1
|
Jarmila P, Veronika M, Peter M. Advances in the delivery of anticancer drugs by nanoparticles and chitosan-based nanoparticles. Int J Pharm X 2024; 8:100281. [PMID: 39297017 PMCID: PMC11408389 DOI: 10.1016/j.ijpx.2024.100281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/21/2024] Open
Abstract
Cancer is the leading cause of death globally, and conventional treatments have limited efficacy with severe side effects. The use of nanotechnology has the potential to reduce the side effects of drugs by creating efficient and controlled anticancer drug delivery systems. Nanoparticles (NPs) used as drug carriers offer several advantages, including enhanced drug protection, biodistribution, selectivity and, pharmacokinetics. Therefore, this review is devoted to various organic (lipid, polymeric) as well as inorganic nanoparticles based on different building units and providing a wide range of potent anticancer drug delivery systems. Within these nanoparticulate systems, chitosan (CS)-based NPs are discussed with particular emphasis due to the unique properties of CS and its derivatives including non-toxicity, biodegradability, mucoadhesivity, and tunable physico-chemical as well as biological properties allowing their alteration to specifically target cancer cells. In the context of streamlining the nanoparticulate drug delivery systems (DDS), innovative nanoplatform-based cancer therapy pathways involving passive and active targeting as well as stimuli-responsive DDS enhancing overall orthogonality of developed NP-DDS towards the target are included. The most up-to-date information on delivering anti-cancer drugs using modern dosage forms based on various nanoparticulate systems and, specifically, CSNPs, are summarised and evaluated concerning their benefits, limitations, and advanced applications.
Collapse
Affiliation(s)
- Prieložná Jarmila
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikušová Veronika
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| | - Mikuš Peter
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, 83232 Bratislava, Slovakia
| |
Collapse
|
2
|
Naseem N, Kushwaha P, Haider F. Leveraging nanostructured lipid carriers to enhance targeted delivery and efficacy in breast cancer therapy: a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03408-w. [PMID: 39196394 DOI: 10.1007/s00210-024-03408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and proliferation, continues to be a major global health concern. Breast cancer, the most commonly diagnosed cancer among women, remains a leading cause of cancer-related deaths worldwide. Conventional treatment modalities such as surgery, radiation, and chemotherapy have made significant strides in improving patient outcomes. However, these approaches often face challenges such as limited efficacy, systemic toxicity, and multidrug resistance. Nanotechnology has emerged as a promising avenue for revolutionizing cancer therapy, offering targeted drug delivery, enhanced efficacy, and reduced side effects. Among the various nanocarrier systems, nanostructured lipid carriers (NLCs) have gained considerable attention for their unique advantages. Comprising a blend of solid and liquid lipids, NLCs offer improved drug loading capacity, enhanced stability, sustained release, and biocompatibility. This manuscript provides a comprehensive overview of the role of NLCs in breast cancer management, covering their formulation, methods of preparation, advantages, and disadvantages. Additionally, several studies are presented to illustrate the efficacy of NLCs in delivering anticancer drugs to breast tumors. These studies demonstrate the ability of NLCs to enhance drug cytotoxicity, improve tumor suppression, and minimize systemic toxicity. This manuscript aims to contribute to the existing literature by consolidating current knowledge and providing insights into the future directions of NLC-based therapeutics in breast cancer management.
Collapse
Affiliation(s)
- Nazish Naseem
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Faheem Haider
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| |
Collapse
|
3
|
Yang GQ, Cai W, Zhang Z, Wang Y. Progress in Programmable DNA-Aided Self-Assembly of the Master Frame of a Drug Delivery System. ACS APPLIED BIO MATERIALS 2023; 6:5125-5144. [PMID: 38011318 DOI: 10.1021/acsabm.3c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Every year cancer causes approximately 10 million deaths globally. Researchers have developed numerous targeted drug delivery systems (DDSs) with nanoparticles, polymers, and liposomes, but these synthetic materials have poor degradability and low biocompatibility. Because DNA nanostructures have good degradability and high biocompatibility, extensive studies have been performed to construct DDSs with DNA nanostructures as the molecular-layer master frame (MF) assembled via programmable DNA-aided self-assembly for targeted drug release. To learn the progressing trend of self-assembly techniques and keep pace with their recent rapid advancements, it is crucial to provide an overview of their past and recent progress. In this review article, we first present the techniques to assemble the MF of a DDS with solely DNA strands; to assemble MFs with one or more additional type of construction materials, e.g., polymers (including RNA and protein), inorganic nanoparticle, or metal ions, in addition to DNA strands; and to assemble the more complex DNA nanocomplexes. It is observed that both the techniques used and the MFs constructed have become increasingly complex and that the DDS constructed has an increasing number of advanced functions. From our focused review, we anticipate that DDSs with the MF of multiple building materials and DNA nanocomplexes will attract an increasing number of researchers' interests. On the basis of knowledge about materials and functional components (e.g., targeting aptamers/peptides/antibodies and stimuli for drug release) obtained from previously performed studies, researchers can combine more materials with DNA strands to assemble more powerful MFs and incorporate more components to endow DDSs with improved or additional properties/functions, thereby subsequently contributing to cancer prevention.
Collapse
Affiliation(s)
- Gary Q Yang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Weibin Cai
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, P. R. China
| | - Zhiwen Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, P. R. China
| | - Yujun Wang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Silva DF, Melo ALP, Uchôa AFC, Pereira GMA, Alves AEF, Vasconcellos MC, Xavier-Júnior FH, Passos MF. Biomedical Approach of Nanotechnology and Biological Risks: A Mini-Review. Int J Mol Sci 2023; 24:16719. [PMID: 38069043 PMCID: PMC10706257 DOI: 10.3390/ijms242316719] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanotechnology has played a prominent role in biomedical engineering, offering innovative approaches to numerous treatments. Notable advances have been observed in the development of medical devices, contributing to the advancement of modern medicine. This article briefly discusses key applications of nanotechnology in tissue engineering, controlled drug release systems, biosensors and monitoring, and imaging and diagnosis. The particular emphasis on this theme will result in a better understanding, selection, and technical approach to nanomaterials for biomedical purposes, including biological risks, security, and biocompatibility criteria.
Collapse
Affiliation(s)
- Debora F. Silva
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
| | - Ailime L. P. Melo
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| | - Ana F. C. Uchôa
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Graziela M. A. Pereira
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
| | - Alisson E. F. Alves
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | | | - Francisco H. Xavier-Júnior
- Pharmaceutical Biotechnology Laboratory (BioTecFarm), Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-900, Brazil; (A.F.C.U.); (F.H.X.-J.)
- Post-Graduate Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Marcele F. Passos
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Materials Science and Engineering, Federal University of Para, Ananindeua 67130-660, Brazil;
- Technological Development Group in Biopolymers and Biomaterials from the Amazon, Graduate Program in Biotechnology, Federal University of Para, Belem 66075-110, Brazil
| |
Collapse
|
5
|
Tiwari P, Yadav K, Shukla RP, Gautam S, Marwaha D, Sharma M, Mishra PR. Surface modification strategies in translocating nano-vesicles across different barriers and the role of bio-vesicles in improving anticancer therapy. J Control Release 2023; 363:290-348. [PMID: 37714434 DOI: 10.1016/j.jconrel.2023.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.
Collapse
Affiliation(s)
- Pratiksha Tiwari
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Krishna Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Ravi Prakash Shukla
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shalini Gautam
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Disha Marwaha
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Madhu Sharma
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad 201002, U.P., India.
| |
Collapse
|
6
|
Taha EF, Hamed NS, Khateeb S. Etoricoxib nanostructured lipid carriers attenuate inflammation by modulating Cyclooxygenase-2 signaling and activation of nuclear factor-κB-p65 pathways in radiation-induced acute cardiotoxicity in rats. Eur J Pharmacol 2023; 957:176029. [PMID: 37648012 DOI: 10.1016/j.ejphar.2023.176029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The current investigation aimed to explore the potential of etoricoxib nanostructured lipid carriers (ET-NLCs) as an anti-inflammatory drug in radiation-exposed rats, with a focus on assessing its efficacy in reducing inflammation while minimizing cardiac toxicity compared to conventional etoricoxib (ET) treatment. The ET-NLCs were prepared by the low-temperature melt emulsification solidification technique. Various techniques were employed to characterize the NLCs. Rats were exposed to gamma-irradiation (6 Gy) to induce cardiac inflammation and injury, followed by oral administration of ET or ET-NLCs (10 mg/kg b.w.) for 14 consecutive days. Results demonstrated a significant increase in the levels of malondialdehyde (MDA), cyclooxygenase-2 (COX-2), nuclear factor kappa-B p65 (NF-κB-p65), and poly ADP-ribose polymerase (PARP-1) in the heart tissues of gamma-irradiated rats compared to the control group. This increase was accompanied by a reduction in the activity of antioxidant enzymes. However, treatment with ET and ET-NLCs exhibited a positive impact on these levels. Interestingly, the efficacy of ET-NLCs in mitigating radiation-induced inflammation in heart tissue was found to be superior to that of ET. In conclusion, the study suggests that the utilization of NLCs as a drug delivery system for ET may not only enhance its therapeutic efficacy but also help reduce the cardiovascular risks associated with ET, specifically focused on individuals who had been exposed to gamma radiation. These findings open new avenues for further research in the development of effective and safer therapeutic strategies for managing inflammatory diseases and their impact on cardiovascular health.
