1
|
Wan X, Yao H, Wei Z, Gao D, Zheng D, Xu B, Xie M. Heterogeneous porous hypoxia-mimicking scaffolds propel urethral reconstruction by promoting angiogenesis and regulating inflammation. Biomaterials 2025; 314:122833. [PMID: 39277947 DOI: 10.1016/j.biomaterials.2024.122833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
The nasty urine microenvironment (UME) impedes neourethral regeneration by inhibiting angiogenesis and inducing an excessive inflammatory response. Cellular adaptation to hypoxia improves regeneration in numerous tissues. In this study, heterogeneous porous hypoxia-mimicking scaffolds were fabricated for urethral reconstruction via promoting angiogenesis and modulating the inflammatory response based on sustained release of dimethyloxalylglycine (DMOG) to promote HIF-1α stabilization. Such scaffolds exhibit a two-layered structure: a dense layer composed of electrospun poly (l-lactic acid) (PLLA) nanofibrous mats and a loose layer composed of a porous gelatin matrix incorporated with DMOG-loaded mesoporous silica nanoparticles (DMSNs) and coated with poly(glycerol sebacate) (PGS). The modification of PGS could significantly increase rupture elongation, making the composite scaffolds more suitable for urethral tissue regeneration. Additionally, sustained release of DMOG from the scaffold facilitates proliferation, migration, tube formation, and angiogenetic gene expression in human umbilical vein endothelial cells (HUVECs), as well as stimulates M2 macrophage polarization and its regulation of HUVECs migration and smooth muscle cell (SMCs) contractile phenotype. These effects were downstream of the stabilization of HIF-1α in HUVECs and macrophages under hypoxia-mimicking conditions. Furthermore, the scaffold achieved better urethral reconstruction in a rabbit urethral stricture model, including an unobstructed urethra with a larger urethral diameter, increased regeneration of urothelial cells, SMCs, and neovascularization. Our results indicate that heterogeneous porous hypoxia-mimicking scaffolds could promote urethral reconstruction via facilitating angiogenesis and modulating inflammatory response.
Collapse
Affiliation(s)
- Xiang Wan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Haijun Yao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ziwei Wei
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dajun Gao
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Dachao Zheng
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Minkai Xie
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
2
|
Alzoubi F, Alhumaidan AA, AlRumaih HS, Alqarawi FK, Omar O. The relationship between the secondary implant stability quotient and oxidized implant-related factors: A retrospective study. Heliyon 2024; 10:e39156. [PMID: 39640737 PMCID: PMC11620092 DOI: 10.1016/j.heliyon.2024.e39156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Objective The present retrospective study aimed to determine the relationship between the secondary implant stability quotient and different parameters related to an oxidized implant. Methods A total of 135 patients (305 oxidized implants) were included. Implant-related factors (length, diameter, surgical and loading protocols, grafting, insertion torque, and primary stability) were used for comparisons and linear regression analyses, using secondary ISQ as the dependent variable. Results At the patient level, the mean time from implantation to secondary ISQ registration was 20.3 ± 29 weeks, and the mean secondary ISQ was 77.30 ± 7.22. The ISQ did not reveal significant differences regarding implant lengths, loading protocol, and simultaneous grafting. In contrast, platform diameters (3.5, 4.3, and 5.0), surgical protocols (one stage versus two stages), insertion torque (<35 Ncm versus >35 Ncm), and primary stability (achieved versus not achieved) all revealed significant secondary ISQ differences. Nevertheless, the regression analysis demonstrated that the platform diameter was the only variable significantly and positively predicted the secondary ISQ. Similar findings were found with the implant level analysis. Conclusions Among different implant- and protocol-related parameters, the platform diameter of the oxidized implant appears to be the only significant predictor of high secondary ISQ values at the time of superstructure connection.
Collapse
Affiliation(s)
- Fawaz Alzoubi
- Department of General Dental Practice, Faculty of Dentistry, Kuwait University, Kuwait
| | - Abdulkareem Abdullah Alhumaidan
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Hamad Saleh AlRumaih
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Firas Khalid Alqarawi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
3
|
Zhang Q, Dai J, Lin Y, Li M. Isobavachalcone alleviates ischemic stroke by suppressing HDAC1 expression and improving M2 polarization. Brain Res Bull 2024; 211:110944. [PMID: 38604377 DOI: 10.1016/j.brainresbull.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1β was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-β and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.
Collapse
Affiliation(s)
- Qiannan Zhang
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Junting Dai
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yongzhong Lin
- Department of Neurology, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| | - Miao Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, People's Republic of China.
| |
Collapse
|
4
|
Üremis N, Türköz Y, Üremiş MM, Çiğremiş Y, Şalva E. RETRACTED ARTICLE: Investigating EGFR-VEGF-mediated apoptotic effect of cucurbitacin D and I combination with sorafenib via Ras/Raf/MEK/ERK and PI3K/Akt signaling pathways. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3247. [PMID: 37917368 DOI: 10.1007/s00210-023-02811-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Affiliation(s)
- Nuray Üremis
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Emine Şalva
- Department of Pharmacy Technology, Pharmacy Faculty, Inonu University, Malatya, Turkey
| |
Collapse
|
5
|
Sun G, Shu T, Ma S, Li M, Qu Z, Li A. A submicron forest-like silicon surface promotes bone regeneration by regulating macrophage polarization. Front Bioeng Biotechnol 2024; 12:1356158. [PMID: 38707505 PMCID: PMC11066256 DOI: 10.3389/fbioe.2024.1356158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Introduction: Silicon is a major trace element in humans and a prospective supporting biomaterial to bone regeneration. Submicron silicon pillars, as a representative surface topography of silicon-based biomaterials, can regulate macrophage and osteoblastic cell responses. However, the design of submicron silicon pillars for promoting bone regeneration still needs to be optimized. In this study, we proposed a submicron forest-like (Fore) silicon surface (Fore) based on photoetching. The smooth (Smo) silicon surface and photoetched regular (Regu) silicon pillar surface were used for comparison in the bone regeneration evaluation. Methods: Surface parameters were investigated using a field emission scanning electron microscope, atomic force microscope, and contact angle instrument. The regulatory effect of macrophage polarization and succedent osteogenesis was studied using Raw264.7, MC3T3-E1, and rBMSCs. Finally, a mouse calvarial defect model was used for evaluating the promoting effect of bone regeneration on the three surfaces. Results: The results showed that the Fore surface can increase the expression of M2-polarized markers (CD163 and CD206) and decrease the expression of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α). Fore surface can promote the osteogenesis in MC3T3-E1 cells and osteoblastic differentiation of rBMSCs. Furthermore, the volume fraction of new bone and the thickness of trabeculae on the Fore surface were significantly increased, and the expression of RANKL was downregulated. In summary, the upregulation of macrophage M2 polarization on the Fore surface contributed to enhanced osteogenesis in vitro and accelerated bone regeneration in vivo. Discussion: This study strengthens our understanding of the topographic design for developing future silicon-based biomaterials.
