K, Karolewicz B. Technological Aspects and Evaluation Methods for Polymer Matrices as Dental Drug Carriers. Biomedicines 2023; 11:biomedicines11051274. [PMID: 37238944 DOI: 10.3390/biomedicines11051274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 05/28/2023] Open
Abstract
The development of polymer matrices as dental drug carriers takes into account the following technological aspects of the developed formulations: the composition and the technology used to manufacture them, which affect the properties of the carriers, as well as the testing methods for assessing their behavior at application sites. The first part of this paper characterizes the methods for fabricating dental drug carriers, i.e., the solvent-casting method (SCM), lyophilization method (LM), electrospinning (ES) and 3D printing (3DP), describing the selection of technological parameters and pointing out both the advantages of using the mentioned methods and their limitations. The second part of this paper describes testing methods to study the formulation properties, including their physical and chemical, pharmaceutical, biological and in vivo evaluation. Comprehensive in vitro evaluation of carrier properties permits optimization of formulation parameters to achieve prolonged retention time in the dynamic oral environment and is essential for explaining carrier behavior during clinical evaluation, consequently enabling the selection of the optimal formulation for oral application.
Collapse
Affiliation(s)
- Dorota Kida
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| | - Tomasz Konopka
- Department of Periodontology, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland
| | - Kamil Jurczyszyn
- Department of Dental Surgery, Faculty of Medicine and Dentistry, Medical University of Wroclaw, Krakowska 26, 50-425 Wroclaw, Poland
| | - Bożena Karolewicz
- Department of Drug Form Technology, Wroclaw Medical University, Borowska 211 A, 50-556 Wroclaw, Poland
| |
Collapse
|
11
|
Ruzgar Ozemre G, Kara A, Pezik E, Tort S, Vural İ, Acartürk F. Preparation of nanodelivery systems for oral administration of low molecular weight heparin. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Jaberifard F, Ramezani S, Ghorbani M, Arsalani N, Mortazavi Moghadam F. Investigation of wound healing efficiency of multifunctional eudragit/soy protein isolate electrospun nanofiber incorporated with ZnO loaded halloysite nanotubes and allantoin. Int J Pharm 2022; 630:122434. [PMID: 36435502 DOI: 10.1016/j.ijpharm.2022.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
One significant aspect of the current therapeutic agents employed in wound healing involves the engineering of nano polymeric scaffolds to mimic the properties of extracellular matrix (ECM). The present work aimed to prepare and evaluate Eudragit® L100 (EU) nanofibers in combination with soy protein isolate (SPI). Allantoin (Ala) with a 2 wt% was encapsulated as a model drug renowned for its anti-inflammatory and antioxidant agents. Moreover, the synthesized ZnO-halloysite nanotubes (ZHNTs) with different concentrations of 1, 3, and 5 wt% were incorporated into the EU/SPI/Ala nanofiber as a reinforcing filler and a remarkable antibacterial agent. The scanning electron microscope (SEM) analysis showed that by increasing the weight percentage of SPI from 1 % to 2.5 %, the average diameter of nanofibers decreased from 132.3 ± 51.3 nm to 126.7 ± 47.2 nm. It was 223.5 ± 95.6 nm for nanofibers containing 5 wt% ZHNTs (the optimal sample). The evaluation of in vitro release kinetics of Ala for 24 h, showed a burst release during the first 2 h and a sustained release during the subsequent times. Moreover, the structure, crystallinity, and thermal stability of synthesized nanofibers were characterized by Fourier Transform Infrared Spectrometry (FTIR), X-ray diffraction (XRD), and Thermo gravimetric analysis (TGA), respectively. In vitro degradation and mechanical characteristics of these nanofibers were studied. Furthermore, the capability of the nanofibers for cell proliferation was revealed through the MTT test and field emission scanning electron microscopy (FESEM) images of cell attachment. The antimicrobial activity of EU/SPI/Ala/ZHNTs showed that this sample with high ZHNTs content (5 w%t) had the most remarkable antibacterial activity against S. aureus. The results revealed that EU/SPI/Ala/ZHNTs mats could be promising potential wound dressings.
Collapse
Affiliation(s)
- Farnaz Jaberifard
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Ramezani
- Nanofiber Research Center, Asian Nanostructures Technology Co. (ANSTCO), Zanjan, Iran
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Nasser Arsalani
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Mehravaran M, Haeri A, Rabbani S, Mortazavi SA, Torshabi M. Preparation and characterization of benzydamine hydrochloride-loaded lyophilized mucoadhesive wafers for the treatment of oral mucositis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Hashem HM, Motawea A, Kamel AH, Bary EMA, Hassan SSM. Fabrication and characterization of electrospun nanofibers using biocompatible polymers for the sustained release of venlafaxine. Sci Rep 2022; 12:18037. [PMID: 36302929 PMCID: PMC9614003 DOI: 10.1038/s41598-022-22878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
Recently, drug-controlled release nanotechnology has gained special attention in biomedicine. This work focuses on developing novel electrospun polymeric nanofibers (NFs) for buccal delivery of VEN to avoid the hepatic metabolism and enzymatic degradation in the GIT and develop an effective control of drug release. The optimized NFs were obtained by blending polylactic acid (PLA), and poly (ɛ-caprolactone) (PCL) fixed at a ratio of 1:1. It was characterized for morphology, drug-loading, FTIR, XRD, DSC, and in vitro drug release. Ex vivo permeability of the blend NFs was assessed using chicken pouch mucosa compared to VEN suspension, followed by histopathological examination. Further, the cytotoxic effect in three different cell lines using WST-1 assay. SEM morphologies refer to defect-free uniform NFs of PLA, PCL, and PLA/PCL mats. These fibers had a diameter ranging from 200 to 500 nm. The physico-thermal characterization of NFs depicted that the drug was successfully loaded and in an amorphous state in the PLA/PCL NFs. In vitro release of NFs substantiated a bi-phasic profile with an initial burst release of about 30% in the initial 0.5 h and a prolonged cumulative release pattern that reached 80% over 96 h following a non-Fickian diffusion mechanism. Ex vivo permeation emphasizes the major enhancement of the sustained drug release and the noticeable decrease in the permeability of the drug from NFs. Cytotoxicity data found that IC50 of VEN alone was 217.55 μg/mL, then VEN-NFs recorded an IC50 value of 250.62 μg/mL, and plain NFs showed the lowest toxicity and IC50 440.48 μg/mL in oral epithelial cells (OEC). Histopathology and cell toxicity studies demonstrated the preserved mucosal architecture and the preclinical safety. The developed PLA/PCL NFs can be promising drug carriers to introduce a step-change in improved psychiatric treatment healthcare.
