1
|
Han D, Wang F, Shen D. Nanomedicines as Guardians of the Heart: Unleashing the Power of Antioxidants to Alleviate Myocardial Ischemic Injury. Theranostics 2024; 14:5336-5370. [PMID: 39267789 PMCID: PMC11388064 DOI: 10.7150/thno.99961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
Ischemic heart disease (IHD) is increasingly recognized as a significant cardiovascular disease with a growing global incidence. Interventions targeting the oxidative microenvironment have long been pivotal in therapeutic strategies. However, many antioxidant drugs face limitations due to pharmacokinetic and delivery challenges, such as short half-life, poor stability, low bioavailability, and significant side effects. Fortunately, nanotherapies exhibit considerable potential in addressing IHD. Nanomedicines offer advantages such as passive/active targeting, prolonged circulation time, enhanced bioavailability, and diverse carrier options. This comprehensive review explores the advancements in nanomedicines for mitigating IHD through oxidative stress regulation, providing an extensive overview for researchers in the field of antioxidant nanomedicines. By inspiring further research, this study aims to accelerate the development of novel therapies for myocardial injury.
Collapse
Affiliation(s)
- Dongjian Han
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Fuhang Wang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| | - Deliang Shen
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Cardiac Injury and Repair of Henan Province, Zhengzhou, China
| |
Collapse
|
2
|
Henoumont C, Devreux M, Laurent S. Mn-Based MRI Contrast Agents: An Overview. Molecules 2023; 28:7275. [PMID: 37959694 PMCID: PMC10648041 DOI: 10.3390/molecules28217275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
MRI contrast agents are required in the clinic to detect some pathologies, such as cancers. Nevertheless, at the moment, only small extracellular and non-specific gadolinium complexes are available for clinicians. Moreover, safety issues have recently emerged concerning the use of gadolinium complexes; hence, alternatives are urgently needed. Manganese-based MRI contrast agents could be one of these alternatives and increasing numbers of studies are available in the literature. This review aims at synthesizing all the research, from small Mn complexes to nanoparticular agents, including theranostic agents, to highlight all the efforts already made by the scientific community to obtain highly efficient agents but also evidence of the weaknesses of the developed systems.
Collapse
Affiliation(s)
- Céline Henoumont
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Marie Devreux
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
| | - Sophie Laurent
- NMR and Molecular Imaging Laboratory, Department of General, Organic and Biomedical Chemistry, University of Mons, 19 Avenue Maistriau, 7000 Mons, Belgium; (C.H.)
- Center for Microscopy and Molecular Imaging (CMMI), 8 Rue Adrienne Boland, 6041 Gosselies, Belgium
| |
Collapse
|
3
|
Martinez de la Torre C, Freshwater KA, Looney-Sanders MA, Wang Q, Bennewitz MF. Caveat Emptor: Commercialized Manganese Oxide Nanoparticles Exhibit Unintended Properties. ACS OMEGA 2023; 8:18799-18810. [PMID: 37273625 PMCID: PMC10233837 DOI: 10.1021/acsomega.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Nano-encapsulated manganese oxide (NEMO) particles are noteworthy contrast agents for magnetic resonance imaging (MRI) due to their bright, pH-switchable signal ("OFF" to "ON" at low pH), high metal loading, and targeting capability for increased specificity. For the first time, we performed a head-to-head comparison of NEMO particles from In-house and commercialized sources (US Nano vs Nanoshel) to assess their potential as bright T1 MRI contrast agents. Manganese oxide nanocrystals (MnO, Mn2O3, and Mn3O4) were systematically evaluated for size, chemistry, release of manganese ions, and MRI signal pre- and post-encapsulation within poly(lactic-co-glycolic acid) (PLGA). Suprisingly, a majority of the commercialized formulations were not as advertised by displaying unintended sizes, morphologies, chemistry, dissolution profiles, and/or MRI signal that precludes in vivo use. US Nano's Mn3O4 and Mn2O3 nanocrystals contained impurities that impacted Mn ion release as well as micron-sized rodlike structures. Nanoshel's MnO and Mn2O3 nanoparticles had very large hydrodynamic sizes (>600 nm). In-house MnO and Nanoshel's Mn3O4 nanoparticles demonstrated the best characteristics with brighter T1 MRI signals, small hydrodynamic sizes, and high encapsulation efficiencies. Our findings highlight that researchers must confirm the properties of purchased nanomaterials before utilizing them in desired applications, as their experimental success may be impacted.
