1
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
2
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
3
|
Singh D, Irham LM, Singh A, Kurmi BD. Guanidinium-based Integrated Peptide Dendrimers: Pioneer Nanocarrier in Cancer Therapy. Protein Pept Lett 2024; 31:261-274. [PMID: 38629378 DOI: 10.2174/0109298665292042240325052536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 08/13/2024]
Abstract
The landscape of cancer therapy has witnessed a paradigm shift with the emergence of innovative delivery systems, and Guanidinium-based Peptide Dendrimers have emerged as a vanguard in this transformative journey. With their unique molecular architecture and intrinsic biocompatibility, these dendrimers offer a promising avenue for the targeted delivery of therapeutic cargo in cancer treatment. This comprehensive review delves into the intricate world of Guanidinium- based Peptide Dendrimers, unraveling their structural intricacies, mechanisms of action, and advancements that have propelled them from laboratory curiosities to potential clinical champions. Exploiting the potent properties of guanidinium, these dendrimers exhibit unparalleled precision in encapsulating and transporting diverse cargo molecules, ranging from conventional chemotherapeutics to cutting-edge nucleic acids. The review navigates the depths of their design principles, investigating their prowess in traversing the complex terrain of cellular barriers for optimal cargo delivery. Moreover, it delves into emerging trends, such as personalized therapeutic approaches, multimodal imaging, and bioinformatics-driven design, highlighting their potential to redefine the future of cancer therapy. Crucially, the review addresses the pivotal concerns of biocompatibility and safety, examining cytotoxicity profiles, immune responses, and in vivo studies. It underscores the importance of aligning scientific marvels with the stringent demands of clinical applications. Through each section, the narrative underscores the promises and possibilities that Guanidinium-based Peptide Dendrimers hold and how they can potentially reshape the landscape of precision cancer therapy.
Collapse
Affiliation(s)
- Dilpreet Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan (140413), India
| | | | - Amrinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
4
|
Gholami L, Ivari JR, Nasab NK, Oskuee RK, Sathyapalan T, Sahebkar A. Recent Advances in Lung Cancer Therapy Based on Nanomaterials: A Review. Curr Med Chem 2023; 30:335-355. [PMID: 34375182 DOI: 10.2174/0929867328666210810160901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
Lung cancer is one of the commonest cancers with a significant mortality rate for both genders, particularly in men. Lung cancer is recognized as one of the leading causes of death worldwide, which threatens the lives of over 1.6 million people every day. Although cancer is the leading cause of death in industrialized countries, conventional anticancer medications are unlikely to increase patients' life expectancy and quality of life significantly. In recent years, there are significant advances in the development and applications of nanotechnology in cancer treatment. The superiority of nanostructured approaches is that they act more selectively than traditional agents. This progress led to the development of a novel field of cancer treatment known as nanomedicine. Various formulations based on nanocarriers, including lipids, polymers, liposomes, nanoparticles and dendrimers have opened new horizons in lung cancer therapy. The application and expansion of nano-agents lead to an exciting and challenging research era in pharmaceutical science, especially for the delivery of emerging anti-cancer agents. The objective of this review is to discuss the recent advances in three types of nanoparticle formulations for lung cancer treatments modalities, including liposomes, polymeric micelles, and dendrimers for efficient drug delivery. Afterward, we have summarized the promising clinical data on nanomaterials based therapeutic approaches in ongoing clinical studies.