Collapse
Affiliation(s)
- Guo Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Shaoyang Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Meng Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
Jiang X, Ma J, Xue K, Chen J, Zhang Y, Zhang G, Wang K, Yao Z, Hu Q, Lin C, Lei B, Mao C. Highly Bioactive MXene-M2-Exosome Nanocomposites Promote Angiogenic Diabetic Wound Repair through Reconstructing High Glucose-Derived Immune Inhibition. ACS NANO 2024; 18:4269-4286. [PMID: 38270104 DOI: 10.1021/acsnano.3c09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The repair of diabetic wounds remains challenging, primarily due to the high-glucose-derived immune inhibition which often leads to the excessive inflammatory response, impaired angiogenesis, and heightened susceptibility to infection. However, the means to reduce the immunosuppression and regulate the conversion of M2 phenotype macrophages under a high-glucose microenvironment using advanced biomaterials for diabetic wounds are not yet fully understood. Herein, we report two-dimensional carbide (MXene)-M2 macrophage exosome (Exo) nanohybrids (FM-Exo) for promoting diabetic wound repair by overcoming the high-glucose-derived immune inhibition. FM-Exo showed the sustained release of M2 macrophage-derived exosomes (M2-Exo) up to 7 days and exhibited broad-spectrum antibacterial activity. In the high-glucose microenvironment, relative to the single Exo, FM-Exo could significantly induce the optimized M2a/M2c polarization ratio of macrophages by activating the PI3K/Akt signaling pathway, promoting the proliferation, migration of fibroblasts, and angiogenic ability of endothelial cells. In the diabetic full-thickness wound model, FM-Exo effectively regulated the polarization status of macrophages and promoted their transition to the M2 phenotype, thereby inhibiting inflammation, promoting angiogenesis through VEGF secretion, and improving proper collagen deposition. As a result, the healing process was accelerated, leading to a better healing outcome with reduced scarring. Therefore, this study introduced a promising approach to address diabetic wounds by developing bioactive nanomaterials to regulate immune inhibition in a high-glucose environment.
Collapse
Affiliation(s)
- Xiaoqi Jiang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
- Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, 322100, China
| | - Junping Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Kaikai Xue
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jinghao Chen
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Guojian Zhang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kangyan Wang
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Zhe Yao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Department of Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Cai Lin
- Department of Burns, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Bo Lei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China
| | - Cong Mao
- Key Laboratory of Orthopedics of Zhejiang Province, Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
7
|
Donehoo DA, Collier CA, VandenHeuvel SN, Roy S, Solberg SC, Raghavan SA. Degrees of macrophage-facilitated healing in aneurysm occlusion devices. J Biomed Mater Res B Appl Biomater 2024; 112:e35385. [PMID: 38345190 DOI: 10.1002/jbm.b.35385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/05/2023] [Accepted: 01/27/2024] [Indexed: 02/15/2024]
Abstract
Insufficient healing of aneurysms following treatment with vascular occlusion devices put patients at severe risk of fatal rupture. Therefore, promoting healing and not just occlusion is vital to enhance aneurysm healing. Following occlusion device implantation, healing is primarily orchestrated by macrophage immune cells, ending with fibroblasts depositing collagen to stabilize the aneurysm neck and dome, preventing rupture. Several modified occlusion devices are available currently on-market. Previous in vivo work demonstrated that modifications of occlusion devices with a shape memory polymer foam had enhanced aneurysm healing outcomes. To better understand cellular response to occlusion devices and improve aneurysm occlusion device design variables, we developed an in vitro assay to isolate prominent interactions between devices and key healing players: macrophages and fibroblasts. We used THP-1 monocyte derived macrophages and human dermal fibroblasts in our cell culture models. Macrophages were allowed device contact with on-market competitor aneurysm occlusion devices for up to 96 h, to allow for any spontaneous device-driven macrophage activation. Macrophage secreted factors were captured in the culture media, in response to device-specific activation. Fibroblasts were then exposed to device-conditioned macrophage media (with secreted factors alone), to determine if there were any device-induced changes in collagen secretion. Our in vitro studies were designed to test the direct effect of devices on macrophage activation, and the indirect effect of devices on collagen secretion by fibroblasts to promote aneurysm healing and stabilization. Over 96 h, macrophages displayed significant migration toward and interaction with all tested devices. As compared to other devices, shape memory polymer foams (SMM, Shape Memory Medical) induced significant changes in gene expression indicating a shift toward an anti-inflammatory pro-healing M2-like phenotype. Similarly, macrophages in contact with SMM devices secreted more vascular endothelial growth factor (VEGF) compared with other devices. Macrophage conditioned media from SMM-contacted macrophages actively promoted fibroblast secretion of collagen, comparable to amounts observed with exogenous stimulation via VEGF supplementation. Our data indicate that SMM devices may promote good aneurysm healing outcomes, because collagen production is an essential step to ultimately stabilize an aneurysm.
Collapse
Affiliation(s)
- Del A Donehoo
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Claudia A Collier
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | | | - Sanjana Roy
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Spencer C Solberg
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Shreya A Raghavan
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Kermanian K, Farahpour MR, Tabatabaei ZG. Accelerative effects of alginate-chitosan/titanium oxide@geraniol nanosphere hydrogels on the healing process of wounds infected with Acinetobacter baumannii and Streptococcus pyogenes bacteria. Int J Biol Macromol 2024; 254:127549. [PMID: 37863134 DOI: 10.1016/j.ijbiomac.2023.127549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
This study was conducted to evaluate the effects of alginate-chitosan/titanium oxide/geraniol (Alg-Csn/TiO2@GRL nanosphere) nanospheres hydrogels on the healing process of the wounds infected with Acinetobacter baumannii and Streptococcus pyogenes bacteria. The nanospheres were successfully synthesized and their physicochemical properties such as DLS, FTIR, FE-SEM, TEM, XRD and also their safety and in-vitro antibacterial activity were assessed and confirmed. Following induction of the infected wounds, the mice were treated with s base ointment (Control), mupirocin® as standard control group and also hydrogels prepared from Alg-Csn@GRL, Alg-Csn/TiO2 and Alg-Csn/TiO2@GRL. Wound contraction, total bacterial count, expression of bFGF, VEGF, IGF-1, CD68 and COL-1 A, iNOS and eNOS were measured. The results showed the treatment of wounds with Alg-Csn/TiO2@GRL hydrogels significantly accelerated wound contraction, decreased total bacterial count and reduced the expressions of CD68, iNOS and eNOS and increased the expressions of VEGF, bFGF, IGF-1 and COL-1 A compared with other groups. It can be concluded that Alg-Csn/TiO2@GRL hydrogels expedite the wound healing process by their effects on bacteria and subsequently inflammation and increasing the expression of proliferative genes. The Alg-Csn/TiO2@GRL hydrogel can be utilized in combination with other agents for the treatment of infected wounds after future clinical studies.