Collapse
Affiliation(s)
- Celia Martinez de la Torre
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Kasey A. Freshwater
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Mara A. Looney-Sanders
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| | - Qiang Wang
- Shared
Research Facilities, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Margaret F. Bennewitz
- Department
of Chemical and Biomedical Engineering, Benjamin M. Statler College
of Engineering and Mineral Resources, West
Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
4
|
Meng CY, Ma XY, Xu MY, Pei SF, Liu Y, Hao ZL, Li QZ, Feng FM. Transcriptomics-based investigation of manganese dioxide nanoparticle toxicity in rats' choroid plexus. Sci Rep 2023; 13:8510. [PMID: 37231062 PMCID: PMC10213021 DOI: 10.1038/s41598-023-35341-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Manganese dioxide nanoparticles (MnO2-NPs) have a wide range of applications in biomedicine. Given this widespread usage, it is worth noting that MnO2-NPs are definitely toxic, especially to the brain. However, the damage caused by MnO2-NPs to the choroid plexus (CP) and to the brain after crossing CP epithelial cells has not been elucidated. Therefore, this study aims to investigate these effects and elucidate potential underlying mechanisms through transcriptomics analysis. To achieve this objective, eighteen SD rats were randomly divided into three groups: the control group (control), low-dose exposure group (low-dose) and high-dose exposure group (high-dose). Animals in the two treated groups were administered with two concentrations of MnO2-NPs (200 mg kg-1 BW and 400 mg kg-1 BW) using a noninvasive intratracheal injection method once a week for three months. Finally, the neural behavior of all the animals was tested using a hot plate tester, open-field test and Y-type electric maze. The morphological characteristics of the CP and hippocampus were observed by H&E stain, and the transcriptome of CP tissues was analysed by transcriptome sequencing. The representative differentially expressed genes were quantified by qRT-PCR. We found that treatment with MnO2-NPs could induce learning capacity and memory faculty decline and destroy the structure of hippocampal and CP cells in rats. High doses of MnO2-NPs had a more obvious destructive capacity. For transcriptomic analysis, we found that there were significant differences in the numbers and types of differential genes in CP between the low- and high-dose groups compared to the control. Through GO terms and KEGG analysis, high-dose MnO2-NPs significantly affected the expression of transporters, ion channel proteins, and ribosomal proteins. There were 17 common differentially expressed genes. Most of them were transporter and binding genes on the cell membrane, and some of them had kinase activity. Three genes, Brinp, Synpr and Crmp1, were selected for qRT-PCR to confirm their expression differences among the three groups. In conclusion, high-dose MnO2-NPs exposure induced abnormal neurobehaviour, impaired memory function, destroyed the structure of the CP and changed its transcriptome in rats. The most significant DEGs in the CP were within the transport system.
Collapse
Affiliation(s)
- Chun-Yan Meng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xin-Yi Ma
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Ming-Yan Xu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Sheng-Fei Pei
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Yang Liu
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhuo-Lu Hao
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
| | - Qing-Zhao Li
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Fu-Min Feng
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
- College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
5
|
Awen A, Hu D, Gao D, Wang Z, Wu Y, Zheng H, Guan L, Mu Y, Sheng Z. Dual-modal molecular imaging and therapeutic evaluation of coronary microvascular dysfunction using indocyanine green-doped targeted microbubbles. Biomater Sci 2023; 11:2359-2371. [PMID: 36883518 DOI: 10.1039/d2bm02155b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Coronary microvascular dysfunction (CMD), which causes a series of cardiovascular diseases, seriously endangers human health. However, precision diagnosis of CMD is still challenging due to the lack of sensitive probes and complementary imaging technologies. Herein, we demonstrate indocyanine green-doped targeted microbubbles (named T-MBs-ICG) as dual-modal probes for highly sensitive near-infrared (NIR) fluorescence imaging and high-resolution ultrasound imaging of CMD in mouse models. In vitro results show that T-MBs-ICG can specifically target fibrin, a specific CMD biomarker, via the cysteine-arginine-glutamate-lysine-alanine (CREKA) peptide modified on the surface of microbubbles. We further employ T-MBs-ICG to achieve NIR fluorescence imaging of injured myocardial tissue in a CMD mouse model, leading to a signal-to-background ratio (SBR) of up to 50, which is 20 fold higher than that of the non-targeted group. Furthermore, ultrasound molecular imaging of T-MBs-ICG is obtained within 60 s after intravenous injection, providing molecular information on ventricular and myocardial structures and fibrin with a resolution of 1.033 mm × 0.466 mm. More importantly, we utilize comprehensive dual-modal imaging of T-MBs-ICG to evaluate the therapeutic efficacy of rosuvastatin, a cardiovascular drug for the clinical treatment of CMD. Overall, the developed T-MBs-ICG probes with good biocompatibility exhibit great potential in the clinical diagnosis of CMD.