Collapse
Affiliation(s)
- Eman Fs Taha
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Noha Sayed Hamed
- Radioisotopes Department, Nuclear Research Centre, Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Sahar Khateeb
- Biochemistry Division, Department of Chemistry, Faculty of Science, Fayoum University, Fayoum, Egypt.
| |
Collapse
|
7
|
Shehata MK, Ismail AA, Kamel MA. Combined Donepezil with Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model. Int J Nanomedicine 2023; 18:4193-4227. [PMID: 37534058 PMCID: PMC10391537 DOI: 10.2147/ijn.s417928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction Donepezil (DPL), a specific acetylcholinesterase inhibitor, is used as a first-line treatment to improve cognitive deficits in Alzheimer's disease (AD) and it might have a disease modifying effect. Astaxanthin (AST) is a natural potent antioxidant with neuroprotective, anti-amyloidogenic, anti-apoptotic, and anti-inflammatory effects. This study aimed to prepare nanostructured lipid carriers (NLCs) co-loaded with donepezil and astaxanthin (DPL/AST-NLCs) and evaluate their in vivo efficacy in an AD-like rat model 30 days after daily intranasal administration. Methods DPL/AST-NLCs were prepared using a hot high-shear homogenization technique, in vitro examined for their physicochemical parameters and in vivo evaluated. AD induction in rats was performed by aluminum chloride. The cortex and hippocampus were isolated from the brain of rats for biochemical testing and histopathological examination. Results DPL/AST-NLCs showed z-average diameter 149.9 ± 3.21 nm, polydispersity index 0.224 ± 0.017, zeta potential -33.7 ± 4.71 mV, entrapment efficiency 81.25 ±1.98% (donepezil) and 93.85 ±1.75% (astaxanthin), in vitro sustained release of both donepezil and astaxanthin for 24 h, spherical morphology by transmission electron microscopy, and they were stable at 4-8 ± 2°C for six months. Differential scanning calorimetry revealed that donepezil and astaxanthin were molecularly dispersed in the NLC matrix in an amorphous state. The DPL/AST-NLC-treated rats showed significantly lower levels of nuclear factor-kappa B, malondialdehyde, β-site amyloid precursor protein cleaving enzyme-1, caspase-3, amyloid beta (Aβ1‑42), and acetylcholinesterase, and significantly higher levels of glutathione and acetylcholine in the cortex and hippocampus than the AD-like untreated rats and that treated with donepezil-NLCs. DPL/AST-NLCs showed significantly higher anti-amyloidogenic, antioxidant, anti-acetylcholinesterase, anti-inflammatory, and anti-apoptotic effects, resulting in significant improvement in the cortical and hippocampal histopathology. Conclusion Nose-to-brain delivery of DPL/AST-NLCs is a promising strategy for the management of AD.
Collapse
Affiliation(s)
- Mustafa K Shehata
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Assem A Ismail
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Jung EJ, Kim HJ, Shin SC, Kim GS, Jung JM, Hong SC, Kim CW, Lee WS. β-Lapachone Exerts Anticancer Effects by Downregulating p53, Lys-Acetylated Proteins, TrkA, p38 MAPK, SOD1, Caspase-2, CD44 and NPM in Oxaliplatin-Resistant HCT116 Colorectal Cancer Cells. Int J Mol Sci 2023; 24:9867. [PMID: 37373014 DOI: 10.3390/ijms24129867] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
β-lapachone (β-Lap), a topoisomerase inhibitor, is a naturally occurring ortho-naphthoquinone phytochemical and is involved in drug resistance mechanisms. Oxaliplatin (OxPt) is a commonly used chemotherapeutic drug for metastatic colorectal cancer, and OxPt-induced drug resistance remains to be solved to increase chances of successful therapy. To reveal the novel role of β-Lap associated with OxPt resistance, 5 μM OxPt-resistant HCT116 cells (HCT116-OxPt-R) were generated and characterized via hematoxylin staining, a CCK-8 assay and Western blot analysis. HCT116-OxPt-R cells were shown to have OxPt-specific resistance, increased aggresomes, upregulated p53 and downregulated caspase-9 and XIAP. Through signaling explorer antibody array, nucleophosmin (NPM), CD37, Nkx-2.5, SOD1, H2B, calreticulin, p38 MAPK, caspase-2, cadherin-9, MMP23B, ACOT2, Lys-acetylated proteins, COL3A1, TrkA, MPS-1, CD44, ITGA5, claudin-3, parkin and ACTG2 were identified as OxPt-R-related proteins due to a more than two-fold alteration in protein status. Gene ontology analysis suggested that TrkA, Nkx-2.5 and SOD1 were related to certain aggresomes produced in HCT116-OxPt-R cells. Moreover, β-Lap exerted more cytotoxicity and morphological changes in HCT116-OxPt-R cells than in HCT116 cells through the downregulation of p53, Lys-acetylated proteins, TrkA, p38 MAPK, SOD1, caspase-2, CD44 and NPM. Our results indicate that β-Lap could be used as an alternative drug to overcome the upregulated p53-containing OxPt-R caused by various OxPt-containing chemotherapies.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Sung Chul Shin
- Department of Chemistry, Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gon Sup Kim
- Research Institute of Life Science, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin-Myung Jung
- Department of Neurosurgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Soon Chan Hong
- Department of Surgery, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Choong Won Kim
- Department of Biochemistry, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Won Sup Lee
- Department of Internal Medicine, Institute of Health Sciences, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, 15 Jinju-daero 816 Beon-gil, Jinju 52727, Republic of Korea
| |
Collapse
|
9
|
Rafik ST, Vaidya JS, MacRobert AJ, Yaghini E. Organic Nanodelivery Systems as a New Platform in the Management of Breast Cancer: A Comprehensive Review from Preclinical to Clinical Studies. J Clin Med 2023; 12:jcm12072648. [PMID: 37048731 PMCID: PMC10095028 DOI: 10.3390/jcm12072648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer accounts for approximately 25% of cancer cases and 16.5% of cancer deaths in women, and the World Health Organization predicts that the number of new cases will increase by almost 70% over the next two decades, mainly due to an ageing population. Effective diagnostic and treatment strategies are, therefore, urgently required for improving cure rates among patients since current therapeutic modalities have many limitations and side effects. Nanomedicine is evolving as a promising approach for cancer management, including breast cancer, and various types of organic and inorganic nanomaterials have been investigated for their role in breast cancer diagnosis and treatment. Following an overview on breast cancer characteristics and pathogenesis and challenges of the current treatment strategies, the therapeutic potential of biocompatible organic-based nanoparticles such as liposomes and polymeric micelles that have been tested in breast cancer models are reviewed. The efficacies of different drug delivery and targeting strategies are documented, ranging from synthetic to cell-derived nanoformulations together with a summary of the interaction of nanoparticles with externally applied energy such as radiotherapy. The clinical translation of nanoformulations for breast cancer treatment is summarized including those undergoing clinical trials.