Collapse
Affiliation(s)
- Kimia Kermanian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Mohammad Reza Farahpour
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran.
| | | |
Collapse
|
9
|
Wang H, Huang Y, Zhou C, Gong F, Wang J, Chen G. Engineering VEGF-like peptide QKCMP promotes rapid endothelialization of blood vessels. J Appl Biomater Funct Mater 2024; 22:22808000241301180. [PMID: 39568108 DOI: 10.1177/22808000241301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Angiogenesis, which involves many essential processes, such as human reproduction, organ development, and wound healing, is regulated by multiple signaling pathways. QKCMP is a polypeptide with similar effects to vascular endothelial growth factor (VEGF), which promotes angiogenesis. In this study, zebrafish were treated with different concentrations of QKCMP, and it was found that QKCMP significantly promoted the growth of blood vessels. Human umbilical vein endothelial cells (HUVECs) was then treated with different concentrations of QKCMP, which proved that QKCMP could promote cell proliferation and inhibit cell apoptosis, and thus obtain a complete gene expression matrix. Genes and biological functions or pathways significantly associated with QKCMP were obtained using differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and enrichment analyses. Among them, genes significantly related to QKCMP are enriched in biological processes (BP) such as vascular formation and development, as well as the main signaling pathway: PI3K/AKT signaling pathway. The proproliferative and antiapoptotic effects of QKCMP on the HUVECs and the induction of cell cycle were then verified using cell counting kit 8 (CCK-8) and flow cytometry. Finally, it was confirmed that QKCMP promotes angiogenesis and rapid endothelialization by stimulating the PI3K-AKT and Hippo signaling pathways using quantitative real-time PCR (qRT-PCR) and western blot (WB).
Collapse
Affiliation(s)
- Haifeng Wang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiangyong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Cheng J, Huang H, Chen Y, Wu R. Nanomedicine for Diagnosis and Treatment of Atherosclerosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304294. [PMID: 37897322 PMCID: PMC10754137 DOI: 10.1002/advs.202304294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/11/2023] [Indexed: 10/30/2023]
Abstract
With the changing disease spectrum, atherosclerosis has become increasingly prevalent worldwide and the associated diseases have emerged as the leading cause of death. Due to their fascinating physical, chemical, and biological characteristics, nanomaterials are regarded as a promising tool to tackle enormous challenges in medicine. The emerging discipline of nanomedicine has filled a huge application gap in the atherosclerotic field, ushering a new generation of diagnosis and treatment strategies. Herein, based on the essential pathogenic contributors of atherogenesis, as well as the distinct composition/structural characteristics, synthesis strategies, and surface design of nanoplatforms, the three major application branches (nanodiagnosis, nanotherapy, and nanotheranostic) of nanomedicine in atherosclerosis are elaborated. Then, state-of-art studies containing a sequence of representative and significant achievements are summarized in detail with an emphasis on the intrinsic interaction/relationship between nanomedicines and atherosclerosis. Particularly, attention is paid to the biosafety of nanomedicines, which aims to pave the way for future clinical translation of this burgeoning field. Finally, this comprehensive review is concluded by proposing unresolved key scientific issues and sharing the vision and expectation for the future, fully elucidating the closed loop from atherogenesis to the application paradigm of nanomedicines for advancing the early achievement of clinical applications.
Collapse
Affiliation(s)
- Jingyun Cheng
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Hui Huang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou Institute of Shanghai UniversityWenzhouZhejiang325088P. R. China
| | - Rong Wu
- Department of UltrasoundShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| |
Collapse
|
11
|
Yin X, Li Y, Chen Y, Liu P, Feng B, Zhang P, Zeng H. IL-4-loaded alginate/chitosan multilayer films for promoting angiogenesis through both direct and indirect means. Int J Biol Macromol 2023; 232:123486. [PMID: 36731693 DOI: 10.1016/j.ijbiomac.2023.123486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023]
Abstract
Vascularization remains a major challenge in tissue engineering. In tissue repair with the involvement of biomaterials, both the material properties and material-induced immune response can affect angiogenesis. However, there is a scarcity of research on biomaterials that modulate angiogenesis simultaneously from both perspectives. Meanwhile, the effects and mechanisms of biomaterial-induced macrophages on angiogenesis remain controversial. In this study, a cytokine-controlled release system from our previous work was employed, and the effects thereof on angiogenesis through both direct and indirect means were investigated. Alginate/chitosan multilayer films were fabricated on interleukin (IL)-4-loaded titania nanotubes to achieve a sustained release of IL-4. The released IL-4 and the multilayers synergistically promoted angiogenic behaviors of endothelial cells (ECs), while up-regulating the expression of early vascular markers. Furthermore, polarized macrophages (both M1 and M2) notably elevated the expression of late vascular markers in ECs via the high expression of pro-maturation factor angiogenin-1. After subcutaneous implantation, the IL-4-loaded implants induced increased neovascularization in a short period, with the surrounding tissue returning to normal at the later stage. Therefore, the proposed IL-4-loaded implants exhibited superior pro-angiogenic capability in vitro and in vivo through both direct stimulation of ECs and the indirect induction of a suitable immune microenvironment.
Collapse
Affiliation(s)
- Xianzhen Yin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China; Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yiting Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yingqi Chen
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Peng Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Bo Feng
- Key Laboratory of Advanced Technology for Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Peng Zhang
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, 518036, China.
| |
Collapse
|
12
|
Zhu M, Duan B, Hou K, Mao L, Wang X. A comparative in vitro and in vivo study of porcine- and bovine-derived non-cross-linked collagen membranes. J Biomed Mater Res B Appl Biomater 2023; 111:568-578. [PMID: 36214252 DOI: 10.1002/jbm.b.35174] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/12/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023]
Abstract
The porcine-derived non-cross-linked collagen membrane Bio-gide® (BG) and the bovine-derived non-cross-linked collagen membrane Heal-all® (HA) were compared to better understand their in vitro biophysical characteristics and in vivo degradation patterns as a reference for clinical applications. It was showed that the porosity, specific surface area, pore volume and pore diameter of BG were larger than those of HA (64.5 ± 5.2% vs. 48.6 ± 6.1%; 18.6 ± 2.8 m2 /g vs. 2.3 ± 0.6 m2 /g; 0.114 ± 0.002 cm3 /g vs. 0.003 ± 0.001 cm3 /g; 24.4 ± 3.5 nm vs. 7.3 ± 1.7 nm, respectively); the average swelling ratio of BG was higher than that of HA (412.6 ± 41.2% vs. 270.0 ± 2.7%); the tensile strength of both dry and wet HA was higher than those of BG (18.26 ± 3.27 MPa vs. 4.02 ± 1.35 MPa; 2.24 ± 0.21 MPa vs. 0.16 ± 0.02 MPa, respectively); 73% of HA remained after 72 h in collagenase solution, whereas only 8.2% of BG remained. A subcutaneous rat implantation model revealed that, at 3, 7, 14, 28, and 56 days postmembrane implantation, there were more total inflammatory cells, especially more M1 and M2 polarized macrophages and higher M2/M1 ratio in BG than in HA; in addition, the fibrous capsule around BG was also thicker than that around HA. Moreover, concentrations of dozens of cytokines including interleukin-2(IL-2), IL-7, IL-10 and so forth. in BG were higher than those in HA. It is suggested that BG and HA might be suitable for different clinical applications according to their different characteristics.