Collapse
Affiliation(s)
- Alimina Awen
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Zihang Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yayun Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| | - Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Key Laboratory of Ultrasound Medicine, Urumqi, Xinjiang, 830011, P. R. China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, P. R. China.
| |
Collapse
|
6
|
Recent advances in nanomedicines for imaging and therapy of myocardial ischemia-reperfusion injury. J Control Release 2023; 353:563-590. [PMID: 36496052 DOI: 10.1016/j.jconrel.2022.11.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Myocardial ischemia-reperfusion injury (IRI) is becoming a typical cardiovascular disease with increasing worldwide incidence. It is usually induced by the restoration of normal blood flow to the ischemic myocardium after a period of recanalization and directly leads to myocardial damage. Notably, the pathological mechanism of myocardial IRI is closely related to inflammation, oxidative stress, Ca2+ overload, and the opening of mitochondrial permeability transition pore channels. Therefore, monitoring of these changes and imaging lesions is a key to timely clinical diagnosis. Nanomedicines have shown great value in the diagnosis and treatment of myocardial IRI, with advantages including passive/active targeting, prolonged circulation, improved bioavailability, versatile carrier selection, and synergistic integration of different imaging and therapeutic agents in single particles with the same pharmaceutics. Because theranostic nanomedicines for myocardial IRI have advanced rapidly, we conduct an updated review on this topic. The special focus is on how to rationally design the nanomedicines to achieve optimal imaging and therapy. We hope this review would stimulate the interest of researchers with different backgrounds and expedite the development of nanomedicines for myocardial IRI.
Collapse
|
7
|
Song G, Zhang B, Song L, Li W, Liu C, Chen L, Liu A. MnCO 3@BSA-ICG nanoparticles as a magnetic resonance/photoacoustic dual-modal contrast agent for functional imaging of acute ischemic stroke. Biochem Biophys Res Commun 2022; 614:125-131. [PMID: 35580541 DOI: 10.1016/j.bbrc.2022.04.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022]
Abstract
Timely and accurate diagnosis of acute ischemic stroke (AIS) and simultaneous functional imaging of cerebral oxygen saturation (sO2) are essential to improve the survival rate of stroke patients but remains challenging. Herein, we developed a pH-responsive manganese (Mn)-based nanoplatform as a magnetic resonance/photoacoustic (MR/PA) dual-modal contrast agent for AIS diagnosis. The Mn-based nanoplatform was prepared via a simple and green biomimetic method using bovine serum albumin (BSA) as a scaffold for fabrication of MnCO3 NPs as the T1 MR contrast agent and accommodation of indocyanine green (ICG) as the PA probe. The obtained MnCO3@BSA-ICG NPs were biocompatible and exhibited a pH-responsive longitudinal relaxation rate and a concentration-dependent PA signal. In vivo MR/PA dual-modal imaging demonstrated that MnCO3@BSA-ICG NPs quickly and efficiently led to the MR/PA contrast enhancements in the infarcted area while not in the normal region, allowing a timely and accurate diagnosis of AIS. Moreover, PA imaging could directly monitor the sO2 level, enabling a functional imaging of AIS. Therefore, MnCO3@BSA-ICG NPs could be applied as a potential MR/PA contrast agent for timely and functional imaging of AIS.