Collapse
Affiliation(s)
- Salma T. Rafik
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria 21516, Egypt
| | - Jayant S. Vaidya
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Alexander J. MacRobert
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| | - Elnaz Yaghini
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London (UCL), London W1W 7TY, UK
| |
Collapse
|
10
|
Kumar G, Virmani T, Sharma A, Pathak K. Codelivery of Phytochemicals with Conventional Anticancer Drugs in Form of Nanocarriers. Pharmaceutics 2023; 15:889. [PMID: 36986748 PMCID: PMC10055866 DOI: 10.3390/pharmaceutics15030889] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Anticancer drugs in monotherapy are ineffective to treat various kinds of cancer due to the heterogeneous nature of cancer. Moreover, available anticancer drugs possessed various hurdles, such as drug resistance, insensitivity of cancer cells to drugs, adverse effects and patient inconveniences. Hence, plant-based phytochemicals could be a better substitute for conventional chemotherapy for treatment of cancer due to various properties: lesser adverse effects, action via multiple pathways, economical, etc. Various preclinical studies have demonstrated that a combination of phytochemicals with conventional anticancer drugs is more efficacious than phytochemicals individually to treat cancer because plant-derived compounds have lower anticancer efficacy than conventional anticancer drugs. Moreover, phytochemicals suffer from poor aqueous solubility and reduced bioavailability, which must be resolved for efficacious treatment of cancer. Therefore, nanotechnology-based novel carriers are employed for codelivery of phytochemicals and conventional anticancer drugs for better treatment of cancer. These novel carriers include nanoemulsion, nanosuspension, nanostructured lipid carriers, solid lipid nanoparticles, polymeric nanoparticles, polymeric micelles, dendrimers, metallic nanoparticles, carbon nanotubes that provide various benefits of improved solubility, reduced adverse effects, higher efficacy, reduced dose, improved dosing frequency, reduced drug resistance, improved bioavailability and higher patient compliance. This review summarizes various phytochemicals employed in treatment of cancer, combination therapy of phytochemicals with anticancer drugs and various nanotechnology-based carriers to deliver the combination therapy in treatment of cancer.
Collapse
Affiliation(s)
- Girish Kumar
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Tarun Virmani
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, MVN University, Aurangabad 121105, India
| | - Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Saifai 206001, India
| |
Collapse
|
11
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
12
|
Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, El-Far AH. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: Anticancer efficacy and safety. Toxicol Appl Pharmacol 2023; 461:116405. [PMID: 36716865 DOI: 10.1016/j.taap.2023.116405] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Rokaia F Ragab
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Rania Hamada
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
13
|
Parhizkar F, Yousefi M, Soltani‐Zangbar MS, Parhizkar Z, Aghebati‐Maleki L, Abbaspour‐Ravasjani S, Motavalli R, Alizadegan A, Mojahedi M, Baharaghdam S, Kamrani A, Danaii S, Talebi M, Jadidi‐Niaragh F, Hamishehkar H, Kafil HS, Mahmoodpoor A, Heris JA. Sirolimus- and cyclosporine-loaded nanostructured lipid carriers: Development, characterization, and in vitro evaluation in T-cell profiles of patients with a history of recurrent pregnancy loss. Reprod Med Biol 2023; 22:e12509. [PMID: 36949822 PMCID: PMC10026110 DOI: 10.1002/rmb2.12509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/27/2023] [Accepted: 02/05/2023] [Indexed: 03/24/2023] Open
Abstract
Purpose The authors developed nanostructured lipid carriers (NLCs) loaded with sirolimus (SRL) and cyclosporine (CsA) to improve their therapeutic efficacy in recurrent pregnancy loss (RPL) patients. Methods Mono-delivery and co-delivery of SRL and CsA by NLCs (S-NLCs, C-NLCs, and S-C-NLCs) were developed. The MTT assay was used to study the optimum dose of formulations. PCR, Western blotting, and ELISA were also conducted. Results Well-designed nanodrugs with a suitable size, zeta potential, desirable encapsulation efficiency drug loading, and cellular uptake confirmed optimum formulations. Based on cell viability, the amounts of SRL and CsA could be reduced greatly due to the co-delivery by NLCs. Following S-NLCs and C-NLCs interventions in T cells of patients with RPL and immune abnormality, a significant difference was observed in transcription factors and cytokine levels of Th1, Th17, and Tregs compared with healthy samples. Thus, a higher level of pro-inflammatory cytokines (IFN-γ, TNF-α, IL-17, and IL-21) and their regulators (T-bet and RORγt), as well as a lower level of an anti-inflammatory cytokine (IL-10) and its regulatory (Foxp3), were observed. However, no significant difference was found following the S-C-NLCs intervention. Conclusions S-C-NLCs effectively balance the immune responses in peripheral T cells in RPL patients to induce maternal immune tolerance.
Collapse
Affiliation(s)
- Forough Parhizkar
- Student's Research CommitteeTabriz University of Medical SciencesTabrizIran
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mehdi Yousefi
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabrizIran
| | | | - Zahra Parhizkar
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | | | | | - Roza Motavalli
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amin Alizadegan
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Maryam Mojahedi
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Sina Baharaghdam
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Amin Kamrani
- Stem Cell Research CenterTabriz University of Medical SciencesTabrizIran
| | - Shahla Danaii
- Gynecology Department, Eastern Azerbaijan ACECR ART CentreEastern Azerbaijan branch of ACECRTabrizIran
| | - Mehdi Talebi
- Hematology and Oncology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Farhad Jadidi‐Niaragh
- Department of Immunology, School of MedicineTabriz University of Medical SciencesTabrizIran
| | - Hamed Hamishehkar
- Drug Applied Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Ata Mahmoodpoor
- Anesthesiology Research Team, Faculty of MedicineTabriz University of Medical SciencesTabrizIran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric HospitalTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
14
|
Lopes LB, Apolinário AC, Salata GC, Malagó ID, Passos JS. Lipid Nanocarriers for Breast Cancer Treatment. Cancer Nanotechnol 2023. [DOI: 10.1007/978-3-031-17831-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
15
|
Pourmadadi M, Abbasi P, Eshaghi MM, Bakhshi A, Ezra Manicum AL, Rahdar A, Pandey S, Jadoun S, Díez-Pascual AM. Curcumin delivery and co-delivery based on nanomaterials as an effective approach for cancer therapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Probes and nano-delivery systems targeting NAD(P)H:quinone oxidoreductase 1: a mini-review. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
|
17
|
Thiruchenthooran V, Świtalska M, Bonilla L, Espina M, García ML, Wietrzyk J, Sánchez-López E, Gliszczyńska A. Novel Strategies against Cancer: Dexibuprofen-Loaded Nanostructured Lipid Carriers. Int J Mol Sci 2022; 23:ijms231911310. [PMID: 36232614 PMCID: PMC9570096 DOI: 10.3390/ijms231911310] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
The aim of this work was to design innovative nanostructured lipid carriers (NLCs) for the delivery of dexibuprofen (DXI) as an antiproliferative therapy against tumoral processes, and overcome its side effects. DXI-NLC samples were prepared with beeswax, Miglyol 812 and Tween 80 using high-pressure homogenization. A two-level factorial design 24 was applied to optimize the formulation, and physicochemical properties such as particle size, zeta potential, polydispersity index and entrapment efficiency were measured. Optimized parameters of DXI-NLCs exhibited a mean particle size of 152.3 nm, a polydispersity index below 0.2, and high DXI entrapment efficiency (higher than 99%). Moreover, DXI-NLCs provided a prolonged drug release, slower than the free DXI. DXI-NLCs were stable for 2 months and their morphology revealed that they possess a spherical shape. In vitro cytotoxicity and anticancer potential studies were performed towards prostate (PC-3) and breast (MDA-MB-468) cancer cell lines. The highest activity of DXI-NLCs was observed towards breast cancer cells, which were effectively inhibited at 3.4 μM. Therefore, DXI-NLCs constitute a promising antiproliferative therapy that has proven to be especially effective against breast cancer.
Collapse
Affiliation(s)
- Vaikunthavasan Thiruchenthooran
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Marta Świtalska
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Lorena Bonilla
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Marta Espina
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Joanna Wietrzyk
- Department of Experimental Onclogy, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wrocław, Poland
| | - Elena Sánchez-López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
- Correspondence: (E.S.-L.); (A.G.)
| | - Anna Gliszczyńska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (E.S.-L.); (A.G.)
| |
Collapse
|
18
|
Yadav P, Ambudkar SV, Rajendra Prasad N. Emerging nanotechnology-based therapeutics to combat multidrug-resistant cancer. J Nanobiotechnology 2022; 20:423. [PMID: 36153528 PMCID: PMC9509578 DOI: 10.1186/s12951-022-01626-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer often develops multidrug resistance (MDR) when cancer cells become resistant to numerous structurally and functionally different chemotherapeutic agents. MDR is considered one of the principal reasons for the failure of many forms of clinical chemotherapy. Several factors are involved in the development of MDR including increased expression of efflux transporters, the tumor microenvironment, changes in molecular targets and the activity of cancer stem cells. Recently, researchers have designed and developed a number of small molecule inhibitors and derivatives of natural compounds to overcome various mechanisms of clinical MDR. Unfortunately, most of the chemosensitizing approaches have failed in clinical trials due to non-specific interactions and adverse side effects at pharmacologically effective concentrations. Nanomedicine approaches provide an efficient drug delivery platform to overcome the limitations of conventional chemotherapy and improve therapeutic effectiveness. Multifunctional nanomaterials have been found to facilitate drug delivery by improving bioavailability and pharmacokinetics, enhancing the therapeutic efficacy of chemotherapeutic drugs to overcome MDR. In this review article, we discuss the major factors contributing to MDR and the limitations of existing chemotherapy- and nanocarrier-based drug delivery systems to overcome clinical MDR mechanisms. We critically review recent nanotechnology-based approaches to combat tumor heterogeneity, drug efflux mechanisms, DNA repair and apoptotic machineries to overcome clinical MDR. Recent successful therapies of this nature include liposomal nanoformulations, cRGDY-PEG-Cy5.5-Carbon dots and Cds/ZnS core–shell quantum dots that have been employed for the effective treatment of various cancer sub-types including small cell lung, head and neck and breast cancers.