Collapse
Affiliation(s)
- Leila Gholami
- Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Rouhani Ivari
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Khandan Nasab
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, United Kingdom of Great Britain and Northern Ireland
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Rastogi V, Yadav P, Porwal M, Sur S, Verma A. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: a fundamental to advanced systematic review. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2158334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Vaibhav Rastogi
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Pragya Yadav
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Noida, India
| | - Mayur Porwal
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | - Souvik Sur
- Research and Development Center, Teerthanker Mahaveer University, Moradabad, India
| | - Anurag Verma
- Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| |
Collapse
|
6
|
Radhakrishnan D, Mohanan S, Choi G, Choy JH, Tiburcius S, Trinh HT, Bolan S, Verrills N, Tanwar P, Karakoti A, Vinu A. The emergence of nanoporous materials in lung cancer therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:225-274. [PMID: 35875329 PMCID: PMC9307116 DOI: 10.1080/14686996.2022.2052181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
Lung cancer is one of the most common cancers, affecting more than 2.1 million people across the globe every year. A very high occurrence and mortality rate of lung cancer have prompted active research in this area with both conventional and novel forms of therapies including the use of nanomaterials based drug delivery agents. Specifically, the unique physico-chemical and biological properties of porous nanomaterials have gained significant momentum as drug delivery agents for delivering a combination of drugs or merging diagnosis with targeted therapy for cancer treatment. This review focuses on the emergence of nano-porous materials for drug delivery in lung cancer. The review analyses the currently used nanoporous materials, including inorganic, organic and hybrid porous materials for delivering drugs for various types of therapies, including chemo, radio and phototherapy. It also analyses the selected research on stimuli-responsive nanoporous materials for drug delivery in lung cancer before summarizing the various findings and projecting the future of emerging trends. This review provides a strong foundation for the current status of the research on nanoporous materials, their limitations and the potential for improving their design to overcome the unique challenges of delivering drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Deepika Radhakrishnan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shan Mohanan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Goeun Choi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- College of Science and Technology, Dankook University, Cheonan31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan31116, Korea
| | - Jin-Ho Choy
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan31116, Republic of Korea
- Course, College of Medicine, Dankook UniversityDepartment of Pre-medical, Cheonan31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama226-8503, Japan
| | - Steffi Tiburcius
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Hoang Trung Trinh
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Shankar Bolan
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nikki Verrills
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Pradeep Tanwar
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellness, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
7
|
Carrasco-Esteban E, Domínguez-Rullán JA, Barrionuevo-Castillo P, Pelari-Mici L, Leaman O, Sastre-Gallego S, López-Campos F. Current role of nanoparticles in the treatment of lung cancer. J Clin Transl Res 2021; 7:140-155. [PMID: 34104817 PMCID: PMC8177846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/20/2020] [Accepted: 01/27/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Worldwide, lung cancer is one of the leading causes of cancer death. Nevertheless, new therapeutic agents have been developed to treat lung cancer that could change this mortality-rate. Interestingly, incredible advances have occurred in recent years in the development and application of nanotechnology in the detection, diagnosis, and treatment of lung cancer. AIM Nanoparticles (NPs) have the ability to incorporate multiple drugs and targeting agents and therefore lead to an improved bioavailability, sustained delivery, solubility, and intestinal absorption. RELEVANCE FOR PATIENTS This review briefly summarizes the latest innovations in therapeutic nanomedicine in lung cancer with examples on magnetic, lipid, and polymer NP. Emphasis will be placed on future studies and ongoing clinical trials in this field.