Collapse
Affiliation(s)
- Guangrong Song
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Baorui Zhang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China
| | - Linyan Song
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Wenzhe Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Chuxuan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Leshan Chen
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Aihua Liu
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute and Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, PR China.
| |
Collapse
|
8
|
Ramirez-Carracedo R, Sanmartin M, Ten A, Hernandez I, Tesoro L, Diez-Mata J, Botana L, Ovejero-Paredes K, Filice M, Alberich-Bayarri A, Martí-Bonmatí L, Largo-Aramburu C, Saura M, Zamorano JL, Zaragoza C. Theranostic Contribution of Extracellular Matrix Metalloprotease Inducer-Paramagnetic Nanoparticles Against Acute Myocardial Infarction in a Pig Model of Coronary Ischemia-Reperfusion. Circ Cardiovasc Imaging 2022; 15:e013379. [PMID: 35678191 PMCID: PMC9213084 DOI: 10.1161/circimaging.121.013379] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Rapid screening and accurate diagnosis of acute myocardial infarction are critical to reduce the progression of myocardial necrosis, in which proteolytic degradation of myocardial extracellular matrix plays a major role. In previous studies, we found that targeting the extracellular matrix metalloprotease inducer (EMMPRIN) by injecting nanoparticles conjugated with the specific EMMPRIN-binding peptide AP9 significantly improved cardiac function in mice subjected to ischemia/reperfusion.
Collapse
Affiliation(s)
- Rafael Ramirez-Carracedo
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Marcelo Sanmartin
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Amadeo Ten
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Ignacio Hernandez
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Laura Tesoro
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Javier Diez-Mata
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Laura Botana
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.)
| | - Karina Ovejero-Paredes
- Grupo de Nanobiotecnología para Ciencias de la Vida, Departamento de Química en Ciencias Farmaceuticas Facultad de Farmacia, Universidad Complutense de Madrid (UCM). Unidad de Microscopia e Imagen Dinamica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (K.O.-P., M.F.)
| | - Marco Filice
- QUIBIM SL - Quantitative Imaging Biomarkers in Medicine, Valencia, Spain (A.A.-B.)
| | - Angel Alberich-Bayarri
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Luis Martí-Bonmatí
- Instituto de Investigación de salud La Fe, Grupo de Investigación Biomédica (GIBI230-PREBI). Nodo de Imagen La Fe en la Red de Imagen Biomédica (ReDIB) de Infraestructuras Científicas Técnicas y Singulares (ICTS), Valencia, Spain (A.T., L.M.-B.)
| | - Carlota Largo-Aramburu
- Departamento de Cirugía Experimental, Hospital Universitario La Paz, Madrid, Spain (C.L.-A.)
| | - Marta Saura
- Unidad de Fisiología, Departamento de Biología de Sistemas, Universidad de Alcalá (IRYCIS), Alcalá de Henares, Madrid, Spain (M. Saura).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Jose Luis Zamorano
- Departamento de Cardiología, Hospital Universitario Ramón y Cajal (IRYCIS), Madrid, Spain (M. Sanmartin, J.L.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| | - Carlos Zaragoza
- Unidad Mixta de Investigación Cardiovascular, Departamento de Cardiología, Universidad Francisco de Vitoria, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain (R.R.-C., I.H., L.T., J.D.-M., L.B., C.Z.).,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III (ISCIII), Madrid, Spain (R.R.-C., M. Sanmartin, I.H., L.T., M. Saura, J.L.Z., C.Z.)
| |
Collapse
|
9
|
Li B, Han L, Wang H, Zheng Y. Albumin-templated manganese carbonate nanoparticles for precise magnetic resonance imaging of acute myocardial infarction. J Biomater Appl 2022; 37:493-501. [PMID: 35574609 DOI: 10.1177/08853282221102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Myocardial infarction (MI) is a major cause of death worldwide. Early and precise diagnosis of myocardial viability after MI is extremely important for effective treatment and prognosis evaluation. Herein, we developed the BSA-templated manganese carbonate (MnCO3@BSA) nanoparticles as an MR imaging contrast agent for accurate detection of the infarcted regions. The chemophysical features, targeting capability toward the infarct, and biocompatibility were evaluated. The nanoparticles showed superior chemical stability. In vitro study suggested that the MnCO3@BSA nanoparticles do not enter normal cardiomyocytes. MR imaging indicated that the MnCO3@BSA with a high longitudinal (r1) relaxivity of 5.84 mM-1s-1 at physiological condition specifically accumulated into the infarcted regions of myocardial ischemia/reperfusion (I/R) mice. In addition, the MnCO3@BSA nanoparticles exhibited low cytotoxicity to cardiomyocytes, no damage to organs and good hemocompatibility. Thereby, the MnCO3@BSA nanoparticles manifested great potential as an extracellular contrast agent of MR imaging for sensitive and specific detection of the infarcted regions during acute myocardial I/R injury.