Collapse
|
19
|
Chaudhuri A, Kumar DN, Shaik RA, Eid BG, Abdel-Naim AB, Md S, Ahmad A, Agrawal AK. Lipid-Based Nanoparticles as a Pivotal Delivery Approach in Triple Negative Breast Cancer (TNBC) Therapy. Int J Mol Sci 2022; 23:ijms231710068. [PMID: 36077466 PMCID: PMC9456313 DOI: 10.3390/ijms231710068] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer is considered the most aggressive type of breast cancer among women and the lack of expressed receptors has made treatment options substantially limited. Recently, various types of nanoparticles have emerged as a therapeutic option against TNBC, to elevate the therapeutic efficacy of the existing chemotherapeutics. Among the various nanoparticles, lipid-based nanoparticles (LNPs) viz. liposomes, nanoemulsions, solid lipid nanoparticles, nanostructured lipid nanocarriers, and lipid–polymer hybrid nanoparticles are developed for cancer treatment which is well confirmed and documented. LNPs include various therapeutic advantages as compared to conventional therapy and other nanoparticles, including increased loading capacity, enhanced temporal and thermal stability, decreased therapeutic dose and associated toxicity, and limited drug resistance. In addition to these, LNPs overcome physiological barriers which provide increased accumulation of therapeutics at the target site. Extensive efforts by the scientific community could make some of the liposomal formulations the clinical reality; however, the relatively high cost, problems in scaling up the formulations, and delivery in a more targetable fashion are some of the major issues that need to be addressed. In the present review, we have compiled the state of the art about different types of LNPs with the latest advances reported for the treatment of TNBC in recent years, along with their clinical status and toxicity in detail.
Collapse
Affiliation(s)
- Aiswarya Chaudhuri
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Dulla Naveen Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rasheed A. Shaik
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Basma G. Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Aftab Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashish Kumar Agrawal
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
- Correspondence:
| |
Collapse
|
20
|
Hamimed S, Jabberi M, Chatti A. Nanotechnology in drug and gene delivery. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:769-787. [PMID: 35505234 PMCID: PMC9064725 DOI: 10.1007/s00210-022-02245-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Over the last decade, nanotechnology has widely addressed many nanomaterials in the biomedical area with an opportunity to achieve better-targeted delivery, effective treatment, and an improved safety profile. Nanocarriers have the potential property to protect the active molecule during drug delivery. Depending on the employing nanosystem, the delivery of drugs and genes has enhanced the bioavailability of the molecule at the disease site and exercised an excellent control of the molecule release. Herein, the chapter discusses various advanced nanomaterials designed to develop better nanocarrier systems used to face different diseases such as cancer, heart failure, and malaria. Furthermore, we demonstrate the great attention to the promising role of nanocarriers in ease diagnostic and biodistribution for successful clinical cancer therapy.
Collapse
Affiliation(s)
- Selma Hamimed
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia. .,Departement of Biology, Faculty of Exact Sciences, Natural and Life Sciences, Chaikh Larbi Tebessi University, Tebessa, Algeria.
| | - Marwa Jabberi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia.,Laboratory of Energy and Matter for Development of Nuclear Sciences (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Ariana, Tunisia
| | - Abdelwaheb Chatti
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, CP 7021, Jarzouna, Tunisia
| |
Collapse
|
21
|
Recent advances in the development of multifunctional lipid-based nanoparticles for co-delivery, combination treatment strategies, and theranostics in breast and lung cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Nanomedicine-Based Delivery Strategies for Breast Cancer Treatment and Management. Int J Mol Sci 2022; 23:ijms23052856. [PMID: 35269998 PMCID: PMC8911433 DOI: 10.3390/ijms23052856] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the most common types of cancer among women globally. It is caused by mutations in the estrogen/progesterone receptors and conventional treatment methods are commonly utilized. About 70–80 percent of individuals with the early-stage non-metastatic disease may be cured. Conventional treatment is far less than the optimal ratio, as demonstrated through the high mortality rate of women with this cancer. However, conventional treatment methods like surgery, radiotherapy, and chemotherapy are not as effective as expected and lead to concerns about low bioavailability, low cellular uptake, emerging resistance, and adverse toxicities. A nanomedicine-based approach is a promising alternative for breast cancer treatment. The present era is witnessing rapid advancements in nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. This paper focuses on nanomedicine-based therapeutic interventions that are becoming more widely accepted for improving treatment effectiveness and reducing undesired side effects in breast cancer patients. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
|
23
|
Identification of Antimotilins, Novel Inhibitors of Helicobacter pylori Flagellar Motility That Inhibit Stomach Colonization in a Mouse Model. mBio 2022; 13:e0375521. [PMID: 35227071 PMCID: PMC8941896 DOI: 10.1128/mbio.03755-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
New treatment options against the widespread cancerogenic gastric pathogen Helicobacter pylori are urgently needed. We describe a novel screening procedure for inhibitors of H. pylori flagellar biosynthesis. The assay is based on a flaA flagellin gene-luciferase reporter fusion in H. pylori and was amenable to multi-well screening formats with an excellent Z factor. We screened various compound libraries to identify virulence blockers ("antimotilins") that inhibit H. pylori motility or the flagellar type III secretion apparatus. We identified compounds that either inhibit both motility and the bacterial viability, or the flagellar system only, without negatively affecting bacterial growth. Novel anti-virulence compounds which suppressed flagellar biosynthesis in H. pylori were active on pure H. pylori cultures in vitro and partially suppressed motility directly, reduced flagellin transcript and flagellin protein amounts. We performed a proof-of-principle treatment study in a mouse model of chronic H. pylori infection and demonstrated a significant effect on H. pylori colonization for one antimotilin termed Active2 even as a monotherapy. The diversity of the intestinal microbiota was not significantly affected by Active2. In conclusion, the novel antimotilins active against motility and flagellar assembly bear promise to complement commonly used antibiotic-based combination therapies for treating and eradicating H. pylori infections. IMPORTANCE Helicobacter pylori is one of the most prevalent bacterial pathogens, inflicting hundreds of thousands of peptic ulcers and gastric cancers to patients every year. Antibacterial treatment of H. pylori is complicated due to the need of combining multiple antibiotics, entailing serious side effects and increasing selection for antibiotic resistance. Here, we aimed to explore novel nonantibiotic approaches to H. pylori treatment. We selected an antimotility approach since flagellar motility is essential for H. pylori colonization. We developed a screening system for inhibitors of H. pylori motility and flagellar assembly, and identified numerous novel antibacterial and anti-motility compounds (antimotilins). Selected compounds were further characterized, and one was evaluated in a preclinical therapy study in mice. The antimotilin compound showed a good efficacy to reduce bacterial colonization in the model, such that the antimotilin approach bears promise to be further developed into a therapy against H. pylori infection in humans.