Collapse
Affiliation(s)
| | | | | | - Lira Pelari-Mici
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Olwen Leaman
- Department of Radiation Oncology, Hospital Universitario Gregorio Marañon, Madrid, Spain
| | - Sara Sastre-Gallego
- Department of Radiation Oncology, Hospital Universitario Rey Juan Carlos, Madrid, Spain
| | - Fernando López-Campos
- Department of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
8
|
Flores-Mejía R, Fragoso-Vázquez MJ, Pérez-Blas LG, Parra-Barrera A, Hernández-Castro SS, Estrada-Pérez AR, Rodrígues J, Lara-Padilla E, Ortiz-Morales A, Correa-Basurto J. Chemical characterization (LC-MS-ESI), cytotoxic activity and intracellular localization of PAMAM G4 in leukemia cells. Sci Rep 2021; 11:8210. [PMID: 33859258 PMCID: PMC8050087 DOI: 10.1038/s41598-021-87560-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/23/2021] [Indexed: 02/08/2023] Open
Abstract
Generation 4 of polyamidoamine dendrimer (G4-PAMAM) has several biological effects due to its tridimensional globular structure, repetitive branched amides, tertiary amines, and amino-terminal subunit groups liked to a common core. G4-PAMAM is cytotoxic due to its positive charges. However, its cytotoxicity could increase in cancer cells due to the excessive intracellular negative charges in these cells. Furthermore, this work reports G4-PAMAM chemical structural characterization using UHPLC-QTOF-MS/MS (LC-MS) by electrospray ionization to measure its population according to its positive charges. Additionally, the antiproliferative effects and intracellular localization were explored in the HMC-1 and K-562 cell lines by confocal microscopy. The LC-MS results show that G4-PAMAM generated multivalent mass spectrum values, and its protonated terminal amino groups produced numerous positive charges, which allowed us to determine its exact mass despite having a high molecular weight. Additionally, G4-PAMAM showed antiproliferative activity in the HMC-1 tumor cell line after 24 h (IC50 = 16.97 µM), 48 h (IC50 = 7.02 µM) and 72 h (IC50 = 5.98 µM) and in the K-562 cell line after 24 h (IC50 = 15.14 µM), 48 h (IC50 = 14.18 µM) and 72 h (IC50 = 9.91 µM). Finally, our results showed that the G4-PAMAM dendrimers were located in the cytoplasm and nucleus in both tumor cell lines studied.
Collapse
Affiliation(s)
- R Flores-Mejía
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - M J Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Ciudad de México, Mexico.
| | - L G Pérez-Blas
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - A Parra-Barrera
- Laboratorio de Medicina Regenerativa y Estudios del Cancer, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - S S Hernández-Castro
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - A R Estrada-Pérez
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico
| | - J Rodrígues
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal
- School of Materials Science and Engineering/Center for Nano Energy Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - E Lara-Padilla
- Laboratorio de Bioquímica de la Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - A Ortiz-Morales
- Laboratorio 103, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, CDMX, Mexico
| | - J Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, 11340, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Boyce JH, Dang B, Ary B, Edmondson Q, Craik CS, DeGrado WF, Seiple IB. Platform to Discover Protease-Activated Antibiotics and Application to Siderophore-Antibiotic Conjugates. J Am Chem Soc 2020; 142:21310-21321. [PMID: 33301681 DOI: 10.1021/jacs.0c06987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we present a platform for discovery of protease-activated prodrugs and apply it to antibiotics that target Gram-negative bacteria. Because cleavable linkers for prodrugs had not been developed for bacterial proteases, we used substrate phage to discover substrates for proteases found in the bacterial periplasm. Rather than focusing on a single protease, we used a periplasmic extract of E. coli to find sequences with the greatest susceptibility to the endogenous mixture of periplasmic proteases. Using a fluorescence assay, candidate sequences were evaluated to identify substrates that release native amine-containing payloads. We next designed conjugates consisting of (1) an N-terminal siderophore to facilitate uptake, (2) a protease-cleavable linker, and (3) an amine-containing antibiotic. Using this strategy, we converted daptomycin-which by itself is active only against Gram-positive bacteria-into an antibiotic capable of targeting Gram-negative Acinetobacter species. We similarly demonstrated siderophore-facilitated delivery of oxazolidinone and macrolide antibiotics into a number of Gram-negative species. These results illustrate this platform's utility for development of protease-activated prodrugs, including Trojan horse antibiotics.