Collapse
Affiliation(s)
- Mengdi Zhu
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Beibei Duan
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Kegui Hou
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Lisha Mao
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| | - Xuejiu Wang
- Department of Oral and Maxillofacial Surgery, Capital Medical University School of Stomatology, Beijing, China
| |
Collapse
|
13
|
Jeong JH, Hur SS, Lobionda S, Chaycham S, Oh JS, Lee YK, Hwang Y. Heparin-mimicking polymer-based hydrogel matrix regulates macrophage polarization by controlling cell adhesion. Biochem Biophys Res Commun 2023; 642:154-161. [PMID: 36580826 DOI: 10.1016/j.bbrc.2022.12.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
The physicochemical properties of biomaterials influence cell adhesion, shape, and polarization of macrophages. In this study, we aimed to evaluate the polarization of macrophages in terms of the regulation of cell adhesion and how synthetic mimics for heparin and poly(sodium-4-styrenesulfonate) can regulate macrophage polarization by modulating cell shape, focal adhesion, cell traction force, and intracellular tension. Our initial findings showed that macrophages cultured with heparin-mimicking polymer-based hydrogel matrix showed reduced expression of cell adhesion markers such as integrins, vinculin, RhoA, and ROCK1/2 and reduced cell shape, elongation, cell-matrix traction force, and intracellular tension. Furthermore, we observed a significant decrease in cell adhesion in cells cultured on the hydrogel, resulting in the promotion of M1 polarization. These findings offer insights into the important roles of cell-matrix interactions in macrophage polarization and offer a platform for heparin-mimicking polymer-based hydrogel matrices to induce M1 polarization by inducing cell adhesion without classical activators.
Collapse
Affiliation(s)
- Ji Hoon Jeong
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Stefani Lobionda
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea
| | - Saharach Chaycham
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea
| | - Jae Sang Oh
- Department of Neurosurgery, College of Medicine, Cheonan Hospital, Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea.
| | - Yun Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, Chungcheongnam-do, 31151, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, Chungcheongnam-do, 31538, Republic of Korea.
| |
Collapse
|
14
|
Sharifi M, Farahani MK, Salehi M, Atashi A, Alizadeh M, Kheradmandi R, Molzemi S. Exploring the Physicochemical, Electroactive, and Biodelivery Properties of Metal Nanoparticles on Peripheral Nerve Regeneration. ACS Biomater Sci Eng 2023; 9:106-138. [PMID: 36545927 DOI: 10.1021/acsbiomaterials.2c01216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Despite the advances in the regeneration/rehabilitation field of damaged tissues, the functional recovery of peripheral nerves (PNs), especially in a long gap injury, is considered a great medical challenge. Recent progress in nanomedicine has provided great hope for PN regeneration through the strategy of controlling cell behavior by metal nanoparticles individually or loaded on scaffolds/conduits. Despite the confirmed toxicity of metal nanoparticles due to long-term accumulation in nontarget tissues, they play a role in the damaged PN regeneration based on the topography modification of scaffolds/conduits, enhancing neurotrophic factor secretion, the ion flow improvement, and the regulation of electrical signals. Determining the fate of neural progenitor cells would be a major achievement in PN regeneration, which seems to be achievable by metal nanoparticles through altering cell vital approaches and controlling their functions. Therefore, in this literature, an attempt was made to provide an overview of the effective activities of metal nanoparticles on the PN regeneration, until the vital clues of the PN regeneration and how they are changed by metal nanoparticles are revealed to the researcher.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Mohammad Kamalabadi Farahani
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Amir Atashi
- Stem Cell and Tissue Engineering Research Center, Faculty of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Rasoul Kheradmandi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| | - Sahar Molzemi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran.,Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, 3614773955, Iran
| |
Collapse
|
15
|
He Y, Gao Y, Ma Q, Zhang X, Zhang Y, Song W. Nanotopographical cues for regulation of macrophages and osteoclasts: emerging opportunities for osseointegration. J Nanobiotechnology 2022; 20:510. [PMID: 36463225 PMCID: PMC9719660 DOI: 10.1186/s12951-022-01721-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022] Open
Abstract
Nanotopographical cues of bone implant surface has direct influences on various cell types during the establishment of osseointegration, a prerequisite of implant bear-loading. Given the important roles of monocyte/macrophage lineage cells in bone regeneration and remodeling, the regulation of nanotopographies on macrophages and osteoclasts has arisen considerable attentions recently. However, compared to osteoblastic cells, how nanotopographies regulate macrophages and osteoclasts has not been properly summarized. In this review, the roles and interactions of macrophages, osteoclasts and osteoblasts at different stages of bone healing is firstly presented. Then, the diversity and preparation methods of nanotopographies are summarized. Special attentions are paid to the regulation characterizations of nanotopographies on macrophages polarization and osteoclast differentiation, as well as the focal adhesion-cytoskeleton mediated mechanism. Finally, an outlook is indicated of coordinating nanotopographies, macrophages and osteoclasts to achieve better osseointegration. These comprehensive discussions may not only help to guide the optimization of bone implant surface nanostructures, but also provide an enlightenment to the osteoimmune response to external implant.