Collapse
|
24
|
Khan MI, Hossain MI, Hossain MK, Rubel MHK, Hossain KM, Mahfuz AMUB, Anik MI. Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review. ACS APPLIED BIO MATERIALS 2022; 5:971-1012. [PMID: 35226465 DOI: 10.1021/acsabm.2c00002] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Traditional treatment approaches for cancer involve intravenous chemotherapy or other forms of drug delivery. These therapeutic measures suffer from several limitations such as nonspecific targeting, poor biodistribution, and buildup of drug resistances. However, significant technological advancements have been made in terms of superior modes of drug delivery over the last few decades. Technical capability in analyzing the molecular mechanisms of tumor biology, nanotechnology─particularly the development of biocompatible nanoparticles, surface modification techniques, microelectronics, and material sciences─has increased. As a result, a significant number of nanostructured carriers that can deliver drugs to specific cancerous sites with high efficiency have been developed. This particular maneuver that enables the introduction of a therapeutic nanostructured substance in the body by controlling the rate, time, and place is defined as the nanostructured drug delivery system (NDDS). Because of their versatility and ability to incorporate features such as specific targeting, water solubility, stability, biocompatibility, degradability, and ability to reverse drug resistance, they have attracted the interest of the scientific community, in general, and nanotechnologists as well as biomedical scientists. To keep pace with the rapid advancement of nanotechnology, specific technical aspects of the recent NDDSs and their prospects need to be reported coherently. To address these ongoing issues, this review article provides an overview of different NDDSs such as lipids, polymers, and inorganic nanoparticles. In addition, this review also reports the challenges of current NDDSs and points out the prospective research directions of these nanocarriers. From our focused review, we conclude that still now the most advanced and potent field of application for NDDSs is lipid-based, while other significantly potential fields include polymer-based and inorganic NDDSs. However, despite the promises, challenges remain in practical implementations of such NDDSs in terms of dosage and stability, and caution should be exercised regarding biocompatibility of materials. Considering these aspects objectively, this review on NDDSs will be particularly of interest for small-to-large scale industrial researchers and academicians with expertise in drug delivery, cancer research, and nanotechnology.
Collapse
Affiliation(s)
- Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - M Imran Hossain
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, Louisiana 71270, United States
| | - M Khalid Hossain
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan.,Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
| | - M H K Rubel
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Hossain
- Department of Materials Science and Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - A M U B Mahfuz
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka 1209, Bangladesh
| | - Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, South Kingston, Rhode Island 02881, United States
| |
Collapse
|
25
|
Antineoplastics Encapsulated in Nanostructured Lipid Carriers. Molecules 2021; 26:molecules26226929. [PMID: 34834022 PMCID: PMC8619566 DOI: 10.3390/molecules26226929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/06/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Ideally, antineoplastic treatment aims to selectively eradicate cancer cells without causing systemic toxicity. A great number of antineoplastic agents (AAs) are available nowadays, with well-defined therapeutic protocols. The poor bioavailability, non-selective action, high systemic toxicity, and lack of effectiveness of most AAs have stimulated the search for novel chemotherapy protocols, including technological approaches that provide drug delivery systems (DDS) for gold standard medicines. Nanostructured lipid carriers (NLC) are DDS that contain a core of solid and lipid liquids stabilised by surfactants. NLC have high upload capacity for lipophilic drugs, such as the majority of AAs. These nanoparticles can be prepared with a diversity of biocompatible (synthetic or natural) lipid blends, administered by different routes and functionalised for targeting purposes. This review focused on the research carried out from 2000 to now, regarding NLC formulations for AAs (antimetabolites, antimitotics, alkylating agents, and antibiotics) encapsulation, with special emphasis on studies carried out in vivo. NLC systems for codelivery of AAs were also considered, as well as those for non-classical drugs and therapies (natural products and photosensitisers). NLC have emerged as powerful DDS to improve the bioavailability, targeting and efficacy of antineoplastics, while decreasing their toxic effect in the treatment of different types of cancer.
Collapse
|
26
|
Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 40:102494. [PMID: 34775061 DOI: 10.1016/j.nano.2021.102494] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 12/19/2022]
Abstract
Multidrug resistance (MDR) in cancer chemotherapy is a growing concern for medical practitioners. P-glycoprotein (P-gp) overexpression is one of the major reasons for multidrug resistance in cancer chemotherapy. The P-gp overexpression in cancer cells depends on several factors like adenosine triphosphate (ATP) hydrolysis, hypoxia-inducible factor 1 alpha (HIF-1α), and drug physicochemical properties such as lipophilicity, molecular weight, and molecular size. Further multiple exposures of anticancer drugs to the P-gp efflux protein cause acquired P-gp overexpression. Unique structural and functional characteristics of nanotechnology-based drug delivery systems provide opportunities to circumvent P-gp mediated MDR. The primary mechanism behind the nanocarrier systems in P-gp inhibition includes: bypassing or inhibiting the P-gp efflux pump to combat MDR. In this review, we discuss the role of P-gp in MDR and highlight the recent progress in different nanocarriers to overcome P-gp mediated MDR in terms of their limitations and potentials.
Collapse
|
27
|
Tian C, Zeng L, Tang L, Yu J, Ren M. Sustained Delivery of Timolol Using Nanostructured Lipid Carriers-Laden Soft Contact Lenses. AAPS PharmSciTech 2021; 22:212. [PMID: 34378099 DOI: 10.1208/s12249-021-02096-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 11/30/2022] Open
Abstract
The contact lens prepared by the conventional soaking method using timolol-soaking solution showed poor drug uptake and high burst release with altered critical lens properties. In this study, timolol-loaded nanostructured lipid carriers (NLCs) were prepared and evaluated for enhanced timolol uptake and sustained release for the effective management of glaucoma. The characterization studies indicated that timolol-loaded NLCs were spherical in shape with an average size of 130-138 nm and a zeta potential of -46.6 to 51.3 mV. Critical lens properties such as swelling, optical transmittance, and protein adherence were improved with NLC-laden lenses compared to the conventional soaked lenses (SM-TB). Moreover, SM-TB lens showed low timolol uptake, high burst release, and short release duration up to 24 h compared to timolol-NLC-laden lens that showed high timolol uptake, and the cumulative release was sustained up to 96 h. The ability to sustain timolol release improved proportionally with an increase in the amount of Capmul MCMC8 (liquid lipid) in NLCs. In addition, NLC-laden lens was found to be safe according to the results of ocular irritation and histopathological studies. In the rabbit tear fluid model, NLC-30%-Cap-CL batch showed high timolol concentration at all time points up to 60 h. Further, pharmacodynamic study showed sustained reduction in IOP by NLC-30%-Cap-CL batch for 96 h compared to 48 h and 6 h with SM-TB lens and eye drop solution, respectively. In conclusion, NLCs enhanced timolol uptake in the contact lens from the soaking solution using soaking method with improved in vitro and in vivo results for better clinical outcomes in the patients with glaucoma.
Collapse
|
28
|
Pinto CM, Horta LS, Soares AP, Carvalho BA, Ferreira E, Lages EB, Ferreira LAM, Faraco AAG, Santiago HC, Goulart GAC. Nanoencapsulated Doxorubicin Prevents Mucositis Development in Mice. Pharmaceutics 2021; 13:1021. [PMID: 34371713 PMCID: PMC8329927 DOI: 10.3390/pharmaceutics13071021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin (DOX), a chemotherapy drug successfully used in the therapy of various types of cancer, is currently associated with the mucositis development, an inflammation that can cause ulcerative lesions in the mucosa of the gastrointestinal tract, abdominal pain and secondary infections. To increase the safety of the chemotherapy, we loaded DOX into nanostructured lipid carriers (NLCs). The NLC-DOX was characterized by HPLC, DLS, NTA, Zeta potential, FTIR, DSC, TEM and cryogenic-TEM. The ability of NLC-DOX to control the DOX release was evaluated through in vitro release studies. Moreover, the effect of NLC-DOX on intestinal mucosa was compared to a free DOX solution in C57BL/6 mice. The NLC-DOX showed spherical shape, high drug encapsulation efficiency (84.8 ± 4.6%), high drug loading (55.2 ± 3.4 mg/g) and low average diameter (66.0-78.8 nm). The DSC and FTIR analyses showed high interaction between the NLC components, resulting in controlled drug release. Treatment with NLC-DOX attenuated DOX-induced mucositis in mice, improving shortening on villus height and crypt depth, decreased inflammatory parameters, preserved intestinal permeability and increased expression of tight junctions (ZO-1 and Ocludin). These results indicated that encapsulation of DOX in NLCs is viable and reduces the drug toxicity to mucosal structures.