Collapse
Affiliation(s)
- Bing Li
- Department of Pharmacology, School of Pharmaceutical Sciences, 12517Capital Medical University, Beijing, China
| | - Luyi Han
- School of Basic Medical Sciences, 12517Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Human Anatomy, School of Basic Medical Sciences, 12517Capital Medical University, Beijing, China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Pharmaceutical Sciences, 12517Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Subhan MA, Muzibur Rahman M. Recent Development in Metallic Nanoparticles for Breast Cancer Therapy and Diagnosis. CHEM REC 2022; 22:e202100331. [PMID: 35146897 DOI: 10.1002/tcr.202100331] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Metal-based nanoparticles are very promising for their applications in cancer diagnosis, drug delivery and therapy. Breast cancer is the major reason of death in woman especially in developed countries including EU and USA. Due to the heterogeneity of cancer cells, nanoparticles are effective as therapeutics and diagnostics. Anti-cancer therapy of breast tumors is challenging because of highly metastatic progression of the disease to brain, bone, lung, and liver. Magnetic nanoparticles are crucial for metastatic breast cancer detection and protection. This review comprehensively discusses the application of nanomaterials as breast cancer therapy, therapeutics, and diagnostics.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, School of Physical Sciences, Shah Jalal University of Science and Technology, 3114, Sylhet, Bangladesh
| | - Mohammed Muzibur Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, 21589, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Zhu W, Wei Z, Han C, Weng X. Nanomaterials as Promising Theranostic Tools in Nanomedicine and Their Applications in Clinical Disease Diagnosis and Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3346. [PMID: 34947695 PMCID: PMC8707825 DOI: 10.3390/nano11123346] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022]
Abstract
In recent decades, with the rapid development of nanotechnology, nanomaterials have been widely used in the medical field, showing great potential due to their unique physical and chemical properties including minimal size and functionalized surface characteristics. Nanomaterials such as metal nanoparticles and polymeric nanoparticles have been extensively studied in the diagnosis and treatment of diseases that seriously threaten human life and health, and are regarded to significantly improve the disadvantages of traditional diagnosis and treatment platforms, such as poor effectiveness, low sensitivity, weak security and low economy. In this review, we report and discuss the development and application of nanomaterials in the diagnosis and treatment of diseases based mainly on published research in the last five years. We first briefly introduce the improvement of several nanomaterials in imaging diagnosis and genomic sequencing. We then focus on the application of nanomaterials in the treatment of diseases, and select three diseases that people are most concerned about and that do the most harm: tumor, COVID-19 and cardiovascular diseases. First, we introduce the characteristics of nanoparticles according to the excellent effect of nanoparticles as delivery carriers of anti-tumor drugs. We then review the application of various nanoparticles in tumor therapy according to the classification of nanoparticles, and emphasize the importance of functionalization of nanomaterials. Second, COVID-19 has been the hottest issue in the health field in the past two years, and nanomaterials have also appeared in the relevant treatment. We enumerate the application of nanomaterials in various stages of viral pathogenesis according to the molecular mechanism of the complete pathway of viral infection, pathogenesis and transmission, and predict the application prospect of nanomaterials in the treatment of COVID-19. Third, aiming at the most important causes of human death, we focus on atherosclerosis, aneurysms and myocardial infarction, three of the most common and most harmful cardiovascular diseases, and prove that nanomaterials could be involved in a variety of therapeutic approaches and significantly improve the therapeutic effect in cardiovascular diseases. Therefore, we believe nanotechnology will become more widely involved in the diagnosis and treatment of diseases in the future, potentially helping to overcome bottlenecks under existing medical methods.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Zhanqi Wei
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- School of Medicine, Tsinghua University, Haidian District, Beijing 100084, China
| | - Chang Han
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; (W.Z.); (Z.W.); (C.H.)