Collapse
Affiliation(s)
- Heba M. Hashem
- grid.10251.370000000103426662Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Amira Motawea
- grid.10251.370000000103426662Pharmaceutics Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516 Egypt
| | - Ayman H. Kamel
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt ,grid.413060.00000 0000 9957 3191Chemistry Department, College of Science, Bahrain University, Sakhir, 32038 Bahrain
| | - E. M. Abdel Bary
- grid.10251.370000000103426662Chemistry Department, Faculty of Science, Mansoura University, Mansoura, 35516 Egypt
| | - Saad S. M. Hassan
- grid.7269.a0000 0004 0621 1570Chemistry Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo Egypt
| |
Collapse
|
15
|
Singh J, Steele TWJ, Lim S. Bacterial cellulose adhesive patches designed for soft mucosal interfaces. BIOMATERIALS ADVANCES 2022; 144:213174. [PMID: 36428212 DOI: 10.1016/j.bioadv.2022.213174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
The wet environment in the oral cavity is challenging for topical disease management approaches. The compromised material properties leading to weak adhesion and short retention (<8 h) in such environment result in frequent reapplication of the therapeutics. Composites of bacterial cellulose (BC) and carbene-based bioadhesives attempt to address these shortcomings. Previous designs comprised of aqueous formulations. The current design, for the first time, presents dry, shelf-stable cellulose patches for convenient ready-to-use application. The dry patches simultaneously remove tissue surface hydration while retaining carbene-based photocuring and offers on-demand adhesion. The dry patch prototypes are optimized by controlling BC/adhesive mole ratios and dehydration technique. The adhesion strength is higher than commercial denture adhesives on soft mucosal tissues. The structural integrity is maintained for a minimum of 7 days in aqueous environment. The patches act as selective nanoporous barrier against bacteria while allowing permeation of proteins. The results support the application of BC-based adhesive patches as a flexible platform for wound dressings, drug depots, or combination thereof.
Collapse
Affiliation(s)
- Juhi Singh
- NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, Singapore 637335, Singapore; School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| | - Terry W J Steele
- School of Materials Science and Engineering (MSE), Division of Materials Technology, Nanyang Technological University (NTU), Singapore 639798, Singapore.
| | - Sierin Lim
- School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Block N1.3, Nanyang Technological University, Singapore 637457, Singapore.
| |
Collapse
|
16
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
17
|
Electrospinning and its potential in fabricating pharmaceutical dosage form. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Optimization of curcumin nanofibers as fast dissolving oral films prepared by emulsion electrospinning via central composite design. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Hashemi S, Mortazavi SA, Moghimi HR, Darbasizadeh B. Development and Evaluation of a Novel Methotrexate-Loaded Electrospun Patch to Alleviate Psoriasis Plaques. Drug Dev Ind Pharm 2022; 48:355-366. [PMID: 36000909 DOI: 10.1080/03639045.2022.2117373] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To achieve an effective topical formulation of Methotrexate (MTX) as a first-line treatment of psoriasis, we formulated three MTX-loaded electrospun nanofibrous patches composed of polycaprolactone (PCL), Eudragit L100, and a mixture of them. SIGNIFICANCE Topical delivery of MTX provides an appropriate therapeutic performance while circumventing the life-threatening side effects of systemic administration. METHODS Three MTX-loaded electrospun nanofibrous patches were prepared and characterized in terms of size and morphology (using SEM), thermal behavior (by TGA and DSC), and crystalline structure (using XRD). Furthermore, the wettability and mechanical strength of samples were investigated through water contact angle and tensile strength tests. Also, the encapsulation efficiency of MTX was calculated. Subsequently, in vitro drug release profile of each formulation was obtained and different kinetic models were fitted to achieve the best-matched model. Accordingly, the ex vivo skin permeation of MTX was studied for the optimum formulation. RESULTS All samples showed appropriate morphology, thermal behavior, and encapsulation efficiency. Also, XRD results showed that MTX is dispersed within the polymeric matrices in the amorphous state (with no crystalline region). Release studies demonstrated that MTX-loaded Eudragit L100-PCL formulation outperformed in terms of mechanical behavior and in vitro drug release. This formulation also exhibited better skin permeation. CONCLUSION The obtained controlled-release MTX-loaded electrospun patches seem promising to provide a long-acting topical treatment of psoriatic plaques with minimized systemic side effects.
Collapse
Affiliation(s)
- Shiva Hashemi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Miranda-Calderon L, Yus C, Landa G, Mendoza G, Arruebo M, Irusta S. Pharmacokinetic control on the release of antimicrobial drugs from pH-responsive electrospun wound dressings. Int J Pharm 2022; 624:122003. [PMID: 35811042 DOI: 10.1016/j.ijpharm.2022.122003] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/13/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
The acidic pH of healthy skin changes during wound healing due to the exposure of the inner dermal and subcutaneous tissue and due to the potential colonization of pathogenic bacteria. In chronic non-healing wounds, the pH values vary in a wide pH range but the appearance of an alkaline shift is common. After a wound is incurred, neutral pH in the wound bed is characteristic of the activation of the cascade of regenerative and remodeling processes. In order to adjust drug release to the specific pH of the wound, herein, drug-loaded wound dressings having pH-responsiveness containing antiseptics and antibiotics and exerting different release kinetics in order to have a perfect match between the drug release kinetics, and the pH conditions of each wound type, were developed. We have fabricated drug-loaded electrospun nanofibers loaded with the antiseptic chlorhexidine, with the broad-spectrum antibiotic rifampicin, and with the antimicrobial of natural origin thymol, using the pH-dependent methacrylic acid copolymer Eudragit® L100-55, which dissolves at pH > 5.5; those drugs were loaded within Eudragit® S100, which dissolves at pH > 7 and, finally, within the methacrylic ester copolymer Eudragit® RS100 which is pH independent and slowly erodes and releases its contained cargo. The antibacterial action of those advanced wound dressings has been evaluated against methicillin-sensitive S. aureus Newman strain expressing the coral green fluorescent protein (cGFP), as a model of a Gram-positive bacteria, and against E. coli S17 strain as a model of a Gram-negative bacteria. It was demonstrated that those combinational products integrate in one device the required characteristics for a wound dressing with the therapeutic action of a contained active principle and can be selected depending on the wound acidic or alkaline status for its appropriated management.