Collapse
Affiliation(s)
- Jonathan H Boyce
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Bobo Dang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.,Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Beatrice Ary
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Quinn Edmondson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| | - Ian B Seiple
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158, United States.,Cardiovascular Research Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
10
|
Li G, Yin Q, Ji H, Wang Y, Liu H, Jiang L, Zhu F, Li B. A study on screening and antitumor effect of CD55-specific ligand peptide in cervical cancer cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3899-3912. [PMID: 30519000 PMCID: PMC6239109 DOI: 10.2147/dddt.s182337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background To improve the targeting ability of antitumor drugs, we identified the antigens with high expression on the surface of tumor cells associated with tumor escape, such as the complement regulatory protein CD55 molecule, which is also known as the decay accelerating factor. In this study, phage display technology was used to screen and identify CD55-specific ligand peptide (CD55sp) bound to CD55 molecule on the surface of cervical cancer HeLa cells. We then explored the role of this peptide in inhibiting the growth of cervical cancer cells in vitro. Our characterization of CD55sp will provide implication for tumor target therapy. Methods The phage bound to the surface of HeLa cells were isolated by phage display technology. Positive phage clones were identified by ELISA. Phage was then amplified and determined by agarose gel electrophoresis after monoclonal DNA extraction. DNA sequencing and bioinformatical analysis were conducted to obtain specific ligand peptides. Flow cytometry and immunofluorescence were used to measure the expression of CD55 molecule on the surface of tumor and normal cells. Subsequently, the effects of CD55sp on the proliferation and apoptosis of HeLa and SiHa cells were determined by Cell Counting Kit-8 (CCK-8), flow cytometry, and TUNEL assay, respectively. The morphology of apoptotic cells was examined by electron microscope. The distribution of Cleaved caspase-3 was detected by immunofluorescence. The expression of bcl-2 and Cleaved caspase-3 were determined by Western blot. Results The results showed that the peptide (QVNGLGERSQQM) can bind to the CD55 molecule on the surface of cervical cancer HeLa and SiHa cells as a ligand peptide. It can also effectively inhibit the proliferation of cervical cancer cells and induce cell apoptosis. Conclusion This study demonstrates that CD55sp screened by phage display technology plays a strong antitumor role.
Collapse
Affiliation(s)
- Guoxiang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Huanhuan Ji
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Liangqian Jiang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Feng Zhu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, People's Republic of China,
| |
Collapse
|
11
|
Newman MR, Benoit DSW. In Vivo Translation of Peptide-Targeted Drug Delivery Systems Discovered by Phage Display. Bioconjug Chem 2018; 29:2161-2169. [PMID: 29889510 DOI: 10.1021/acs.bioconjchem.8b00285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Therapeutic compounds with narrow therapeutic windows and significant systemic side effects benefit from targeted drug delivery strategies. Peptide-protein interactions are often exploited for targeting, with phage display a primary method to identify high-affinity peptide ligands that bind cell surface and matrix bound receptors preferentially expressed in target tissues. After isolating and sequencing high-binding phages, peptides are easily synthesized and chemically modified for incorporation into drug delivery systems, including peptide-drug conjugates, polymers, and nanoparticles. This review describes the phage display methodology to identify targeting peptide sequences, strategies to functionalize drug carriers with phage-derived peptides, specific examples of drug carriers with in vivo translation, and limitations and future applications of phage display to drug delivery.