- Department of State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
13
|
Pan Q, Xu J, Wen CJ, Xiong YY, Gong ZT, Yang YJ. Nanoparticles: Promising Tools for the Treatment and Prevention of Myocardial Infarction. Int J Nanomedicine 2021; 16:6719-6747. [PMID: 34621124 PMCID: PMC8491866 DOI: 10.2147/ijn.s328723] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Despite several recent advances, current therapy and prevention strategies for myocardial infarction are far from satisfactory, owing to limitations in their applicability and treatment effects. Nanoparticles (NPs) enable the targeted and stable delivery of therapeutic compounds, enhance tissue engineering processes, and regulate the behaviour of transplants such as stem cells. Thus, NPs may be more effective than other mechanisms, and may minimize potential adverse effects. This review provides evidence for the view that function-oriented systems are more practical than traditional material-based systems; it also summarizes the latest advances in NP-based strategies for the treatment and prevention of myocardial infarction.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Cen-Jin Wen
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhao-Ting Gong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|
14
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Sobańska Z, Roszak J, Kowalczyk K, Stępnik M. Applications and Biological Activity of Nanoparticles of Manganese and Manganese Oxides in In Vitro and In Vivo Models. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1084. [PMID: 33922170 PMCID: PMC8145730 DOI: 10.3390/nano11051084] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022]
Abstract
The expanding applications of nanotechnology seem to be a response to many technological, environmental, and medical challenges. The unique properties of nanoparticles allow for developing new technologies and therapies. Among many investigated compounds is manganese and its oxides, which in the form of nanoparticles, could be a promising alternative for gadolinium-based contrast agents used in diagnostic imaging. Manganese, which is essential for living organisms as an enzyme cofactor, under excessive exposure-for example, due to water contamination or as an occupational hazard for welders-can lead to neurological disorders, including manganism-a condition similar to Parkinson's disease. This review attempts to summarise the available literature data on the potential applications of manganese and manganese oxide nanoparticles and their biological activity. Some of the published studies, both in vitro and in vivo, show negative effects of exposure to manganese, mainly on the nervous system, whereas other data suggest that it is possible to develop functionalised nanoparticles with negligible toxicity and novel promising properties.
Collapse
Affiliation(s)
- Zuzanna Sobańska
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Joanna Roszak
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Kornelia Kowalczyk
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
| | - Maciej Stępnik
- Department of Translational Research, Nofer Institute of Occupational Medicine, 8 St Teresy St., 91-348 Łódź, Poland; (J.R.); (K.K.); (M.S.)
- QSAR Lab Ltd., Trzy Lipy 3 St., 80-172 Gdańsk, Poland
| |
Collapse
|
16
|
Pala R, Pattnaik S, Busi S, Nauli SM. Nanomaterials as Novel Cardiovascular Theranostics. Pharmaceutics 2021; 13:pharmaceutics13030348. [PMID: 33799932 PMCID: PMC7998597 DOI: 10.3390/pharmaceutics13030348] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of conditions associated with heart and blood vessels and are considered the leading cause of death globally. Coronary heart disease, atherosclerosis, myocardial infarction represents the CVDs. Since CVDs are associated with a series of pathophysiological conditions with an alarming mortality and morbidity rate, early diagnosis and appropriate therapeutic approaches are critical for saving patients’ lives. Conventionally, diagnostic tools are employed to detect disease conditions, whereas therapeutic drug candidates are administered to mitigate diseases. However, the advent of nanotechnological platforms has revolutionized the current understanding of pathophysiology and therapeutic measures. The concept of combinatorial therapy using both diagnosis and therapeutics through a single platform is known as theranostics. Nano-based theranostics are widely used in cancer detection and treatment, as evident from pre-clinical and clinical studies. Nanotheranostics have gained considerable attention for the efficient management of CVDs. The differential physicochemical properties of engineered nanoparticles have been exploited for early diagnosis and therapy of atherosclerosis, myocardial infarction and aneurysms. Herein, we provided the information on the evolution of nano-based theranostics to detect and treat CVDs such as atherosclerosis, myocardial infarction, and angiogenesis. The review also aims to provide novel avenues on how nanotherapeutics’ trending concept could transform our conventional diagnostic and therapeutic tools in the near future.
Collapse
Affiliation(s)
- Rajasekharreddy Pala
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| | - Subhaswaraj Pattnaik
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India; (S.P.); (S.B.)
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Harry and Diane Rinker Health Science Campus, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California Irvine, Irvine, CA 92868, USA
- Correspondence: (R.P.); (S.M.N.); Tel.: +1-714-516-5462 (R.P.); +1-714-516-5480 (S.M.N.); Fax: +1-714-516-5481 (R.P. & S.M.N.)