Collapse
Affiliation(s)
- Laura Miranda-Calderon
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Cristina Yus
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Guillermo Landa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain
| | - Gracia Mendoza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain; Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Manuel Arruebo
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| | - Silvia Irusta
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza 50009, Spain; Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro-Edificio I+D, C/ Poeta Mariano Esquillor S/N, 50018 Zaragoza, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029-Madrid, Spain.
| |
Collapse
|
21
|
Akhgari A, Iraji P, Rahiman N, Hasanzade Farouji A, Abbaspour M. Preparation of stable enteric folic acid-loaded microfiber using the electrospinning method. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:405-413. [PMID: 35656189 PMCID: PMC9148407 DOI: 10.22038/ijbms.2022.61563.13625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/02/2022] [Indexed: 11/14/2022]
Abstract
Objectives Folic acid is an essential vitamin, labile to hydrolysis in the acidic environment of the stomach with low water solubility and bioavailability. In order to solve these problems, enteric oral folic acid-loaded microfibers with a pH-sensitive polymer by electrospinning method were prepared. Materials and Methods Electrospinning was performed at different folic acid ratios and voltages. Fibers were evaluated in terms of mechanical strength, acidic resistance, and drug release. Additionally, DSC (Differential Scanning Calorimetry), FTIR (Fourier-transform infrared spectroscopy), and XRD (X-ray diffraction) analyses were performed on the optimal formulation. Results Drug ratio and voltage had a considerable effect on fibers' entrapment efficiency, acid resistance, and mechanical strength. Based on the obtained results, the optimum formulation containing 1.25% of the drug/polymer was prepared at 18 kV. The entrapment efficiency of the optimal sample was above 90% with an acid resistance of higher than 70%. The tensile test confirmed the high mechanical properties of the optimum microfiber. DSC and XRD tests indicated that folic acid was converted to an amorphous form in the fiber structure and the FTIR test confirmed the formation of a chemical bond between the drug and the polymer. The release of the drug from the optimal fiber was about 90% in 60 min. Conclusion In conclusion, the optimal formulation of folic acid with proper mechanical properties can be used as a candidate dosage form for further bioavailability investigations.
Collapse
Affiliation(s)
- Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pariya Iraji
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Akram Hasanzade Farouji
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Abbaspour
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Gulsun T, Inal M, Akdag Y, Izat N, Oner L, Sahin S. The development and characterization of electrospun gelatin nanofibers containing indomethacin and curcumin for accelerated wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
Srivastava N, Aslam S. Recent Advancements and Patents on Buccal Drug Delivery Systems: A Comprehensive Review. RECENT PATENTS ON NANOTECHNOLOGY 2022; 16:308-325. [PMID: 34126916 DOI: 10.2174/1872210515666210609145144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
The major requirement for a dosage form to be successful is its ability to penetrate the site of application and the bioavailability of the drug released from the dosage form. The buccal drug delivery is an influential route to deliver the drug into the body. Here, in this context, various novel approaches that include lipoidal carriers like ethosomes, transferosomes, niosomes etc. and electrospun nanofibers are discussed, with respect to buccal drug delivery. These carriers can be easily incorporated into buccal dosage forms like patches and gels that are responsible for increased permeation across the buccal epithelium. The in vivo methods of evaluation on animal models are conscribed here. The novel biocarriers of lipoidal and non-lipoidal nature can be utilized by loading the drug into them, which are helpful in preventing drug degradation and other drawbacks as compared to conventional formulations. The globally patented buccal formulations give us a wide context in literature about the patents filed and granted in the recent years. When it comes to patient compliance, age is an issue, which is also solved by the buccal route. The pediatric buccal formulations are researched for the customization to be delivered to children. Diseases like mouth ulcers, oral cancer, Parkinson's disease, aphthous stomatitis etc. have been successfully treated through the buccal route, which infers that the buccal drug delivery system is an effective and emerging area for formulation and development in the field of pharmaceutics.
Collapse
Affiliation(s)
- Nimisha Srivastava
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| | - Sahifa Aslam
- Department of Pharmaceutics, Faculty of Pharmacy, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
24
|
Shao W, Chen R, Lin G, Ran K, Zhang Y, Yang J, Pan H, Shangguan J, Zhao Y, Xu H. In situ mucoadhesive hydrogel capturing tripeptide KPV: the anti-inflammatory, antibacterial and repairing effect on chemotherapy-induced oral mucositis. Biomater Sci 2021; 10:227-242. [PMID: 34846053 DOI: 10.1039/d1bm01466h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The self-healing of chemotherapy-induced oral mucositis is difficult in practice because of both local bacterial infection and severe inflammation. Herein, in situ mucoadhesive hydrogels (PPP_E) were successfully prepared by using temperature-sensitive PLGA-PEG-PLGA (PPP) as a matrix and epigallocatechin-3-gallate (EGCG) with inherent antibacterial activity as an adhesion enhancer. A series of PPP_E precursor solutions with various EGCG concentrations (1%, 2% and 5%) were prepared by fixing the PPP concentration at 25%. EGCG slightly decreased the sol-gel transition temperature and shortened the sol-gel transition time of the PPP hydrogel. Moreover, the incorporation of EGCG could significantly increase the tissue adhesion properties of the PPP hydrogel at 37 °C. PPP_2%E displayed a suitable gelation temperature (36.2 °C), gelation time (100 s) and storage modulus (48 Pa). Tripeptide KPV as a model drug was easily dissolved in cold PPP_2%E precursor solution to prepare KPV@PPP_2%E hydrogel. The anti-inflammatory activity and promotion of cell migration potential by KPV in PPP-2% E hydrogel were well maintained. Moreover, KPV@PPP_2%E exhibited strong antibacterial efficacy against S. aureus. PPP_2%E precursor solution rapidly transformed to a hydrogel and adhered to the wound surface for 7 hours when administrated to the gingival mucosa of rats. Treatment with KPV@PPP_2%E hydrogel greatly improved the food intake and body weight recovery of rats with chemotherapy-induced oral mucositis. Moreover, the tissue morphology of the ulcerated gingiva after application of KPV@PPP_E hydrogel was also well repaired by promoting CK10 and PCNA expression. In addition, the inflammatory cytokines including IL-1β and TNF-α were significantly inhibited by KPV@PPP_2%E hydrogel while IL-10 was up-regulated. KPV@PPP_2%E hydrogel also had an anti-bacterial effect on MRSA-infected gingival ulcer wounds, which resulted in the obvious inhibition of infiltration by inflammatory cells into submucosal tissues. Conclusively, KPV@PPP_E may be a promising practical application for cancer patients with chemotherapy-induced oral mucositis.
Collapse
Affiliation(s)
- Weifeng Shao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Rui Chen
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Gaolong Lin
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Kunjie Ran
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Yingying Zhang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Jiaojiao Yang
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Hanxiao Pan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Jianxun Shangguan
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Yingzheng Zhao
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| | - Helin Xu
- Department of pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou City, Zhejiang Province 325035, China.
| |
Collapse
|
25
|
Mohammadreza M, Iraji P, Mahmoudi Z, Rahiman N, Akhgari A. Design and physico-mechanical evaluation of fast-dissolving valsartan polymeric drug delivery system by electrospinning method. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1683-1694. [PMID: 35432803 PMCID: PMC8976902 DOI: 10.22038/ijbms.2021.58713.13041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 11/27/2021] [Indexed: 12/16/2022]
Abstract
Objective(s): Chronic hypertension is a pervasive morbidity and the leading risk factor for cardiovascular diseases. Valsartan, as an antihypertensive drug, has low solubility and bioavailability. The application of orodispersible films of valsartan is suggested to improve its bioavailability. With this dosage form, the drug dissolves rapidly in saliva and is absorbed readily without the need for water. Materials and Methods: For this purpose, valsartan with polyvinylpyrrolidone (PVPK90) polymer were exposed to the electrospinning technique to construct orodispersible nanofilms. The optimum obtained nanofiber, selected by Design-Expert software, was evaluated in terms of mechanical strength for evaluation of the flexibility and fragility of the nanofibers. The drug content, wettability, and disintegration tests, as well as the release assessment of the nanofibers, were performed followed by DSC, FTIR, and XRD assays. Results: The uniform nanofibers’ diameter increased with the increase of the polymer concentration. The tensile test verified a stress reduction at the yield point as the polymer concentration increased. Then, the 492 nm nanofiber with above 90% drug encapsulation, containing 8% polymer and 18% valsartan made below 9 kV, was selected. The wetting time was less than 30 sec and over 90% of the drug was released in less than 2 min. The XRD and DSC studies also confirmed higher valsartan solubility due to the construction alternations in nanofibers. The FTIR examination indicated the chemical bonding between the drug and the polymer. Conclusion: The selected nanofibers of valsartan present the essential drug feature and acceptable drug release for further investigations.