Collapse
Affiliation(s)
- Yide He
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Yuanxue Gao
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Qianli Ma
- grid.5510.10000 0004 1936 8921Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway
| | - Xige Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Shaanxi Xi’an, 710032 China
| | - Yumei Zhang
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Wen Song
- grid.233520.50000 0004 1761 4404State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
16
|
Xu B, He Y, Zhang Y, Ma Z, Zhang Y, Song W. In Situ Growth of Tunable Gold Nanoparticles by Titania Nanotubes Templated Electrodeposition for Improving Osteogenesis through Modulating Macrophages Polarization. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50520-50533. [PMID: 36330544 DOI: 10.1021/acsami.2c13976] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Driving macrophages M2 polarization has attracted growing attention for improving osteogenesis. Here, the in situ growth of tunable gold nanoparticles (AuNPs) on titania nanotubes (TiNTs) array was realized by electrodeposition, with the guidance of TiNTs. The fabricated Au layer showed excellent biocompatibility with different osteoimmune effects. Briefly, the Au deposition on 5 and 10 V anodized TiNTs surface could induce RAW264.7 cells to M2 polarization, whereas the Au deposition on 20 V anodized TiNTs surface showed M1 polarization, as indicated by various markers determination through immunofluorescence staining, qPCR, Western blot, and ELISA. Furthermore, the osteogenic differentiation of MC3T3-E1 was significantly enhanced by the macrophages conditioned medium from the Au@10VNTs surface. The in vivo tests also confirmed denser and thicker new trabecula bone formation and more M2 macrophages infiltration both on and adjacent to the Au@10VNTs implant surface. In mechanism, the cytokine array analysis of macrophages conditioned medium from the Au@10VNTs surface revealed the upregulation of pro-healing cytokines such as IL-10 and VEGF and downregulation of pro-inflammatory cytokines such as IL-1β and MCSF. In addition, the NF-κB pathway was significantly inhibited. In conclusion, the electrodeposition of a Au layer guided by TiNTs is a promising strategy for reducing postoperative inflammatory reactions and improving osseointegration through modulating macrophages polarization.
Collapse
Affiliation(s)
- Boya Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yan Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Ma
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
17
|
Serra A, del Giudice G, Kinaret PAS, Saarimäki LA, Poulsen SS, Fortino V, Halappanavar S, Vogel U, Greco D. Characterization of ENM Dynamic Dose-Dependent MOA in Lung with Respect to Immune Cells Infiltration. NANOMATERIALS 2022; 12:nano12122031. [PMID: 35745370 PMCID: PMC9228743 DOI: 10.3390/nano12122031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 02/01/2023]
Abstract
The molecular effects of exposures to engineered nanomaterials (ENMs) are still largely unknown. In classical inhalation toxicology, cell composition of bronchoalveolar lavage (BAL) is a toxicity indicator at the lung tissue level that can aid in interpreting pulmonary histological changes. Toxicogenomic approaches help characterize the mechanism of action (MOA) of ENMs by investigating the differentially expressed genes (DEG). However, dissecting which molecular mechanisms and events are directly induced by the exposure is not straightforward. It is now generally accepted that direct effects follow a monotonic dose-dependent pattern. Here, we applied an integrated modeling approach to study the MOA of four ENMs by retrieving the DEGs that also show a dynamic dose-dependent profile (dddtMOA). We further combined the information of the dddtMOA with the dose dependency of four immune cell populations derived from BAL counts. The dddtMOA analysis highlighted the specific adaptation pattern to each ENM. Furthermore, it revealed the distinct effect of the ENM physicochemical properties on the induced immune response. Finally, we report three genes dose-dependent in all the exposures and correlated with immune deregulation in the lung. The characterization of dddtMOA for ENM exposures, both for apical endpoints and molecular responses, can further promote toxicogenomic approaches in a regulatory context.
Collapse
Affiliation(s)
- Angela Serra
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Giusy del Giudice
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | | | - Laura Aliisa Saarimäki
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
| | - Sarah Søs Poulsen
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Vittorio Fortino
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada;
| | - Ulla Vogel
- National Research Centre for the Working Environment, 2100 Copenhagen, Denmark; (S.S.P.); (U.V.)
| | - Dario Greco
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (A.S.); (G.d.G.); (L.A.S.)
- BioMediTech Institute, Tampere University, 33520 Tampere, Finland
- Finnish Hub for Development and Validation of Integrated Approaches (FHAIVE), 33520 Tampere, Finland
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland;
- Correspondence:
| |
Collapse
|
18
|
Cai D, Gao W, Li Z, Zhang Y, Xiao L, Xiao Y. Current Development of Nano-Drug Delivery to Target Macrophages. Biomedicines 2022; 10:1203. [PMID: 35625939 PMCID: PMC9139084 DOI: 10.3390/biomedicines10051203] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Macrophages are the most important innate immune cells that participate in various inflammation-related diseases. Therefore, macrophage-related pathological processes are essential targets in the diagnosis and treatment of diseases. Since nanoparticles (NPs) can be preferentially taken up by macrophages, NPs have attracted most attention for specific macrophage-targeting. In this review, the interactions between NPs and the immune system are introduced to help understand the pharmacokinetics and biodistribution of NPs in immune cells. The current design and strategy of NPs modification for specific macrophage-targeting are investigated and summarized.
Collapse
Affiliation(s)
- Donglin Cai
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Wendong Gao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
| | - Zhelun Li
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Yufeng Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China;
| | - Lan Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| | - Yin Xiao
- Centre for Biomedical Technologies, School of Mechanical, Medical & Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (D.C.); (W.G.); (Z.L.)