| |
Collapse
|
17
|
Pretorius D, Serpooshan V, Zhang J. Nano-Medicine in the Cardiovascular System. Front Pharmacol 2021; 12:640182. [PMID: 33746761 PMCID: PMC7969876 DOI: 10.3389/fphar.2021.640182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/19/2021] [Indexed: 01/19/2023] Open
Abstract
Nano-medicines that include nanoparticles, nanocomposites, small molecules, and exosomes represent new viable sources for future therapies for the dysfunction of cardiovascular system, as well as the other important organ systems. Nanomaterials possess special properties ranging from their intrinsic physicochemical properties, surface energy and surface topographies which can illicit advantageous cellular responses within the cardiovascular system, making them exceptionally valuable in future clinical translation applications. The success of nano-medicines as future cardiovascular theranostic agents requires a comprehensive understanding of the intersection between nanomaterial and the biomedical fields. In this review, we highlight some of the major types of nano-medicine systems that are currently being explored in the cardiac field. This review focusses on the major differences between the systems, and how these differences affect the specific therapeutic or diagnostic applications. The important concerns relevant to cardiac nano-medicines, including cellular responses, toxicity of the different nanomaterials, as well as cardio-protective and regenerative capabilities are discussed. In this review an overview of the current development of nano-medicines specific to the cardiac field is provided, discussing the diverse nature and applications of nanomaterials as therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vahid Serpooshan
- Emory Children's Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Li Y, Li B, Wang X, Meng Y, Bai L, Zheng Y. Safe and efficient magnetic resonance imaging of acute myocardial infarction with gadolinium-doped carbon dots. Nanomedicine (Lond) 2020; 15:2385-2398. [PMID: 32914700 DOI: 10.2217/nnm-2020-0160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: The magneto-fluorescent gadolinium-doped carbon dots (Gd-CDs) were developed as a cardiac MR imaging contrast agent to detect the infarcted myocardium on a myocardial ischemia/reperfusion (I/R) mice model. Materials & methods: The chemophysical features, cardiac MR imaging effect, biodistribution and biocompatibility of Gd-CDs were studied. Results: The ultrasmall size and good aqueous dispersibility endows Gd-CDs with high longitudinal relaxivity, intense fluorescence, excellent physiological stability and superior biocompatibility. More importantly, Gd-CDs preferentially target the infarcts as determined by the confocal microscopy and MR imaging on the I/R mice at the acute stage of myocardial infarction. Conclusion: Gd-CDs manifest great potential for development as an MR imaging contrast agent to facilitate accurate visualization and image-guided therapy of acute myocardial infarction.
Collapse
Affiliation(s)
- Yingxu Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Bing Li
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Xuechun Wang
- Department of Chemistry & Biology, School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yan Meng
- Department of Pathology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| | - Yuanyuan Zheng
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
19
|
Siddique S, Chow JCL. Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1700. [PMID: 32872399 PMCID: PMC7559738 DOI: 10.3390/nano10091700] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
Nanomaterials, such as nanoparticles, nanorods, nanosphere, nanoshells, and nanostars, are very commonly used in biomedical imaging and cancer therapy. They make excellent drug carriers, imaging contrast agents, photothermal agents, photoacoustic agents, and radiation dose enhancers, among other applications. Recent advances in nanotechnology have led to the use of nanomaterials in many areas of functional imaging, cancer therapy, and synergistic combinational platforms. This review will systematically explore various applications of nanomaterials in biomedical imaging and cancer therapy. The medical imaging modalities include magnetic resonance imaging, computed tomography, positron emission tomography, single photon emission computerized tomography, optical imaging, ultrasound, and photoacoustic imaging. Various cancer therapeutic methods will also be included, including photothermal therapy, photodynamic therapy, chemotherapy, and immunotherapy. This review also covers theranostics, which use the same agent in diagnosis and therapy. This includes recent advances in multimodality imaging, image-guided therapy, and combination therapy. We found that the continuous advances of synthesis and design of novel nanomaterials will enhance the future development of medical imaging and cancer therapy. However, more resources should be available to examine side effects and cell toxicity when using nanomaterials in humans.