Collapse
Affiliation(s)
- Mohammadreza Mohammadreza
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Equally Contributed as First Author
| | - Pariya Iraji
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Equally Contributed as First Author
| | - Zahra Mahmoudi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Akhgari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Emerging approaches of wound healing in experimental models of high-grade oral mucositis induced by anticancer therapy. Oncotarget 2021; 12:2283-2299. [PMID: 34733419 PMCID: PMC8555685 DOI: 10.18632/oncotarget.28091] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 01/22/2023] Open
Abstract
Clinical guidelines for oral mucositis (OM) still consist in palliative care. Herein, we summarize cellular and molecular mechanisms of OM ulceration in response to chemical therapies in animal models. We discuss evidenced anti-inflammatory and anti-oxidant drugs which have not been ever used for OM, such as synthetic peptides as well as cell therapy with mesenchymal stem cells; amniotic membranes, mucoadhesive polymers loaded with anti-inflammatory agents and natural or synthetic electrospun. These approaches have been promising to allow the production of drug-loaded membranes, scaffolds for cells encapsulation or guided tissue regeneration.
Collapse
|
27
|
Malekpour Z, Akbari V, Varshosaz J, Taheri A. Preparation and characterization of poly (lactic-co-glycolic acid) nanofibers containing simvastatin coated with hyaluronic acid for using in periodontal tissue engineering. Biotechnol Prog 2021; 37:e3195. [PMID: 34296538 DOI: 10.1002/btpr.3195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/04/2021] [Accepted: 07/18/2021] [Indexed: 01/02/2023]
Abstract
Periodontal diseases can lead to soft tissue defects. Tissue engineering can provide functional replacements for damaged tissues. Recently, electrospun nanofibers have attracted great interest for tissue engineering and drug delivery applications. This has been revealed that statins exhibit positive impacts on the proliferation and regeneration of periodontal tissues. Electrospun simvastatin loaded poly (lactic-co-glycolic acid) (SIM-PLGA-NF) were prepared using electrospinning technique. Optimal conditions for preparation of SIM-PLGA-NF (PLGA concentration of 30 wt%, voltage of 15 kV, and flow rate of 1.5 ml h-1 ) were identified using a 23 factorial design. The optimized SIM-PLGA-NFs (diameter of 640.2 ± 32.5 nm and simvastatin entrapment efficacy of 99.6 ± 1.5%) were surface modified with 1% w/v hyaluronic acid solution (1%HA- SIM-PLGA-NF) to improve their compatibility with fibroblasts and potential application as a periodontal tissue engineering scaffold. HA-SIM-PLGA NFs were analyzed using SEM, FTIR, and XRD. 1%HA-SIM-PLGA-NF had uniform, bead-free and interwoven morphology, which is similar to the extracellular matrix. The mechanical performance of SIM-PLGA-NFs and release profile of simvastatin from these nanofibers have been also greatly improved after coating with HA. In vitro cellular tests showed that the proliferation, adhesion, and differentiation of fibroblast cells positively enhanced on the surface of 1%HA- SIM-PLGA-NF. These results demonstrate the potential application of 1%HA-SIM-PLGA-NFs as a scaffold for periodontal tissue engineering.
Collapse
Affiliation(s)
- Zahra Malekpour
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Research Center, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azade Taheri
- Novel Drug Delivery Systems Research Center, Department of Pharmaceutics, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
28
|
Phadke A, Amin P. A Recent Update on Drug Delivery Systems for Pain Management. J Pain Palliat Care Pharmacother 2021; 35:175-214. [PMID: 34157247 DOI: 10.1080/15360288.2021.1925386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pain remains a global health challenge affecting approximately 1.5 billion people worldwide. Pain has been an implicit variable in the equation of human life for many centuries considering different types and the magnitude of pain. Therefore, developing an efficacious drug delivery system for pain management remains an open challenge for researchers in the field of medicine. Lack of therapeutic efficacy still persists, despite high throughput studies in the field of pain management. Research scientists have been exploiting different alternatives to curb the adverse side effects of pain medications or attempting a more substantial approach to minimize the prevalence of pain. Various drug delivery systems have been developed such as nanoparticles, microparticles to curb adverse side effects of pain medications or minimize the prevalence of pain. This literature review firstly provides a brief introduction of pain as a sensation and its pharmacological interventions. Second, it highlights the most recent studies in the pharmaceutical field for pain management and serves as a strong base for future developments. Herein, we have classified drug delivery systems based on their sizes such as nano, micro, and macro systems, and for each of the reviewed systems, design, formulation strategies, and drug release performance has been discussed.
Collapse
|
29
|
A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int J Biol Macromol 2021; 183:790-810. [PMID: 33965480 DOI: 10.1016/j.ijbiomac.2021.05.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/24/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Abstract
In recent years, the incidence of cancer is increasing every day due to poor quality of life (industrialization of life). Therefore, the treatment of cancer has received much attention from therapists. So far, many anticancer drugs have been used to treat cancer patents. However, the direct use of the anticancer drugs has the adverse side effects for patents and several limitations to treat process. Natural chitosan nanofibers prepared by electrospinning method have unique properties such as high surface area, high porosity, suitable mechanical properties, nontoxicity, biocompatibility, biodegradability, biorenewable, low immunogenicity, better clinical functionality, analogue to extracellular model, and easy production in large scale. Therefore, this bio-polymer is a very suitable case to deliver of the anti-cancer drugs to treat cancer patents. In this review summarizes the electrospinning synthesis of chitosan and its therapeutic application for the various cancer treatment.
Collapse
|
30
|
Abstract
The field of nanomedicine continues to grow with new technologies and formulations in development for several disease states. Much research focuses on the use of injectable nanomedicines for treatment of neoplasms; however, there are several formulations in development that use nanotechnology that can be administered enterally for noncancer indications. These nanomedicine treatments have been developed for systemic drug delivery or local drug delivery along the gastrointestinal tract. This Review gives a brief overview of the alimentary canal and highlights new research in nanomedicine in noncancer disease states delivered via enteral routes of administration. Relevant recent research is summarized on the basis of the targeted site of action or absorption, including the buccal, sublingual, stomach, small intestine, and large intestine areas of the alimentary canal. The benefits of nanodrug delivery are discussed as well as barriers and challenges for future development in the field.