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, 60 Musk Ave., Kelvin Grove, Brisbane, QLD 4059, Australia
| |
Collapse
|
19
|
Li L, Liu S, Tan J, Wei L, Wu D, Gao S, Weng Y, Chen J. Recent advance in treatment of atherosclerosis: Key targets and plaque-positioned delivery strategies. J Tissue Eng 2022; 13:20417314221088509. [PMID: 35356091 PMCID: PMC8958685 DOI: 10.1177/20417314221088509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Atherosclerosis, a chronic inflammatory disease of vascular wall, is a progressive pathophysiological process with lipids oxidation/depositing initiation and innate/adaptive immune responses. The coordination of multi systems covering oxidative stress, dysfunctional endothelium, diseased lipid uptake, cell apoptosis, thrombotic and pro-inflammatory responding as well as switched SMCs contributes to plaque growth. In this circumstance, inevitably, targeting these processes is considered to be effective for treating atherosclerosis. Arriving, retention and working of payload candidates mediated by targets in lesion direct ultimate therapeutic outcomes. Accumulating a series of scientific studies and clinical practice in the past decades, lesion homing delivery strategies including stent/balloon/nanoparticle-based transportation worked as the potent promotor to ensure a therapeutic effect. The objective of this review is to achieve a very brief summary about the effective therapeutic methods cooperating specifical targets and positioning-delivery strategies in atherosclerosis for better outcomes.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Sainan Liu
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Jianying Tan
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Lai Wei
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Dimeng Wu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Shuai Gao
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu, PR China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
20
|
Zhang YZ, Zeb A, Cheng LF. Exploring the molecular mechanism of hepatitis virus inducing hepatocellular carcinoma by microarray data and immune infiltrates analysis. Front Immunol 2022; 13:1032819. [PMID: 36439183 PMCID: PMC9697180 DOI: 10.3389/fimmu.2022.1032819] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The number of new cases of hepatocellular carcinoma (HCC) worldwide reached 910,000, ranking the sixth, 80% HCC is associated with viruses, so exploring the molecular mechanism of viral carcinogenicity is imperative. The study showed that both HBV and HCV associated HCC and non-viral HCC have the same molecular phenotype (low gene expression and inhibition of immune pathways), but in the tumor immune micro-environment, there is excessive M2-type macrophage polarization in virus-associated hepatocellular carcinoma. To address this phenomenon, the data sets were analyzed and identified five hub genes (POLR2A, POLR2B, RPL5, RPS6, RPL23A) involved in viral gene expression and associated with PI3K-Akt-mTOR pathway activation by six algorithms. In addition, numerous studies have reported that M2-type macrophages participate in the hepatic fibro-pathological process of the development of HCC and are regulated by the PI3K-Akt-mTOR pathway. On this basis, the study showed that hepatitis virus causes abnormal expression of hub genes, leading to the activation of the pathway, which in turn promote the differentiation of M2-type macrophages and eventually promote the formation of liver fibrosis, leading to the occurrence of HCC. In addition, these hub genes are regulated by transcription factors and m6A enzyme, and have good prognosis and diagnostic value. With regard to drug reuse, the results suggest that patients with virus-related HCC for whom Cytidine triphosphate disodium salt and Guanosine-5'-Triphosphate are used as supplementary therapy, and may have a better prognosis. In conclusion, the study has identified novel molecules that are carcinogenic to hepatitis viruses and are expected to serve as molecular markers and targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Yong-Zheng Zhang
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Amir Zeb
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Lu-Feng Cheng
- Department of Pharmacology, School of Pharmacy, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
21
|
Wu J, Jin L, Tan JY, Chen XF, Wang QQ, Yuan GY, Chen TX. The effects of a biodegradable Mg-based alloy on the function of VSMCs via immunoregulation of macrophages through Mg-induced responses. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1292. [PMID: 34532429 PMCID: PMC8422083 DOI: 10.21037/atm-21-1375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
Background Restenosis is one of the worst side effects of percutaneous coronary intervention (PCI) due to neointima formation resulting from the excessive proliferation and migration of vascular smooth muscle cells (VSMCs) and continuous inflammation. Biodegradable Mg-based alloy is a promising candidate material because of its good mechanical properties and biocompatibility, and biodegradation of cardiovascular stents. Although studies have shown reduced neointima formation after Mg-based CVS implantation in vivo, these findings were inconsistent with in vitro studies, demonstrating magnesium-mediated promotion of the proliferation and migration of VSMCs. Given the vital role of activated macrophage-driven inflammation in neointima formation, along with the well-demonstrated crosstalk between macrophages and VSMCs, we investigated the interactions of a biodegradable Mg-Nd-Zn-Zr alloy (denoted JDBM), which is especially important for cardiovascular stents, with VSMCs via macrophages. Methods JDBM extracts and MgCl2 solutions were prepared to study their effect on macrophages. To study the effects of the JDBM extracts and MgCl2 solutions on the function of VSMCs via immunoregulation of macrophages, conditioned media (CM) obtained from macrophages was used to establish a VSMC-macrophage indirect coculture system. Results Our results showed that both JDBM extracts and MgCl2 solutions significantly attenuated the inflammatory response stimulated by lipopolysaccharide (LPS)-activated macrophages and converted macrophages into M2-type cells. In addition, JDBM extracts and MgCl2 solutions significantly decreased the expression of genes related to VSMC phenotypic switching, migration, and proliferation in macrophages. Furthermore, the proliferation, migration, and proinflammatory phenotypic switching of VSMCs were significantly inhibited when the cells were incubated with CMs from macrophages treated with LPS + extracts or LPS + MgCl2 solutions. Conclusions Taken together, our results suggested that the magnesium in the JDBM extract could affect the functions of VSMCs through macrophage-mediated immunoregulation, inhibiting smooth muscle hyperproliferation to suppress restenosis after implantation of a biodegradable Mg-based stent.
Collapse
Affiliation(s)
- Jing Wu
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Allergy/Immunology Innovation Team, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology/Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Jin
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology/Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Jin-Yun Tan
- Department of Vascular Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xia-Fang Chen
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Neonatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | | | - Guang-Yin Yuan
- School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.,National Engineering Research Center of Light Alloys Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Xin Chen
- Division of Immunology, Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Allergy/Immunology Innovation Team, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Rheumatology/Immunology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
22
|
Yu WP, Ding JL, Liu XL, Zhu GD, Lin F, Xu JJ, Wang Z, Zhou JL. Titanium dioxide nanotubes promote M2 polarization by inhibiting macrophage glycolysis and ultimately accelerate endothelialization. Immun Inflamm Dis 2021; 9:746-757. [PMID: 33835721 PMCID: PMC8342206 DOI: 10.1002/iid3.429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Titanium has been widely used in prosthetic valves, but they are associated with serious defects in titanium-based prosthetic valves, such as thrombosis, calcification, and decay. Therefore, it is very important to biofunctionalize titanium-based valves to reduce inflammation and accelerate endothelialization of stents and antithrombosis. The titanium dioxide nanotubes were prepared from pure titanium (Ti) by anodic oxidation method in this study. The effects of titanium dioxide nanotubes on the metabolism of macrophages and the inflammatory reaction as implants were studied in vitro. The polarization state of macrophages and the ability to accelerate endothelialization were analyzed. The results demonstrated that titanium nanotubes promote M2 polarization of macrophages by inhibiting glycolysis and activating the Adenosine monophosphate-activated protein kinase (AMPK) signaling pathway. In general, biofunctionalization titanium with nanotube could inhibit macrophage glycolysis, reduce inflammatory factor release and promote M2 polarization by activating the AMPK signaling pathway. And endothelialization was accelerated in vitro. Our result demonstrated that titanium nanotube could act as a potential approach to biofunctionlize titanium-based prosthetic valves for endothelialization.