Collapse
Affiliation(s)
- Sarkar Siddique
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada;
| | - James C. L. Chow
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
20
|
Hu B, Boakye‐Yiadom KO, Yu W, Yuan Z, Ho W, Xu X, Zhang X. Nanomedicine Approaches for Advanced Diagnosis and Treatment of Atherosclerosis and Related Ischemic Diseases. Adv Healthc Mater 2020; 9:e2000336. [PMID: 32597562 DOI: 10.1002/adhm.202000336] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/30/2020] [Indexed: 12/16/2022]
Abstract
Cardiovascular diseases (CVDs) remain one of the major causes of mortality worldwide. In response to this and other worldwide health epidemics, nanomedicine has emerged as a rapidly evolving discipline that involves the development of innovative nanomaterials and nanotechnologies and their applications in therapy and diagnosis. Nanomedicine presents unique advantages over conventional medicines due to the superior properties intrinsic to nanoscopic therapies. Once used mainly for cancer therapies, recently, tremendous progress has been made in nanomedicine that has led to an overall improvement in the treatment and diagnosis of CVDs. This review elucidates the pathophysiology and potential targets of atherosclerosis and associated ischemic diseases. It may be fruitful to pursue future work in the nanomedicine-mediated treatment of CVDs based on these targets. A comprehensive overview is then provided featuring the latest preclinical and clinical outcomes in cardiovascular imaging, biomarker detection, tissue engineering, and nanoscale delivery, with specific emphasis on nanoparticles, nanostructured scaffolds, and nanosensors. Finally, the challenges and opportunities regarding the future development and clinical translation of nanomedicine in related fields are discussed. Overall, this review aims to provide a deep and thorough understanding of the design, application, and future development of nanomedicine for atherosclerosis and related ischemic diseases.
Collapse
Affiliation(s)
- Bin Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Kofi Oti Boakye‐Yiadom
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Wei Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zi‐Wei Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - William Ho
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xiaoyang Xu
- Department of Chemical and Materials EngineeringNew Jersey Institute of Technology Newark NJ 07102 USA
| | - Xue‐Qing Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
21
|
Albumin nanocomposites with MnO 2/Gd 2O 3 motifs for precise MR imaging of acute myocardial infarction in rabbit models. Biomaterials 2019; 230:119614. [PMID: 31753475 DOI: 10.1016/j.biomaterials.2019.119614] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 10/23/2019] [Accepted: 11/07/2019] [Indexed: 02/05/2023]
Abstract
The severe mortality and morbidity of myocardial infarction requests appropriate and accurate detection. Considering pathological profile of the acidic myocardial infarction microenvironments, herein, the low pH-sensitive albumin nanocomposites with MnO2 motifs (MnO2@BSA) have been engineered for T1-weighted MR imaging of myocardial infarction, while using non-pH-responsive Gd2O3@BSA nanocomposites as control. The nanocomposites were 20-30 nm in diameter with spheroid morphology. Besides, the MnO2@BSA have exhibited pH-triggered releasing of Mn2+, demonstrating approximately 38-fold and 55-fold increased molecular relaxivity at acute myocardial infarction-mimicking pH 6.5 (13.08 mM-1s-1) and macrophage intracellular pH 5.0 (18.76 mM-1s-1) compared to the extremely low relaxivity (0.34 mM-1s-1) at normal physiological conditions (pH 7.4). However, the Gd2O3@BSA with molecular relaxivity approximately 10 mM-1s-1 were without pH-sensitive properties. Furthermore, the MnO2@BSA have demonstrated high accumulation in the acute myocardial infarction regions and fast metabolism from the body after systemic injection, accounting high contrast enhancement for accurate MR imaging of acute myocardial infarction in rabbit models, demonstrating better diagnostic performance over the controls.
Collapse
|
22
|
Cai X, Zhu Q, Zeng Y, Zeng Q, Chen X, Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int J Nanomedicine 2019; 14:8321-8344. [PMID: 31695370 PMCID: PMC6814316 DOI: 10.2147/ijn.s218085] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/02/2019] [Indexed: 01/09/2023] Open
Abstract
Contrast agents (CAs) play a crucial role in high-quality magnetic resonance imaging (MRI) applications. At present, as a result of the Gd-based CAs which are associated with renal fibrosis as well as the inherent dark imaging characteristics of superparamagnetic iron oxide nanoparticles, Mn-based CAs which have a good biocompatibility and bright images are considered ideal for MRI. In addition, manganese oxide nanoparticles (MONs, such as MnO, MnO2, Mn3O4, and MnOx) have attracted attention as T1-weighted magnetic resonance CAs due to the short circulation time of Mn(II) ion chelate and the size-controlled circulation time of colloidal nanoparticles. In this review, recent advances in the use of MONs as MRI contrast agents for tumor detection and diagnosis are reported, as are the advances in in vivo toxicity, distribution and tumor microenvironment-responsive enhanced tumor chemotherapy and radiotherapy as well as photothermal and photodynamic therapies.
Collapse
Affiliation(s)
- Xiaoxia Cai
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qingxia Zhu
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yun Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Qi Zeng
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| | - Yonghua Zhan
- Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|