Collapse
Affiliation(s)
- Brianna Cote
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| | - Deepa Rao
- School of Pharmacy, Pacific University, 222 SE 8th Avenue, Suite 451, Hillsboro, Oregon 97123, United States
| | - Adam W G Alani
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Biomedical Engineering Department, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States.,Knight Cancer Institute, Oregon Health & Science University, 2730 S. Moody Avenue, RLSB, Portland, Oregon 97201, United States
| |
Collapse
|
31
|
Andriotis EG, Chachlioutaki K, Monou PK, Bouropoulos N, Tzetzis D, Barmpalexis P, Chang MW, Ahmad Z, Fatouros DG. Development of Water-Soluble Electrospun Fibers for the Oral Delivery of Cannabinoids. AAPS PharmSciTech 2021; 22:23. [PMID: 33400042 DOI: 10.1208/s12249-020-01895-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are two active pharmaceutical ingredients, derived from cannabis plant. In the present study, CBD and CBG were formulated with polyvinyl(pyrrolidone) (PVP) and Eudragit L-100, using electrohydrodynamic atomization (electrospinning). The produced fibers were smooth and uniform in shape, with average fiber diameters in the range of 700-900 nm for PVP fibers and 1-5 μm for Eudragit L-100 fibers. The encapsulation efficiency for both CB and CBG was high (over 90%) for all formulations tested. Both in vitro release and disintegration tests of the formulations in simulated gastric fluids (SGF) and simulated intestinal fluids (SIF) indicated the rapid disintegration and dissolution of the fibers and the subsequent rapid release of the drugs. The study concluded that the electrospinning process is a fast and efficient method to produce drug-loaded fibers suitable for the per os administration of cannabinoids.
Collapse
|
32
|
Darwesh AY, El-Dahhan MS, Meshali MM. New Oral Coaxial Nanofibers for Gadodiamide-Prospective Intestinal Magnetic Resonance Imaging and Theranostic. Int J Nanomedicine 2020; 15:8933-8943. [PMID: 33223828 PMCID: PMC7671466 DOI: 10.2147/ijn.s281158] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Gadodiamide (GDD) is a widely used magnetic resonance imaging (MRI) contrast agent. It is available only as intravenous injection. Unfortunately, it exhibits a high renal toxicity. In this respect, the author investigated the possibility of developing nanofibers (NFs, one-dimensional (1D) nanostructures) of GDD that would be promising for oral administration in intestinal imaging. NFs are prepared by electrospinning technique in which a strong electrostatic field is applied on a polymer solution. METHODS NFs were prepared by coaxial electrospinning technique using Eudragit S100 (ES 100) as a shell layer and GDD loaded with polyvinylpyrrolidone K90 (PVP K90) and hydroxypropyl-beta-cyclodextrin (HP-β-CyD) as core fibers. Compatibility study of the NFs ingredients was attested through ATR and DSC investigations. Thermogravimetric analysis of NFs was done to insure its stability. In vitro release of GDD in the intestinal medium with different pH values was measured. In vitro cytotoxicity test was done to prove its safety. Additionally, stability of NFs to perform its function was examined by X-ray. RESULTS NFs experienced high entrapment efficiency of about 94.3% ± 3.1%. The ingredients of NFs were compatible through FT-IR and DSC study. The in vitro release data of GDD from coaxial NFs were slow (˂14%) in pH 1.2 till 2 h, while at pH 7.4 it showed burst release of about 12% in the first 2 min. Thermogravimetric analysis proved the NFs are stable. The in vitro cytotoxicity study proved the safety of NFs. Using mammography, the coaxial NFs behaved the same as GDD plain indicating its ability to be a contrasting agent. CONCLUSION Coaxial NFs of GDD as a core with PVP K90 and HP-β-CyD and ES 100 as a shell were stable and efficient as oral imaging dosage form for the intestine. It might be a prospective theranostic.
Collapse
Affiliation(s)
- Alaa Yaser Darwesh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | - Marwa Salah El-Dahhan
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura35516, Egypt
| | | |
Collapse
|
33
|
Chi Z, Zhao S, Feng Y, Yang L. On-line dissolution analysis of multiple drugs encapsulated in electrospun nanofibers. Int J Pharm 2020; 588:119800. [PMID: 32828974 DOI: 10.1016/j.ijpharm.2020.119800] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/20/2022]
Abstract
Electrospun nanofiber is a very attractive material which can be used as the support to form multiple-drug dosage. Understanding the dissolution process of different active drug ingredients released from electrospun fibers is of great importance to control and evaluate the quality of medicated nanofibers. Here we present the first study of on-line automatic analysis of dissolution of multiple drugs in electrospun fiber mats. Single-needle electrospinning technology is utilized to combine polymers, hydrophilic polyvinylpyrrolidone (PVP) and hydrophobic polycaprolactone (PCL) as carrier to load three poorly water-soluble non-steroidal anti-inflammatory drugs (paracetamol, nimesulide, and ibuprofen). The loading of the drugs in PVP/PCL electrospun fibers are characterized by various techniques, including scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy and differential scanning calorimetry. The in vitro dissolution is investigated by our home-made portable analyzer, which can simultaneously on-line determine multiple drugs released from the nanofibers by a single step. The analysis shows a wide linear detection range of the drugs with limit-of-detection (LOD) down to μg/mL-level. The dissolution profiles of three ingredients in nanofibers can be monitored every thirty seconds from the beginning to the end in the entire dissolution process from only one HSCE run. The kinetic information of the dissolution, including the dissolution curve, characteristic dissolution time and dissolution efficiency, is obtained and evaluated for different dissolution media, drug loading content and the ratio of PVP/PCL. Our study provides a promising method for rapid and accurate dissolution testing of nanofiber-based drugs, and would extend the applications of separation techniques in pharmaceutical analysis.