Collapse
Affiliation(s)
- Cristiane M. Pinto
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Laila S. Horta
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Amanda P. Soares
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Bárbara A. Carvalho
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (B.A.C.); (E.F.)
| | - Enio Ferreira
- Department of General Pathology, Biological Science Institute, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (B.A.C.); (E.F.)
| | - Eduardo B. Lages
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Lucas A. M. Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - André A. G. Faraco
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| | - Helton C. Santiago
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (L.S.H.); (H.C.S.)
| | - Gisele A. C. Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (C.M.P.); (A.P.S.); (E.B.L.); (L.A.M.F.); (A.A.G.F.)
| |
Collapse
|
29
|
Exploring the therapeutic potential of nanostructured lipid carrier approaches to tackling the inherent lacuna of chemotherapeutics and herbal drugs against breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
30
|
Fulfager AD, Yadav KS. Understanding the implications of co-delivering therapeutic agents in a nanocarrier to combat multidrug resistance (MDR) in breast cancer. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102405] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Harwansh RK, Bahadur S, Deshmukh R, Rahman MA. Exciting Potential of Nanoparticlized Lipidic System for Effective Treatment of Breast Cancer and Clinical Updates: A Translational Prospective. Curr Pharm Des 2020; 26:1191-1205. [PMID: 32003686 DOI: 10.2174/1381612826666200131101156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/16/2020] [Indexed: 12/29/2022]
Abstract
Breast cancer (BC) is a multifactorial disease and becoming a major health issue in women throughout the globe. BC is a malignant type of cancer which results from transcriptional changes in proteins and genes. Besides the availability of modern medicines and detection tools, BC has become a topmost deadly disease and its cure still remains challenging. Nanotechnology based approaches are being employed for the diagnosis and treatment of BC at clinical stages. Nanosystems have a significant role in the study of the interaction of malignant cells with their microenvironment through receptor-based targeted approach. Nowadays, lipid-based nanocarriers are being popularized in the domain of pharmaceutical and medical biology for cancer therapy. Lipidic nanoparticlized systems (LNPs) have proven to have high loading efficiency, less toxicity, improved therapeutic efficacy, enhanced bioavailability and stability of the bioactive compounds compared to traditional drug delivery systems. In the present context, several LNPs based formulations have been undertaken in various phases of clinical trials in different countries. This review highlights the importance of chemotherapeutics based lipidic nanocarriers and their anticipated use for the treatment of BC. Furthermore, the clinical trials and future prospective of LNPs have been widely elaborated.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura - 281406, India
| | - Md A Rahman
- College of Pharmacy, Taif University, Taif - 21974, Saudi Arabia
| |
Collapse
|
32
|
Mangla B, Neupane YR, Singh A, Kumar P, Shafi S, Kohli K. Lipid-nanopotentiated combinatorial delivery of tamoxifen and sulforaphane: ex vivo, in vivo and toxicity studies. Nanomedicine (Lond) 2020; 15:2563-2583. [DOI: 10.2217/nnm-2020-0277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: This study aims to load tamoxifen (TAM) and sulforaphane (SFN) into nanostructured lipid carriers (NLCs) to enhance their oral delivery. Materials & methods: TAM-SFN-NLCs were prepared using Precirol® ATO5 and Transcutol® HP, characterized and evaluated in vitro and ex vivo to assess the drug release profile and intestinal permeability, respectively. In vivo pharmacokinetic and acute toxicity assessment was performed in Wistar rats. Results: Optimized TAM-SFN-NLCs exhibited a particle size of 121.9 ± 6.42 nm and zeta potential of -21.2 ± 2.91 mV. The NLCs enhanced intestinal permeability of TAM and SFN and augmented oral bioavailability of TAM and SFN 5.2-fold and 4.8-fold, respectively. SFN significantly reduced TAM-associated toxicity in vivo. Conclusion: This coencapsulation of a chemotherapeutic agent with a herbal bioactive in NLCs could pave a novel treatment approach against cancer.
Collapse
Affiliation(s)
- Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Yub R Neupane
- Department of Pharmacy, National University of Singapore, 117559 Singapore
| | - Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences & Research University, New Delhi 110017, India
| | - Sadat Shafi
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
33
|
Singh A, Neupane YR, Mangla B, Shafi S, Kohli K. PEGylated Nanoliposomes Potentiated Oral Combination Therapy for Effective Cancer Treatment. Curr Drug Deliv 2020; 17:728-735. [DOI: 10.2174/1567201817666200724170708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
The conventional treatment regimen for cancer with a single chemotherapeutic agent is far
behind the clinical expectations due to the complexity of cancer biology and is also associated with
poor Quality of Life (QOL) due to off-site toxicity and multidrug resistance. In recent years, nanopotentiated
combination therapy has shown significant improvement in cancer treatment <i>via</i> a synergistic
approach. However, being synthetic in nature, nanocarriers have been associated with the activation of
the Complement (C) activation system resulting in serious hypersensitivity reactions known as CActivation
Related Pseudoallergy (CARPA) effect once given <i>via</i> intravenous injection. On the other
hand, nanopotentiated oral drug delivery offers several advantages for the effective and safe delivery of
the drug to the target site. This hypothesis aims to put forward wherein Exemestane (chemotherapeutic
agent) and lycopene (herbal bioactive) co-laden into PEGylated liposomes and delivered to the breast
cancer <i>via</i> the oral route. PEGylation of the liposomes would prevent both molecules from the harsh
microenvironment of the Gastrointestinal Tract (GIT) and would eventually promote their intestinal
absorption <i>via</i> the lymphatic pathway to the systemic circulation. Lycopene being a potent antioxidant
and anti-cancer herbal bioactive would promote the therapeutic efficacy of the Exemestane <i>via</i> a synergistic
approach. This nanopotentiated oral combination therapy would pave the path for the safe and
effective treatment of cancer.
Collapse
Affiliation(s)
- Archu Singh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Yub Raj Neupane
- Department of Pharmacy, National University of Singapore, 117559, Singapore
| | - Bharti Mangla
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| | - Sadat Shafi
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
34
|
Arduino I, Iacobazzi RM, Riganti C, Lopedota AA, Perrone MG, Lopalco A, Cutrignelli A, Cantore M, Laquintana V, Franco M, Colabufo NA, Luurtsema G, Contino M, Denora N. Induced expression of P-gp and BCRP transporters on brain endothelial cells using transferrin functionalized nanostructured lipid carriers: A first step of a potential strategy for the treatment of Alzheimer's disease. Int J Pharm 2020; 591:120011. [PMID: 33115695 DOI: 10.1016/j.ijpharm.2020.120011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/01/2023]
Abstract
P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) are two transporters expressed in human neural stem/progenitor cells and at the Blood-Brain Barrier (BBB) level with decreased activity in the early stage of Alzheimer's disease (AD). Both proteins, have a protective role for the embryonic stem cells in the early developmental step, maintaining them in an undifferentiated state, and limit the access of exogenous and endogenous agents to the brain. Recently, MC111 selected from a P-gp/BCRP ligands library was investigated as multitarget strategy for AD treatment, considering its ability to induce the expression and activity of both proteins. However, MC111 clinical use could be limited for the ubiquitous physiological expression of efflux transporters and its moderate toxicity towards endothelial cells. Therefore, a selective MC111 delivery system based on nanostructured lipid carriers (NLC) functionalized with transferrin were developed. The results proved the formation of NLC with average size about 120 nm and high drug encapsulation efficiency (EE% greater than 50). In vitro studies on hCMEC/D3 cells revealed that the MC111 was selectively released by NLC at BBB level and then inducing the activity and expression of BCRP and P-gp, involved in the clearance of amyloid β peptide on brain endothelial cells.
Collapse
Affiliation(s)
- Ilaria Arduino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori "Giovanni Paolo II", O. Flacco St., 70124 Bari, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy
| | - Angela Assunta Lopedota
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Maria Grazia Perrone
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Antonio Lopalco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Annalisa Cutrignelli
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Mariangela Cantore
- Institute of Chemicals and Physical Process, CNR, Via E. Orabona, Bari, Italy
| | - Valentino Laquintana
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Massimo Franco
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy
| | - Nicola Antonio Colabufo
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy; Biofordrug s.r.l., Spin-off dell'Università degli Studi di Bari ALDO MORO, via Dante 99, 70019 Triggiano (Bari), Italy
| | - Gert Luurtsema
- University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Hanzeplein 1, 9713 GZ Groningen, Netherlands
| | - Marialessandra Contino
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy.
| | - Nunzio Denora
- Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Orabona St. 4, 70125 Bari, Italy.
| |
Collapse
|
35
|
Rajpoot K. Lipid-based Nanoplatforms in Cancer Therapy: Recent Advances and Applications. Curr Cancer Drug Targets 2020; 20:271-287. [PMID: 31951180 DOI: 10.2174/1568009620666200115160805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/20/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
Though modern available cancer therapies are effective, they possess major adverse effects, causing non-compliance to patients. Furthermore, the majority of the polymeric-based medication platforms are certainly not universally acceptable, due to their several restrictions. With this juxtaposition, lipid-based medication delivery systems have appeared as promising drug nanocarriers to replace the majority of the polymer-based products because they are in a position to reverse polymer as well as, drug-associated restrictions. Furthermore, the amalgamation of the basic principle of nanotechnology in designing lipid nanocarriers, which are the latest form of lipid carriers, has tremendous chemotherapeutic possibilities as tumor-targeted drug-delivery pertaining to tumor therapy. Apart from this, it is reported that nearly 40% of the modern medication entities are lipophilic. Moreover, research continues to be efficient in attaining a significant understanding of the absorption and bioavailability of the developed lipids systems.