Collapse
Affiliation(s)
- Wen P. Yu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jing L. Ding
- Department of GastroenterologyThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xin L. Liu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Guo D. Zhu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Feng Lin
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Jian J. Xu
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Ziyao Wang
- Department of Clinical PathologyThe First Affiliated Hospital of Gannan Medical CollegeGanzhouChina
| | - Jian L. Zhou
- Department of Cardiovascular SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| |
Collapse
|
23
|
Zhao DW, Ren B, Wang HW, Zhang X, Yu MZ, Cheng L, Sang YH, Cao SS, Thieringer FM, Zhang D, Wan Y, Liu C. 3D-printed titanium implant combined with interleukin 4 regulates ordered macrophage polarization to promote bone regeneration and angiogenesis. Bone Joint Res 2021; 10:411-424. [PMID: 34259564 PMCID: PMC8333031 DOI: 10.1302/2046-3758.107.bjr-2020-0334.r4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Aims The use of 3D-printed titanium implant (DT) can effectively guide bone regeneration. DT triggers a continuous host immune reaction, including macrophage type 1 polarization, that resists osseointegration. Interleukin 4 (IL4) is a specific cytokine modulating osteogenic capability that switches macrophage polarization type 1 to type 2, and this switch favours bone regeneration. Methods IL4 at concentrations of 0, 30, and 100 ng/ml was used at day 3 to create a biomimetic environment for bone marrow mesenchymal stromal cell (BMMSC) osteogenesis and macrophage polarization on the DT. The osteogenic and immune responses of BMMSCs and macrophages were evaluated respectively. Results DT plus 30 ng/ml of IL4 (DT + 30 IL4) from day 3 to day 7 significantly (p < 0.01) enhanced macrophage type 2 polarization and BMMSC osteogenesis compared with the other groups. Local injection of IL4 enhanced new bone formation surrounding the DT. Conclusion DT + 30 IL4 may switch macrophage polarization at the appropriate timepoints to promote bone regeneration. Cite this article: Bone Joint Res 2021;10(7):411–424.
Collapse
Affiliation(s)
- Da-Wang Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China.,Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Stomatology, Shandong University, Jinan, Shandong, China
| | - Bing Ren
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China.,Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Hong-Wei Wang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Xiao Zhang
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Ming-Zhi Yu
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Lei Cheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Yuan-Hua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, China
| | - Shuai-Shuai Cao
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Florian M Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, Basel, Switzerland
| | - Dong Zhang
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yi Wan
- Key Laboratory of High Efficiency and Clean Manufacturing, School of Mechanical Engineering, Shandong University, Jinan, China.,National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, China
| | - Chao Liu
- Institute of Stomatology, Shandong University, Jinan, Shandong, China.,Department of Oral and Maxillofacial Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
24
|
Yang Y, Lin Y, Zhang Z, Xu R, Yu X, Deng F. Micro/nano-net guides M2-pattern macrophage cytoskeleton distribution via Src-ROCK signalling for enhanced angiogenesis. Biomater Sci 2021; 9:3334-3347. [PMID: 33725044 DOI: 10.1039/d1bm00116g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Implant surface topography has been proven to determine the fate of adhered macrophage polarization, which is closely related to the cytoskeletal arrangement during adhesion. Our purpose was to establish a topography that is favourable to M2 macrophage switching by regulating macrophage cytoskeleton distribution. Two micro/nano-net structures with different pore sizes were generated by alkali bathing at medium (SAM) or high (SAH) temperature based on the micro-level surface. Their surface characteristics, in vitro macrophage polarization and impact on endothelial cells were analysed. The in vivo macrophage response and osseointegration were also tested. The results showed that the micro/nano-net has high hydrophilicity and moderate roughness. In the SAH and SAM groups, macrophages exhibited an elongated cytoskeleton with tiny protrusions and had a high M2/M1 polarization ratio with enhanced angiogenic ability, and in vivo studies also showed faster angiogenesis and bone formation in these groups. SAH showed even better results than SAM. For cytoskeleton related pathway explanation, ROCK expression was upregulated and Src expression was downregulated at the early or late adhesion stage in both the SAH and SAM groups. These results indicated that the micro/nano-net structure guides elongated macrophage adhesion states via Src-ROCK signalling and switches macrophages towards the M2 phenotype, which provides a cytoskeleton-oriented topography design for an ideal immune response.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Yujing Lin
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Zhengchuan Zhang
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Ruogu Xu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Xiaoran Yu
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | - Feilong Deng
- Department of Oral Implantology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, PR China. and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| |
Collapse
|
25
|
Hu N, Xie L, Liao Q, Gao A, Zheng Y, Pan H, Tong L, Yang D, Gao N, Starink MJ, Chu PK, Wang H. A more defective substrate leads to a less defective passive layer: Enhancing the mechanical strength, corrosion resistance and anti-inflammatory response of the low-modulus Ti-45Nb alloy by grain refinement. Acta Biomater 2021; 126:524-536. [PMID: 33684537 DOI: 10.1016/j.actbio.2021.02.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 01/04/2023]
Abstract
Orthopedic and dental implants made of β-type Ti alloys have low elastic modulus which can better relieve the stress shielding effects after surgical implantation. Nevertheless, clinical application of β-type Ti alloys is hampered by the insufficient mechanical strength and gradual release of pro-inflammatory metallic ions under physiological conditions. In this study, the β-type Ti-45Nb alloy is subjected to high-pressure torsion (HPT) processing to refine the grain size. After HPT processing, the tensile strength increases from 370 MPa to 658 MPa due to grain boundary strengthening and at the same time, the favorable elastic modulus is maintained at a low level of 61-72 GPa because the single β-phase is preserved during grain refinement. More grain boundaries decrease the work function and facilitate the formation of thicker and less defective passive films leading to better corrosion resistance. In addition, more rapid repair of the passive layer mitigates release of metallic ions from the alloy and consequently, the inflammatory response is suppressed. The results reveal a strategy to simultaneously improve the mechanical and biological properties of metallic implant materials for orthopedics and dentistry. STATEMENT OF SIGNIFICANCE: The low modulus Ti-45Nb alloy is promising in addressing the complication of stress shielding induced by biomedical Ti-based materials with too-high elastic modulus. However, its insufficient strength hampers its clinical application, and traditional strengthening via heat treatments will compromise the low elastic modulus. In the current study, we enhanced the ultimate tensile strength of Ti-45Nb from 370 MPa to 658 MPa through grain-refinement strengthening, while the elastic modulus was maintained at a low value (61-72 GPa). Moreover, substrate grain-refinement has been proved to improve the corrosion resistance of Ti-45Nb with reduced inflammatory response both in vitro and in vivo. A relationship between the substrate microstructure and the surface passive layer has been established to explain the beneficial effects of substrate grain-refinement.