Collapse
Affiliation(s)
- Zhongmei Chi
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Siqi Zhao
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China
| | - Yunxiang Feng
- Jingke-Oude Science and Education Instruments Co., Ltd., Changchun, Jilin Province 130024, China
| | - Li Yang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Department of Chemistry, Northeast Normal University, 5268 Renmin Street, Changchun, Jilin Province 130024, China.
| |
Collapse
|
34
|
Vancomycin-functionalized Eudragit-based nanofibers: Tunable drug release and wound healing efficacy. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101812] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Eleftheriadis GK, Monou PK, Bouropoulos N, Boetker J, Rantanen J, Jacobsen J, Vizirianakis IS, Fatouros DG. Fabrication of Mucoadhesive Buccal Films for Local Administration of Ketoprofen and Lidocaine Hydrochloride by Combining Fused Deposition Modeling and Inkjet Printing. J Pharm Sci 2020; 109:2757-2766. [PMID: 32497597 DOI: 10.1016/j.xphs.2020.05.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 12/17/2022]
Abstract
In the area of developing oromucosal drug delivery systems, mucoadhesive buccal films are the most promising formulations for either systemic or local drug delivery. The current study presents the fabrication of buccal films, by combining fused deposition modeling (FDM) and inkjet printing. Hydroxypropyl methylcellulose-based films were fabricated via FDM, containing the non-steroidal anti-inflammatory drug ketoprofen. Unidirectional release properties were achieved, by incorporating an ethyl cellulose-based backing layer. The local anesthetic lidocaine hydrochloride, combined with the permeation enhancer l-menthol, was deposited onto the film by inkjet printing. Physicochemical analysis showed alterations in the characteristics of the films, and the mucoadhesive and mechanical properties were effectively modified, due to the ink deposition on the substrates. The in vitro release data of the active pharmaceutical compounds, as well as the permeation profiles across ex vivo porcine buccal mucosa and filter-grown TR146 cells of human buccal origin, were associated with the presence of the permeation enhancer and the backing layer. The lack of any toxicity of the fabricated films was demonstrated by the MTT viability assay. This proof-of-concept study provides an alternative formulation approach of mucoadhesive buccal films, intended for the treatment of local oromucosal diseases or systemic drug delivery.
Collapse
Affiliation(s)
- Georgios K Eleftheriadis
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paraskevi Kyriaki Monou
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Rio, Patras, Greece; Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Johan Boetker
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Jette Jacobsen
- Department of Pharmacy, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Ioannis S Vizirianakis
- Laboratory of Pharmacology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios G Fatouros
- Laboratory of Pharmaceutical Technology, Department of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
36
|
Jain SK, Jain AK, Rajpoot K. Expedition of Eudragit® Polymers in the Development of Novel Drug Delivery Systems. Curr Drug Deliv 2020; 17:448-469. [PMID: 32394836 DOI: 10.2174/1567201817666200512093639] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/10/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Eudragit® polymer has been widely used in film-coating for enhancing the quality of products over other materials (e.g., shellac or sugar). Eudragit® polymers are obtained synthetically from the esters of acrylic and methacrylic acid. For the last few years, they have shown immense potential in the formulations of conventional, pH-triggered, and novel drug delivery systems for incorporating a vast range of therapeutics including proteins, vitamins, hormones, vaccines, and genes. Different grades of Eudragit® have been used for designing and delivery of therapeutics at a specific site via the oral route, for instance, in stomach-specific delivery, intestinal delivery, colon-specific delivery, mucosal delivery. Further, these polymers have also shown their great aptitude in topical and ophthalmic delivery. Moreover, available literature evidences the promises of distinct Eudragit® polymers for efficient targeting of incorporated drugs to the site of interest. This review summarizes some potential researches that are being conducted by eminent scientists utilizing the distinct grades of Eudragit® polymers for efficient delivery of therapeutics at various sites of interest.
Collapse
Affiliation(s)
- Sunil Kumar Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Akhlesh K Jain
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| | - Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur (C.G.) 495 009, India
| |
Collapse
|
37
|
Self-inflating floating nanofiber membranes for controlled drug delivery. Int J Pharm 2020; 579:119164. [DOI: 10.1016/j.ijpharm.2020.119164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 12/19/2022]
|
38
|
Al-Taie A, Al-Shohani AD, Albasry Z, Altaee A. Current topical trends and novel therapeutic approaches and delivery systems for oral mucositis management. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2020; 12:94-101. [PMID: 32742107 PMCID: PMC7373116 DOI: 10.4103/jpbs.jpbs_198_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 11/12/2022] Open
Abstract
Oral mucositis (OM) is an extremely serious and challenging complication of chemoradiotherapy, which may limit the efficacy of cancer treatment. Complications related to OM include potential nutrition impairment, high economic burden, and negative impacts on patients' quality of life. Current therapeutic options with local traditional pharmaceutical formulations are largely focused on controlling symptoms, and only few agents are available for treatment. Several local supportive and palliative agents are used for the prevention of OM; however, a standard treatment for the disease has not been confirmed yet. The efficacy of treatment could be improved through the introduction of new medical agents with updated dosage forms that can enhance and optimize local drug delivery and create greater therapeutic effects with fewer side effects. The focus of this review was to provide clear and direct information about the currently available topical therapeutic agents in clinical practice used to cure and/or reduce the incidence of ulcerative symptoms of OM, excluding the associated pain and other coexisting complications such as bacterial and fungal infections. The review also provides recent evidences regarding agents that could be used as promising novel therapies in updated local delivering systems. This will support further encouraging options and approaches for the management of OM and will improve compliance that could be translated in better disease control and survival.
Collapse
Affiliation(s)
- Anmar Al-Taie
- Pharmacy Department, Faculty of Pharmacy, Girne American University, North Cyprus, Turkey
| | - Athmar D Al-Shohani
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Zahraa Albasry
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Ataa Altaee
- Department of Clinical Pharmacy, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
39
|
Physico-Chemically Distinct Nanomaterials Synthesized from Derivates of a Poly(Anhydride) Diversify the Spectrum of Loadable Antibiotics. NANOMATERIALS 2020; 10:nano10030486. [PMID: 32182677 PMCID: PMC7153258 DOI: 10.3390/nano10030486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022]
Abstract
Recent advances in the field of nanotechnology such as nanoencapsulation offer new biomedical applications, potentially increasing the scope and efficacy of therapeutic drug delivery. In addition, the discovery and development of novel biocompatible polymers increases the versatility of these encapsulating nanostructures, enabling chemical properties of the cargo and vehicle to be adapted to specific physiological requirements. Here, we evaluate the capacity of various polymeric nanostructures to encapsulate various antibiotics of different classes, with differing chemical structure. Polymers were sourced from two separate derivatives of poly(methyl vinyl ether-alt-maleic anhydride) (PMVE/MA): an acid (PMVE/MA-Ac) and a monoethyl ester (PMVE/MA-Es). Nanoencapsulation of antibiotics was attempted through electrospinning, and nanoparticle synthesis through solvent displacement, for both polymers. Solvent incompatibilities prevented the nanoencapsulation of amikacin, neomycin and ciprofloxacin in PMVE/MA-Es nanofibers. However, all compounds were successfully loaded into PMVE/MA-Es nanoparticles. Encapsulation efficiencies in nanofibers reached approximately 100% in all compatible systems; however, efficiencies varied substantially in nanoparticles systems, depending on the tested compound (14%-69%). Finally, it was confirmed that both these encapsulation processes did not alter the antimicrobial activity of any tested antibiotic against Staphylococcus aureus and Escherichia coli, supporting the viability of these approaches for nanoscale delivery of antibiotics.