Collapse
Affiliation(s)
- Maureen R Newman
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| | - Danielle S W Benoit
- Center for Musculoskeletal Research, Department of Orthopaedics , University of Rochester Medical Center , Rochester , New York 14642 , United States
| |
Collapse
|
12
|
Li K, Liang N, Yang H, Liu H, Li S. Temozolomide encapsulated and folic acid decorated chitosan nanoparticles for lung tumor targeting: improving therapeutic efficacy both in vitro and in vivo. Oncotarget 2017; 8:111318-111332. [PMID: 29340056 PMCID: PMC5762324 DOI: 10.18632/oncotarget.22791] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/28/2017] [Indexed: 11/25/2022] Open
Abstract
Folic acid-conjugated temozolomide (TMZ)-loaded chitosan nanoparticles (CS-TMZ-FLA-NP) were developed to target lung cancer in the anticipation that folic acid would increase the affinity of nanoparticles for cancer cells. CS-TMZ-FLA-NP showed the highest anti-proliferative effect on the lung cancer cells in comparison to free TMZ and CS-TMZ-NP (nanoparticles without folic acid). A cellular uptake assay was performed on two different cell lines, L132 and A549. Cellular uptake efficiencies of CS-TMZ-NP and CS-TMZ-FLA-NP were found to be concentration-dependent in both cell lines. CS-TMZ-FLA-NP produced a 2.5 fold greater accumulation of TMZ than CS-TMZ-NP in both cell lines. CS-TMZ-FLA-NP maintained a significantly higher deposition of TMZ in lung tissue (approximately 7.5 μg/g of lung tissue) when compared to free TMZ and CS-TMZ-NP. Mice treated with CS-TMZ-FLA-NP had a 100% survival rate with significant suppression of tumor growth. Histopathological and immunohistochemical studies also demonstrated that CS-TMZ-FLA-NP had superior anticancer activity compared to the other two treatments. Our results indicate that CS-TMZ-FLA-NP can effectively facilitate targeting to human lung cancer cell lines in vitro and to lung tumors in vivo in a sustained manner and so improve the therapeutic efficacy of TMZ.
Collapse
Affiliation(s)
- Kaidi Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huaxia Yang
- Department of Rheumatology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
13
|
Walworth K, Bodas M, Campbell RJ, Swanson D, Sharma A, Vij N. Dendrimer-Based Selective Proteostasis-Inhibition Strategy to Control NSCLC Growth and Progression. PLoS One 2016; 11:e0158507. [PMID: 27434122 PMCID: PMC4951140 DOI: 10.1371/journal.pone.0158507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
Elevated valosin containing protein (VCP/p97) levels promote the progression of non-small cell lung carcinoma (NSCLC). Although many VCP inhibitors are available, most of these therapeutic compounds have low specificity for targeted tumor cell delivery. Hence, the primary aim of this study was to evaluate the in vitro efficacy of dendrimer-encapsulated potent VCP-inhibitor drug in controlling non-small cell lung carcinoma (NSCLC) progression. The VCP inhibitor(s) (either in their pure form or encapsulated in generation-4 PAMAM-dendrimer with hydroxyl surface) were tested for their in vitro efficacy in modulating H1299 (NSCLC cells) proliferation, migration, invasion, apoptosis and cell cycle progression. Our results show that VCP inhibition by DBeQ was significantly more potent than NMS-873 as evident by decreased cell proliferation (p<0.0001, MTT-assay) and migration (p<0.05; scratch-assay), and increased apoptosis (p<0.05; caspase-3/7-assay) as compared to untreated control cells. Next, we found that dendrimer-encapsulated DBeQ (DDNDBeQ) treatment increased ubiquitinated-protein accumulation in soluble protein-fraction (immunoblotting) of H1299 cells as compared to DDN-control, implying the effectiveness of DBeQ in proteostasis-inhibition. We verified by immunostaining that DDNDBeQ treatment increases accumulation of ubiquitinated-proteins that co-localizes with an ER-marker, KDEL. We observed that proteostasis-inhibition with DDNDBeQ, significantly decreased cell migration rate (scratch-assay and transwell-invasion) as compared to the control-DDN treatment (p<0.05). Moreover, DDNDBeQ treatment showed a significant decrease in cell proliferation (p<0.01, MTT-assay) and increased caspase-3/7 mediated apoptotic cell death (p<0.05) as compared to DDN-control. This was further verified by cell cycle analysis (propidium-iodide-staining) that demonstrated significant cell cycle arrest in the G2/M-phase (p<0.001) by DDNDBeQ treatment as compared to control-DDN. Moreover, we confirmed by clonogenic-assay that DDNDBeQ treatment significantly (p<0.001) inhibits H1299 colony-formation as compared to control/DDN. Overall, encapsulation of potent VCP-inhibitor DBeQ into a dendrimer allows selective VCP-mediated proteostasis-inhibition for controlling NSCLC-tumor growth and progression to allow tumor-targeted sustained drug delivery.