Collapse
Affiliation(s)
- Kuldeep Rajpoot
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh- 495009, India
| |
Collapse
|
36
|
Martinelli C, Biglietti M. Nanotechnological approaches for counteracting multidrug resistance in cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:1003-1020. [PMID: 35582219 PMCID: PMC8992571 DOI: 10.20517/cdr.2020.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 12/23/2022]
Abstract
Every year, cancer accounts for a vast portion of deaths worldwide. Established clinical protocols are based on chemotherapy, which, however, is not tumor-selective and produces a series of unbearable side effects in healthy tissues. As a consequence, multidrug resistance (MDR) can arise causing metastatic progression and disease relapse. Combination therapy has demonstrated limited responses in the treatment of MDR, mainly due to the different pharmacokinetic properties of administered drugs and to tumor heterogeneity, challenges that still need to be solved in a significant percentage of cancer patients. In this perspective, we briefly discuss the most relevant MDR mechanisms leading to therapy failure and we report the most advanced strategies adopted in the nanomedicine field for the design and evaluation of ad hoc nanocarriers. We present some emerging classes of nanocarriers developed to reverse MDR and discuss recent progress evidencing their limits and promises.
Collapse
|
37
|
Wang JY, Song YQ, Peng J, Luo HL. Nanostructured Lipid Carriers Delivering Sorafenib to Enhance Immunotherapy Induced by Doxorubicin for Effective Esophagus Cancer Therapy. ACS OMEGA 2020; 5:22840-22846. [PMID: 32954132 PMCID: PMC7495447 DOI: 10.1021/acsomega.0c02072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
The tumor microenvironment (TME) plays a significant role in weakening the effect of cancer immunotherapy, which calls for the remodeling of TME. Herein, we fabricated a nanostructured lipid carrier (NLC) to codeliver doxorubicin (Dox) and sorafenib (Sfn) as a drug delivery system (NLC/D-S). The Sfn was expected to regulate the TME of esophagus cancer. As a result, the immune response induced by Dox-related immunogenicity cell death could be fully realized. Our results demonstrated that Sfn was able to remodel the TME through downregulation of regulatory T cells (Treg), activation of effector T cells, and relieving of PD-1 expression, which achieved synergistic effect on the inhibition of primary tumor but also subsequent strong immune response on the regeneration of distant tumor.
Collapse
|
38
|
Gadag S, Sinha S, Nayak Y, Garg S, Nayak UY. Combination Therapy and Nanoparticulate Systems: Smart Approaches for the Effective Treatment of Breast Cancer. Pharmaceutics 2020; 12:E524. [PMID: 32521684 PMCID: PMC7355786 DOI: 10.3390/pharmaceutics12060524] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer has become one of the biggest concerns for oncologists in the past few decades because of its unpredictable etiopathology and nonavailability of personalized translational medicine. The number of women getting affected by breast cancer has increased dramatically, owing to lifestyle and environmental changes. Besides, the development of multidrug resistance has become a challenge in the therapeutic management of breast cancer. Studies reveal that the use of monotherapy is not effective in the management of breast cancer due to high toxicity and the development of resistance. Combination therapies, such as radiation therapy with adjuvant therapy, endocrine therapy with chemotherapy, and targeted therapy with immunotherapy, are found to be effective. Thus, multimodal and combination treatments, along with nanomedicine, have emerged as a promising strategy with minimum side effects and drug resistance. In this review, we emphasize the multimodal approaches and recent advancements in breast cancer treatment modalities, giving importance to the current data on clinical trials. The novel treatment approach by targeted therapy, according to type, such as luminal, HER2 positive, and triple-negative breast cancer, are discussed. Further, passive and active targeting technologies, including nanoparticles, bioconjugate systems, stimuli-responsive, and nucleic acid delivery systems, including siRNA and aptamer, are explained. The recent research exploring the role of nanomedicine in combination therapy and the possible use of artificial intelligence in breast cancer therapy is also discussed herein. The complexity and dynamism of disease changes require the constant upgrading of knowledge, and innovation is essential for future drug development for treating breast cancer.
Collapse
Affiliation(s)
- Shivaprasad Gadag
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Shristi Sinha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| | - Yogendra Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Sanjay Garg
- UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia;
| | - Usha Y. Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, India; (S.G.); (S.S.)
| |
Collapse
|
39
|
Sartaj A, Baboota S, Ali J. Nanomedicine: A Promising Avenue for the Development of Effective Therapy for Breast Cancer. Curr Cancer Drug Targets 2020; 20:603-615. [PMID: 32228423 DOI: 10.2174/1568009620666200331124113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/26/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Breast cancer is the most probable cancer among women. However, the available treatment is based on targeting different stages of breast cancer viz., radiation therapy, hormonal therapy, chemotherapy, and surgical interventions, which have some limitations. The available chemotherapeutics are associated with problems like low solubility, low permeability, high first-pass metabolism, and P-glycoprotein efflux. Hence, the aforementioned restrictions lead to ineffective treatment. Multiple chemotherapeutics can also cause resistance in tumors. So, the purpose is to develop an effective therapeutic regimen for the treatment of breast cancer by applying a nanomedicinal approach. METHODS This review has been conducted on a systematic search strategy, based on relevant literature available on Pub Med, MedlinePlus, Google Scholar, and Sciencedirect up to November 2019 using keywords present in abstract and title of the review. As per our inclusion and exclusion criteria, 226 articles were screened. Among 226, a total of 40 articles were selected for this review. RESULTS The significant findings with the currently available treatment is that the drug, besides its distribution to the target-specific site, also distributes to healthy cells, which results in severe side effects. Moreover, the drug is less bioavailable at the site of action; therefore, to overcome this, a high dose is required, which again causes side effects and lower the benefits. Nanomedicinal approaches give an alternative approach to avoid the associated problems of available chemotherapeutics treatment of breast cancer. CONCLUSION The nanomedicinal strategies are useful over the conventional treatment of breast cancer and deliver a target-specific drug-using different novel drug delivery approaches.
Collapse
Affiliation(s)
- Ali Sartaj
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
40
|
Anticancer Potential of Resveratrol, β-Lapachone and Their Analogues. Molecules 2020; 25:molecules25040893. [PMID: 32085381 PMCID: PMC7070981 DOI: 10.3390/molecules25040893] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/19/2023] Open
Abstract
This review aims to explore the potential of resveratrol, a polyphenol stilbene, and beta-lapachone, a naphthoquinone, as well as their derivatives, in the development of new drug candidates for cancer. A brief history of these compounds is reviewed along with their potential effects and mechanisms of action and the most recent attempts to improve their bioavailability and potency against different types of cancer.
Collapse
|
41
|
Liang Y, Zhang J, Tian B, Wu Z, Svirskis D, Han J. A NAG-Guided Nano-Delivery System for Redox- and pH-Triggered Intracellularly Sequential Drug Release in Cancer Cells. Int J Nanomedicine 2020; 15:841-855. [PMID: 32103941 PMCID: PMC7008180 DOI: 10.2147/ijn.s226249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/10/2019] [Indexed: 12/12/2022] Open
Abstract
Aim Sequential treatment with paclitaxel (PTXL) and gemcitabine (GEM) is considered clinically beneficial for non-small-cell lung cancer. This study aimed to investigate the effectiveness of a nano-system capable of sequential release of PTXL and GEM within cancer cells. Methods PTXL-ss-poly(6-O-methacryloyl-d-galactopyranose)-GEM (PTXL-ss-PMAGP-GEM) was designed by conjugating PMAGP with PTXL via disulfide bonds (-ss-), while GEM via succinic anhydride (PTXL:GEM=1:3). An amphiphilic block copolymer N-acetyl-d-glucosamine(NAG)-poly(styrene-alt-maleic anhydride)58-b-polystyrene130 acted as a targeting moiety and emulsifier in formation of nanostructures (NLCs). Results The PTXL-ss-PMAGP-GEM/NAG NLCs (119.6 nm) provided a sequential in vitro release of, first PTXL (redox-triggered), then GEM (pH-triggered). The redox- and pH-sensitive NLCs readily distributed homogenously in the cytoplasm. NAG augmented the uptake of NLCs by the cancer cells and tumor accumulation. PTXL-ss-PMAGP-GEM/NAG NLCs exhibited synergistic cytotoxicity in vitro and strongest antitumor effects in tumor-bearing mice compared to NLCs lacking pH/redox sensitivities or free drug combination. Conclusion This study demonstrated the abilities of PTXL-ss-PMAGP-GEM/NAG NLCs to achieve synergistic antitumor effect by targeted intracellularly sequential drug release.