Collapse
|
40
|
Sofi HS, Abdal-Hay A, Ivanovski S, Zhang YS, Sheikh FA. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110756. [PMID: 32279775 DOI: 10.1016/j.msec.2020.110756] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/04/2019] [Accepted: 02/15/2020] [Indexed: 12/26/2022]
Abstract
Transmucosal surfaces bypass many limitations associated with conventional drug delivery (oral and parenteral routes), such as poor absorption rate, enzymatic activity, acidic environment and first-pass metabolism occurring inside the liver. However, these surfaces have several disadvantages such as poor retention time, narrow absorption window and continuous washout of the drug by the surrounding fluids. Electrospun nanofibers with their unique surface properties and encapsulation efficiency may act as novel drug carriers to overcome the challenges associated with conventional drug delivery routes, so as to achieve desired therapeutic responses. This review article provides detailed information regarding the challenges faced in the mucosal delivery of drugs, and the use of nanofiber systems as an alternative to deliver drugs to the systemic circulation, as well as local drug administration. The physiological and anatomical features of different types of mucosal surfaces and current challenges are systematically discussed. We also address future considerations in the area of transmucosal delivery of some important drugs.
Collapse
Affiliation(s)
- Hasham S Sofi
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India
| | - Abdalla Abdal-Hay
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia; Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Saso Ivanovski
- The University of Queensland, School of Dentistry, Oral Health Centre Herston, 288 Herston Road, Herston QLD 4006, Australia
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Faheem A Sheikh
- Department of Nanotechnology, University of Kashmir, Hazratbal, Srinagar 190006, Jammu and Kashmir, India.
| |
Collapse
|
41
|
Tran PH, Duan W, Tran TT. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571:118697. [DOI: 10.1016/j.ijpharm.2019.118697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/13/2019] [Accepted: 09/13/2019] [Indexed: 12/23/2022]
|
42
|
Wei L, Wu S, Shi W, Aldrich AL, Kielian T, Carlson MA, Sun R, Qin X, Duan B. Large-Scale and Rapid Preparation of Nanofibrous Meshes and Their Application for Drug-Loaded Multilayer Mucoadhesive Patch Fabrication for Mouth Ulcer Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28740-28751. [PMID: 31334627 PMCID: PMC7082812 DOI: 10.1021/acsami.9b10379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Electrospinning provides a simple and convenient method to fabricate nanofibrous meshes. However, the nanofiber productivity is often limited to the laboratory scale, which cannot satisfy the requirements of practical application. In this study, we developed a novel needleless electrospinning spinneret based on a double-ring slit to fabricate drug-loaded nanofibrous meshes. In contrast to the conventional single-needle electrospinning spinneret, our needless spinneret can significantly improve nanofiber productivity due to the simultaneous formation of multiple jets during electrospinning. Curcumin-loaded poly(l-lactic acid) (PLLA) nanofiber meshes with various concentrations and on the large scale were manufactured by employing our developed needleless spinneret-based electrospinning device. We systematically investigated the drug release behaviors, antioxidant properties, anti-inflammatory attributes, and cytotoxicity of the curcumin-loaded PLLA nanofibrous meshes. Furthermore, a bilayer nanofibrous composite mesh was successfully generated by electrospinning curcumin-loaded PLLA solution and diclofenac sodium loaded poly(ethylene oxide) solution in a predetermined time sequence, which revealed potent antibacterial properties. Subsequently, novel mucoadhesive patches were assembled by combining the bilayer composite nanofibrous meshes with (hydroxypropyl)methyl cellulose based mucoadhesive film. The multilayered mucoadhesive patch has excellent adhesion properties on the porcine buccal mucosa. Overall, our double-ring slit spinneret can provide a novel method to rapidly produce large-scale drug-loaded nanofibrous meshes to fabricate mucoadhesive patches. The multiple-layered mucoadhesive patches enable the incorporation of multiple drugs with different targets of action, such as analgesic, anti-inflammatory, and antimicrobial compounds, for mouth ulcer or other oral disease treatments.
Collapse
Affiliation(s)
- Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Amy L. Aldrich
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Mark A. Carlson
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, P. R. China
| | - Xiaohong Qin
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, P. R. China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program; Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Surgery, VA Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68516, USA
| |
Collapse
|
43
|
Abid S, Hussain T, Nazir A, Zahir A, Ramakrishna S, Hameed M, Khenoussi N. Enhanced antibacterial activity of PEO-chitosan nanofibers with potential application in burn infection management. Int J Biol Macromol 2019; 135:1222-1236. [DOI: 10.1016/j.ijbiomac.2019.06.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/24/2019] [Accepted: 06/03/2019] [Indexed: 12/21/2022]
|
44
|
Eskitoros-Togay ŞM, Bulbul YE, Tort S, Demirtaş Korkmaz F, Acartürk F, Dilsiz N. Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system. Int J Pharm 2019; 565:83-94. [PMID: 31063838 DOI: 10.1016/j.ijpharm.2019.04.073] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/13/2019] [Accepted: 04/26/2019] [Indexed: 12/27/2022]
Abstract
Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release. In this case, the biodegradable and biocompatible synthetic polymers, poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO), were blended with different ratios for the production of DOXH-loaded electrospun PCL/PEO membranes using electrospinning technique, which is a novel attempt. The fabricated membranes were subsequently characterized to optimize the blending ratio of polymers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and water contact angle analysis. After the characterization studies, different amounts of DOXH were loaded to the optimized blend of PCL and PEO to investigate the release of DOXH from the membrane used as a drug delivery vehicle. In vitro drug release studies were performed, and in vitro drug release kinetics were assessed to confirm the usage of these nanofiber materials as efficient drug delivery vehicles. The results indicated that 3.5% DOXH-loaded (75:25 w/w) PCL/PEO is the most acceptable membrane to provide prolonged release rather than immediate release of DOXH.
Collapse
Affiliation(s)
- Ş Melda Eskitoros-Togay
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Y Emre Bulbul
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Funda Demirtaş Korkmaz
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey; Department of Medical Biology, Faculty of Medicine, Giresun University, 28100 Giresun, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey
| | - Nursel Dilsiz
- Department of Chemical Engineering, Institute for Graduate School of Natural and Applied Sciences, Gazi University, 06560 Ankara, Turkey; Department of Chemical Engineering, Faculty of Engineering, Gazi University, 06570 Ankara, Turkey.
| |
Collapse
|
45
|
|
46
|
Shahriar SMS, Mondal J, Hasan MN, Revuri V, Lee DY, Lee YK. Electrospinning Nanofibers for Therapeutics Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E532. [PMID: 30987129 PMCID: PMC6523943 DOI: 10.3390/nano9040532] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/22/2019] [Indexed: 12/19/2022]
Abstract
The limitations of conventional therapeutic drugs necessitate the importance of developing novel therapeutics to treat diverse diseases. Conventional drugs have poor blood circulation time and are not stable or compatible with the biological system. Nanomaterials, with their exceptional structural properties, have gained significance as promising materials for the development of novel therapeutics. Nanofibers with unique physiochemical and biological properties have gained significant attention in the field of health care and biomedical research. The choice of a wide variety of materials for nanofiber fabrication, along with the release of therapeutic payload in sustained and controlled release patterns, make nanofibers an ideal material for drug delivery research. Electrospinning is the conventional method for fabricating nanofibers with different morphologies and is often used for the mass production of nanofibers. This review highlights the recent advancements in the use of nanofibers for the delivery of therapeutic drugs, nucleic acids and growth factors. A detailed mechanism for fabricating different types of nanofiber produced from electrospinning, and factors influencing nanofiber generation, are discussed. The insights from this review can provide a thorough understanding of the precise selection of materials used for fabricating nanofibers for specific therapeutic applications and also the importance of nanofibers for drug delivery applications.