Collapse
Affiliation(s)
- Kyla Walworth
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Manish Bodas
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ryan John Campbell
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Doug Swanson
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Ajit Sharma
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan, United States of America
| | - Neeraj Vij
- College of Medicine, Central Michigan University, Mount Pleasant, Michigan, United States of America
- Department of Pediatric Respiratory Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: ;
| |
Collapse
|
14
|
Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, Deng L, Dong A, Liu J. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10726-10736. [PMID: 27058429 DOI: 10.1021/acsami.6b01501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Finding a smart cancer drug delivery carrier with long blood circulation, enhanced cancer targeting, and quick drug release in tumors is critical for efficient cancer chemotherapy. Herein, we design a cRGD-polycarboxybetaine methacrylate-b-polybenzimidazole methacrylate (cRGD-PCB-b-PBBMZ) copolymer to self-assemble into smart drug-loaded nanoparticles (cRGD-PCM NPs) which can target αvβ3 integrin overexpressed cancer tissue by cRGD peptide unit and release drug quickly in cancer cells by protonation of benzimidazole groups. The outer PCB layer can resist protein adhesion, and there are only about 10% of proteins in mouse serum adhered to the surface of PCM NPs. With the pKa value of 5.08 of the benzimidazole units, DOX can be released from NPs in pH 5.0 PBS. cRGD-PCM NPs can bring more DOX into HepG2 cells than nontargeting PCM NPs, and there has high DOX release rate in HepG2 cells because of the protonation of benzimidazole groups in endosome and lysosome. MTT assay verifies that higher cellular uptake of DOX causes higher cytotoxicity. Furthermore, the results of ex vivo imaging studies confirm that cRGD-PCM/DOX NPs can successfully deliver DOX into tumor tissue from the injection site. Therefore, the multifunctional cRGD-PCM NPs show great potential as novel nanocarriers for targeting cancer chemotherapy.
Collapse
Affiliation(s)
- Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | | | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Yu Sun
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Pingsheng Huang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| |
Collapse
|
15
|
Liu J, Liu J, Xu H, Zhang Y, Chu L, Liu Q, Song N, Yang C. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery. Int J Nanomedicine 2013; 9:197-207. [PMID: 24399876 PMCID: PMC3875522 DOI: 10.2147/ijn.s55875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The poor aqueous solubility and low bioavailability of curcumin restrict its clinical application for cancer treatment. In this study, a novel tumor-targeting nanofiber carrier was developed to improve the solubility and tumor-targeting ability of curcumin using a self-assembled Nap-GFFYG-RGD peptide. The morphologies of the peptide nanofiber and the curcumin-encapsulated nanofiber were visualized by transmission electron microscopy. The tumor-targeting activity of the curcumin-encapsulated Nap-GFFYG-RGD peptide nanofiber (f-RGD-Cur) was studied in vitro and in vivo, using Nap-GFFYG-RGE peptide nanofiber (f-RGE-Cur) as the control. Curcumin was encapsulated into the peptide nanofiber, which had a diameter of approximately 10-20 nm. Curcumin showed sustained-release behavior from the nanofibers in vitro. f-RGD-Cur showed much higher cellular uptake in αvβ3 integrin-positive HepG2 liver carcinoma cells than did non-targeted f-RGE-Cur, thereby leading to significantly higher cytotoxicity. Ex vivo studies further demonstrated that curcumin could accumulate markedly in mouse tumors after administration of f-RGD-Cur via the tail vein. These results indicate that Nap-GFFYG-RGD peptide self-assembled nanofibers are a promising hydrophobic drug delivery system for targeted treatment of cancer.