Collapse
Affiliation(s)
- Yan Liang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Jing Zhang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| | - Zimei Wu
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1023, New Zealand
| | - Jingtian Han
- School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong Province, People's Republic of China
| |
Collapse
|
42
|
Pucci C, Martinelli C, Ciofani G. What does the future hold for chemotherapy with the use of lipid-based nanocarriers? Future Oncol 2020; 16:81-84. [PMID: 31872773 PMCID: PMC7025883 DOI: 10.2217/fon-2019-0767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
43
|
Lipid Nanoarchitectonics for Natural Products Delivery in Cancer Therapy. SUSTAINABLE AGRICULTURE REVIEWS 2020. [DOI: 10.1007/978-3-030-41842-7_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
44
|
Meng L, Lin H, Zhang J, Lin N, Sun Z, Gao F, Luo H, Ni T, Luo W, Chi J, Guo H. Doxorubicin induces cardiomyocyte pyroptosis via the TINCR-mediated posttranscriptional stabilization of NLR family pyrin domain containing 3. J Mol Cell Cardiol 2019; 136:15-26. [PMID: 31445005 DOI: 10.1016/j.yjmcc.2019.08.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 02/09/2023]
Abstract
AIMS Doxorubicin (DOX), a widely used powerful chemotherapeutic component for cancer treatment, can give rise to severe cardiotoxicity that limits its clinical use. Pyroptosis is characterized by proinflammation and has been defined as a new type of programmed cell death in recent years. However, whether the DOX-induced cardiotoxicity is related to pyroptosis, and if so, which genes are involved in this process is largely unknown. In this study, we sought to identify the effect of DOX on cardiomyocyte pyroptosis and further reveal the underlying regulatory mechanism. METHODS AND RESULTS In vitro and in vivo experiments showed that DOX treatment induced cardiomyocyte pyroptosis as evidenced by increased cell death and upregulated expression levels of NLR family pyrin domain containing 3 (NLRP3), caspase-3, IL-1β, IL-18 and GMDSD-N. Inhibition of NLRP3 rescued the DOX-induced pyroptosis. qRT-PCR showed that TINCR lncRNA was upregulated by DOX treatment and knockdown of TINCR reversed the DOX-induced pyroptosis both in vitro and in vivo. Mechanistic investigations revealed that TINCR increased NLRP3 level via recruiting IGF2BP1 to enhance NLRP3 mRNA. And the effect of TINCR on cardiomyocyte pyroptosis was attenuated by the inhibition of NLRP3 or IGF2BP1. Finally, TINCR was not involved in DOX-induced pyroptosis in cancer cells. CONCLUSION TINCR mediates the DOX-induced cardiotoxicity and pyroptosis in an IGF2BP1-dependent manner. Therefore, TINCR may serve as a promising therapeutic target to overcome the cardiotoxicity of chemotherapy for cancer therapy.
Collapse
Affiliation(s)
- Liping Meng
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jie Zhang
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Na Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Zhenzhu Sun
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Feidan Gao
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hangqi Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Tingjuan Ni
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Wenqiang Luo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| | - Hangyuan Guo
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China.
| |
Collapse
|
45
|
Salvi VR, Pawar P. Nanostructured lipid carriers (NLC) system: A novel drug targeting carrier. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.02.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. NANOMATERIALS 2019; 9:nano9040638. [PMID: 31010180 PMCID: PMC6523119 DOI: 10.3390/nano9040638] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Many therapeutically active molecules are non-soluble in aqueous systems, chemically and biologically fragile or present severe side effects. Lipid-based nanoparticle (LBNP) systems represent one of the most promising colloidal carriers for bioactive organic molecules. Their current application in oncology has revolutionized cancer treatment by improving the antitumor activity of several chemotherapeutic agents. LBNPs advantages include high temporal and thermal stability, high loading capacity, ease of preparation, low production costs, and large-scale industrial production since they can be prepared from natural sources. Moreover, the association of chemotherapeutic agents with lipid nanoparticles reduces active therapeutic dose and toxicity, decreases drug resistance and increases drug levels in tumor tissue by decreasing them in healthy tissue. LBNPs have been extensively assayed in in vitro cancer therapy but also in vivo, with promising results in some clinical trials. This review summarizes the types of LBNPs that have been developed in recent years and the main results when applied in cancer treatment, including essential assays in patients.
Collapse
|
47
|
Martinelli C, Pucci C, Ciofani G. Nanostructured carriers as innovative tools for cancer diagnosis and therapy. APL Bioeng 2019; 3:011502. [PMID: 31069332 PMCID: PMC6481740 DOI: 10.1063/1.5079943] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/05/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer accounts for millions of deaths every year and, due to the increase and aging of the world population, the number of new diagnosed cases is continuously rising. Although many progresses in early diagnosis and innovative therapeutic protocols have been already set in clinical practice, still a lot of critical aspects need to be addressed in order to efficiently treat cancer and to reduce several drawbacks caused by conventional therapies. Nanomedicine has emerged as a very promising approach to support both early diagnosis and effective therapy of tumors, and a plethora of different inorganic and organic multifunctional nanomaterials have been ad hoc designed to meet the constant demand for new solutions in cancer treatment. Given their unique features and extreme versatility, nanocarriers represent an innovative and easily adaptable tool both for imaging and targeted therapy purposes, in order to improve the specific delivery of drugs administered to cancer patients. The current review reports an in-depth analysis of the most recent research studies aiming at developing both inorganic and organic materials for nanomedical applications in cancer diagnosis and therapy. A detailed overview of different approaches currently undergoing clinical trials or already approved in clinical practice is provided.
Collapse
Affiliation(s)
- Chiara Martinelli
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera (Pisa) 56025, Italy
| | - Carlotta Pucci
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Pontedera (Pisa) 56025, Italy
| | - Gianni Ciofani
- Authors to whom correspondence should be addressed:; ; and
| |
Collapse
|
48
|
Tavares GS, Mendonça DV, Miyazaki CK, Lage DP, Soyer TG, Carvalho LM, Ottoni FM, Dias DS, Ribeiro PA, Antinarelli LM, Ludolf F, Duarte MC, Coimbra ES, Chávez-Fumagalli MA, Roatt BM, Menezes-Souza D, Barichello JM, Alves RJ, Coelho EA. A Pluronic® F127-based polymeric micelle system containing an antileishmanial molecule is immunotherapeutic and effective in the treatment against Leishmania amazonensis infection. Parasitol Int 2019; 68:63-72. [DOI: 10.1016/j.parint.2018.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/11/2022]
|
49
|
Ye J, Zhang R, Chai W, Du X. Low-density lipoprotein decorated silica nanoparticles co-delivering sorafenib and doxorubicin for effective treatment of hepatocellular carcinoma. Drug Deliv 2018; 25:2007-2014. [PMID: 30799656 PMCID: PMC6319454 DOI: 10.1080/10717544.2018.1531953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/28/2018] [Accepted: 10/01/2018] [Indexed: 02/06/2023] Open
Abstract
Combinational therapy is usually considered as a preferable approach for effective cancer therapy. Especially, combinational chemotherapies targeting different molecular targets are of particular interest due to its high flexibility as well as efficiency. In our study, the surface of silica nanoparticles (SLN) was modified with low-density lipoprotein (LDL) to construct platform (LDL-SLN) capable of specifically targeting low-density lipoprotein receptors (LDLRs) that overexpressing in hepatocellular carcinoma (HCC). In addition, the versatile drug loading capacity of LDL-SLN was employed to fabricate a preferable drug delivery system to co-deliver sorafenib (Sor) and doxorubicin (Dox) for combinational chemotherapy of HCC. Our results revealed that the LDL-SLN/Sor/Dox nanoparticles with size around 100 nm showed preferable stability in physiological environments. Moreover, the LDL-SLN/Sor/Dox could target LDLR overexpressed HepG2 cells. More importantly, both in vitro and in vivo experiments demonstrated that the LDL-SLN/Sor/Dox exerted elevated antitumor efficacy compared to Sor or Dox alone, which indicated that LDL-SLN/Sor/Dox could be a powerful tool for effective combinational chemotherapy of HCC.
Collapse
Affiliation(s)
- Junfeng Ye
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Ruoyan Zhang
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Wengang Chai
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| | - Xiaohong Du
- Department of Hepato-Biliary-Pancreatic Surgery, First Hospital of Jilin University, Changchun, PR China
| |
Collapse
|