Collapse
Affiliation(s)
- S M Shatil Shahriar
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Jagannath Mondal
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Mohammad Nazmul Hasan
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Vishnu Revuri
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, and BK21 PLUS Future Biopharmaceutical Human Resources Training and Research Team, and Institute of Nano Science & Technology (INST), Hanyang University, Seoul 04763, Korea.
| | - Yong-Kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju 27469, Korea.
- Department of Green Bio Engineering, Korea National University of Transportation, Chungju 27469, Korea.
| |
Collapse
|
47
|
Development and characterization of methylprednisolone loaded delayed release nanofibers. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Martínez-Ortega L, Mira A, Fernandez-Carvajal A, Mateo CR, Mallavia R, Falco A. Development of A New Delivery System Based on Drug-Loadable Electrospun Nanofibers for Psoriasis Treatment. Pharmaceutics 2019; 11:E14. [PMID: 30621136 PMCID: PMC6359116 DOI: 10.3390/pharmaceutics11010014] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/19/2018] [Accepted: 12/23/2018] [Indexed: 02/06/2023] Open
Abstract
Psoriasis is a chronic autoimmune systemic disease with an approximate incidence of 2% worldwide; it is commonly characterized by squamous lesions on the skin that present the typical pain, stinging, and bleeding associated with an inflammatory response. In this work, poly(methyl vinyl ether-alt-maleic ethyl monoester) (PMVEMA-ES) nanofibers have been designed as a delivery vehicle for three therapeutic agents with palliative properties for the symptoms of this disease (salicylic acid, methyl salicylate, and capsaicin). For such a task, the production of these nanofibers by means of the electrospinning technique has been optimized. Their morphology and size have been characterized by optical microscopy and scanning electron microscopy (SEM). By selecting the optimal conditions to achieve the smallest and most uniform nanofibers, approximate diameters of up to 800⁻900 nm were obtained. It was also determined that the therapeutic agents that were used were encapsulated with high efficiency. The analysis of their stability over time by GC-MS showed no significant losses of the encapsulated compounds 15 days after their preparation, except in the case of methyl salicylate. Likewise, it was demonstrated that the therapeutic compounds that were encapsulated conserved, and even improved, their capacity to activate the transient receptor potential cation channel 1 (TRPV1) channel, which has been associated with the formation of psoriatic lesions.
Collapse
Affiliation(s)
- Leticia Martínez-Ortega
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Amalia Mira
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Asia Fernandez-Carvajal
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - C Reyes Mateo
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Ricardo Mallavia
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| | - Alberto Falco
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cellular Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Elche, Spain.
| |
Collapse
|
49
|
Patel G, Yadav BKN. Formulation, Characterization and In vitro Cytotoxicity of 5-Fluorouracil Loaded Polymeric Electrospun Nanofibers for the Treatment of Skin Cancer. RECENT PATENTS ON NANOTECHNOLOGY 2019; 13:114-128. [PMID: 30868972 DOI: 10.2174/1872210513666190314095643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 10/12/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The purpose of this study was to formulate, characterize and conduct in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer. The patents on electrospun nanofibers (US9393216B2), (US14146252), (WO2015003155A1) etc. helped in the selection of polymers and method for the preparation of nanofibers. METHODS In the present study, the fabrication of nanofibers was done using a blend of chitosan with polyvinyl alcohol and processed using the electrospinning technique. 5-fluorouracil with known chemotherapeutic potential in the treatment of skin cancer was used as a drug carrier. 24-1 fractional factorial screening design was employed to study the effect of independent variables like the concentration of the polymeric solution, applied voltage (kV), distance (cm), flow rate (ml / hr) on dependent variables like % entrapment efficiency and fiber diameter. RESULTS Scanning electron microscopy was used to characterize fiber diameter and morphology. Results showed that the fiber diameter of all batches was found in the range of 100-200 nm. The optimized batch results showed the fiber diameter of 162.7 nm with uniform fibers. The tensile strength obtained was 190±37 Mpa. Further in vitro and ex vivo drug release profile suggested a controlled release mechanism for an extended period of 24 hr. The 5-fluorouracil loaded electrospun nanofibers were found to decrease cell viability up to ≥50% over 24 hr, with the number of cells dropping by ~ 10% over 48 hr. As the cell viability was affected by the release of 5-fluorouracil, we believe that electrospun nanofibers are a promising drug delivery system for the treatment of Basal Cell Carcinoma (BCC) skin cancer. CONCLUSION These results demonstrate the possibility of delivering 5-Fluorouracil loaded electrospun nanofiber to skin with enhanced encapsulation efficiency indicating the effectiveness of the formulation for the treatment of basal cell carcinoma type of skin cancer.
Collapse
Affiliation(s)
- Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science Technology, Changa, Anand, Gujarat, India
| | - Bindu K N Yadav
- Ramanbhai Patel College of Pharmacy, Charotar University of Science Technology, Changa, Anand, Gujarat, India
| |
Collapse
|
50
|
Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2018; 11:E5. [PMID: 30586852 PMCID: PMC6358861 DOI: 10.3390/pharmaceutics11010005] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
The electrospinning process has gained popularity due to its ease of use, simplicity and diverse applications. The properties of electrospun fibers can be controlled by modifying either process variables (e.g., applied voltage, solution flow rate, and distance between charged capillary and collector) or polymeric solution properties (e.g., concentration, molecular weight, viscosity, surface tension, solvent volatility, conductivity, and surface charge density). However, many variables affecting electrospinning are interdependent. An optimized electrospinning process is one in which these parameters remain constant and continuously produce nanofibers consistent in physicochemical properties. In addition, nozzle configurations, such as single nozzle, coaxial, multi-jet electrospinning, have an impact on the fiber characteristics. The polymeric solution could be aqueous, a polymeric melt or an emulsion, which in turn leads to different types of nanofiber formation. Nanofiber properties can also be modified by polarity inversion and by varying the collector design. The active moiety is incorporated into polymeric fibers by blending, surface modification or emulsion formation. The nanofibers can be further modified to deliver multiple drugs, and multilayer polymer coating allows sustained release of the incorporated active moiety. Electrospun nanofibers prepared from polymers are used to deliver antibiotic and anticancer agents, DNA, RNA, proteins and growth factors. This review provides a compilation of studies involving the use of electrospun fibers in biomedical applications with emphasis on nanoparticle-impregnated nanofibers.
Collapse
Affiliation(s)
- Rajan Sharma Bhattarai
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Rinda Devi Bachu
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 2758, UAE.
| | - Sarit Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43614, USA.
- Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|