Collapse
Affiliation(s)
- Jianfeng Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Jinjian Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Hongyan Xu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Qingfen Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Naling Song
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| | - Cuihong Yang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of China
| |
Collapse
|
16
|
Identification of a novel short peptide seal specific to CD59 and its effect on HeLa cell growth and apoptosis. Cell Oncol (Dordr) 2012; 35:355-65. [PMID: 22945508 DOI: 10.1007/s13402-012-0096-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND In the past, some small peptide ligands identified by phage display technologies have successfully been used in early cancer diagnostics and therapy. In the present study, a novel CD59-binding peptide was identified and its effect on HeLa cell growth and apoptosis was investigated. METHODS A phage display library was screened yielding a novel short peptide, sp22, that specifically binds to CD59, a protein that shows altered expression in various diseases, including cancer. The effect of ectopic sp22 administration and exogenous sp22 expression on the growth and apoptosis of HeLa cells was assessed. For the latter, we constructed and transfected a sp22-pIRES vector into HeLa cells. RESULTS Our results show that sp22 peptides can inhibit the level of CD59 mRNA expression, down-regulate Bcl-2 expression, increase Fas and caspase-3 expression, increase the level of cytolysis, and increase the apoptosis of HeLa cells. In contrast, sp22 peptides had no effect on normal human embryonic lung (HEL) cells exhibiting a relatively low CD59 expression level. Compared to untransfected HeLa cells, exogenously sp22 expressing HeLa cells showed a reduced CD59 expression, an increased complement-mediated lysis, a decreased cellular survival ratio, and an increase in apoptotic cells. CONCLUSION The newly identified sp22 peptide can, in a dose-dependent manner, inhibit CD59 expression. Concomitantly, sp22 can increase complement-mediated lysis and apoptosis signals. This information may be instrumental for the design of novel therapeutic strategies.
Collapse
|
17
|
Liu J, Gray WD, Davis ME, Luo Y. Peptide- and saccharide-conjugated dendrimers for targeted drug delivery: a concise review. Interface Focus 2012; 2:307-24. [PMID: 23741608 PMCID: PMC3363024 DOI: 10.1098/rsfs.2012.0009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 02/24/2012] [Indexed: 01/01/2023] Open
Abstract
Dendrimers comprise a category of branched materials with diverse functions that can be constructed with defined architectural and chemical structures. When decorated with bioactive ligands made of peptides and saccharides through peripheral chemical groups, dendrimer conjugates are turned into nanomaterials possessing attractive binding properties with the cognate receptors. At the cellular level, bioactive dendrimer conjugates can interact with cells with avidity and selectivity, and this function has particularly stimulated interests in investigating the targeting potential of dendrimer materials for the design of drug delivery systems. In addition, bioactive dendrimer conjugates have so far been studied for their versatile capabilities to enhance stability, solubility and absorption of various types of therapeutics. This review presents a brief discussion on three aspects of the recent studies to use peptide- and saccharide-conjugated dendrimers for drug delivery: (i) synthesis methods, (ii) cell- and tissue-targeting properties and (iii) applications of conjugated dendrimers in drug delivery nanodevices. With more studies to elucidate the structure-function relationship of ligand-dendrimer conjugates in transporting drugs, the conjugated dendrimers hold promise to facilitate targeted delivery and improve drug efficacy for discovery and development of modern pharmaceutics.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Warren D. Gray
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
| | - Michael E. Davis
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, Room 2127, Atlanta, GA 30322-0535, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ying Luo
- Department of Biomedical Engineering, College of Engineering, Peking University, Room 206, Fangzheng Building, 298 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
- National Engineering Laboratory for Regenerative and Implantable Medical Devices, Room 408, Building D, Guangzhou International Business Incubator, Guangzhou Science Park, Guangzhou 510663, People's Republic of China
| |
Collapse
|