Collapse
Affiliation(s)
- Nan Hu
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; National Innovation Center for Advanced Medical Devices, Shenzhen, China
| | - Lingxia Xie
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Liao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ang Gao
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yanyan Zheng
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Haobo Pan
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liping Tong
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Dazhi Yang
- Department of Spinal Surgery, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
| | - Nong Gao
- Engineering Materials group, University of Southampton, Southampton SO17 1BJ, UK
| | - Marco J Starink
- Engineering Materials group, University of Southampton, Southampton SO17 1BJ, UK
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Center for Human Tissues and Organs Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
26
|
Rafique M, Wei T, Sun Q, Midgley AC, Huang Z, Wang T, Shafiq M, Zhi D, Si J, Yan H, Kong D, Wang K. The effect of hypoxia-mimicking responses on improving the regeneration of artificial vascular grafts. Biomaterials 2021; 271:120746. [PMID: 33725586 DOI: 10.1016/j.biomaterials.2021.120746] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/16/2021] [Accepted: 02/28/2021] [Indexed: 12/12/2022]
Abstract
Cellular transition to hypoxia following tissue injury, has been shown to improve angiogenesis and regeneration in multiple tissues. To take advantage of this, many hypoxia-mimicking scaffolds have been prepared, yet the oxygen access state of implanted artificial small-diameter vascular grafts (SDVGs) has not been investigated. Therefore, the oxygen access state of electrospun PCL grafts implanted into rat abdominal arteries was assessed. The regions proximal to the lumen and abluminal surfaces of the graft walls were normoxic and only the interior of the graft walls was hypoxic. In light of this differential oxygen access state of the implanted grafts and the critical role of vascular regeneration on SDVG implantation success, we investigated whether modification of SDVGs with HIF-1α stabilizer dimethyloxalylglycine (DMOG) could achieve hypoxia-mimicking responses resulting in improving vascular regeneration throughout the entirety of the graft wall. Therefore, DMOG-loaded PCL grafts were fabricated by electrospinning, to support the sustained release of DMOG over two weeks. In vitro experiments indicated that DMOG-loaded PCL mats had significant biological advantages, including: promotion of human umbilical vein endothelial cells (HUVECs) proliferation, migration and production of pro-angiogenic factors; and the stimulation of M2 macrophage polarization, which in-turn promoted macrophage regulation of HUVECs migration and smooth muscle cells (SMCs) contractile phenotype. These beneficial effects were downstream of HIF-1α stabilization in HUVECs and macrophages in normoxic conditions. Our results indicated that DMOG-loaded PCL grafts improved endothelialization, contractile SMCs regeneration, vascularization and modulated the inflammatory reaction of grafts in abdominal artery replacement models, thus promoting vascular regeneration.
Collapse
Affiliation(s)
- Muhammad Rafique
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiqi Sun
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ziqi Huang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Muhammad Shafiq
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, 54000, Pakistan
| | - Dengke Zhi
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianghua Si
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongyu Yan
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
27
|
Gao Y, Li T, Duan S, Lyu L, Li Y, Xu L, Wang Y. Impact of titanium dioxide nanoparticles on intestinal community in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced acute colitis mice and the intervention effect of vitamin E. NANOSCALE 2021; 13:1842-1862. [PMID: 33438704 DOI: 10.1039/d0nr08106j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely applied as additives in foods due to their excellent whitening and brightening capability. Although the toxicity and antibacterial activity of TiO2-NPs have been extensively studied, their impact on the gut microbiota in vivo still remains unclear, especially in animals with gastrointestinal disorders. In the present study, healthy mice and TNBS-induced colitis mice were administered with TiO2-NPs (38.3 ± 9.3 nm) orally at a dose of 100 mg per kg bw daily for 10 days to study the impact of TiO2-NPs on the gut microbiota and colitis development. Moreover, the mechanism of TiO2-NPs on the gut microbiota was also discussed when the colitis mice were additionally administered with vitamin E to remove ROS. Changes in the microbiota community structure and gut-associated function prediction were analyzed through bioinformatics. The result showed that the oral administration of TiO2-NPs mitigated colitis symptoms by reducing the DAI and CMDI scores and TNF-α level. Furthermore, 16S rDNA sequencing analysis showed that the structure and function prediction of gut microbiota could be modified in healthy mice and colitis mice after exposure to TiO2-NPs, but the opposite physiological effect occurred since the dominant flora varied in these two groups. Moreover, vitamin E intervention did not change the effects of TiO2-NPs on the microbiota community structure and gut-associated function, which indicates that the mechanism of the biological effects of TiO2-NPs on the gut microbiota may not be associated with their ability to induce the generation of ROS. In summary, our work firstly found that TiO2-NPs could regulate the gut microbiota of colitis mice and participate in the mitigation of TNBS-induced acute colitis, and the capability of TiO2-NPs to induce the generation of ROS inducement did not contribute to this process.
Collapse
Affiliation(s)
- Yanjun Gao
- Department of Occupational and Environmental Health Sciences School of Public Health Peking University, Beijing 100191, China.
| | | | | | | | | | | | | |
Collapse
|
28
|
Batool F, Özçelik H, Stutz C, Gegout PY, Benkirane-Jessel N, Petit C, Huck O. Modulation of immune-inflammatory responses through surface modifications of biomaterials to promote bone healing and regeneration. J Tissue Eng 2021; 12:20417314211041428. [PMID: 34721831 PMCID: PMC8554547 DOI: 10.1177/20417314211041428] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/25/2022] Open
Abstract
Control of inflammation is indispensable for optimal oral wound healing and tissue regeneration. Several biomaterials have been used to enhance the regenerative outcomes; however, the biomaterial implantation can ensure an immune-inflammatory response. The interface between the cells and the biomaterial surface plays a critical role in determining the success of soft and hard tissue regeneration. The initial inflammatory response upon biomaterial implantation helps in tissue repair and regeneration, however, persistant inflammation impairs the wound healing response. The cells interact with the biomaterials through extracellular matrix proteins leading to protein adsorption followed by recruitment, attachment, migration, and proliferation of several immune-inflammatory cells. Physical nanotopography of biomaterials, such as surface proteins, roughness, and porosity, is crucial for driving cellular attachment and migration. Similarly, modification of scaffold surface chemistry by adapting hydrophilicity, surface charge, surface coatings, can down-regulate the initiation of pro-inflammatory cascades. Besides, functionalization of scaffold surfaces with active biological molecules can down-regulate pro-inflammatory and pro-resorptive mediators' release as well as actively up-regulate anti-inflammatory markers. This review encompasses various strategies for the optimization of physical, chemical, and biological properties of biomaterial and the underlying mechanisms to modulate the immune-inflammatory response, thereby, promoting the tissue integration and subsequent soft and hard tissue regeneration potential of the administered biomaterial.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-dentaire, Université de Strasbourg, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
29
|
Wang W, Zheng F, Lin C, Zhang A. Changes in energy metabolism and macrophage polarization: Potential mechanisms of arsenic-induced lung injury. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 204:110948. [PMID: 32739672 DOI: 10.1016/j.ecoenv.2020.110948] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Exposure to arsenic is epidemiologically associated with increased lung disease. In detailing the mechanism by which arsenic exposure leads to disease, studies have emphasized that metabolic reprogramming and immune dysfunction are related to arsenic-induced lung injury. However, the association between the mechanisms listed above is not well understood. Thus, the current study aimed to investigate the interaction of energy metabolism and macrophage polarization, by which arsenic exposure adversely induced lung injury in both in vitro and human studies. First, we confirmed a shift to glycolytic metabolism resulting from mitochondrial dysfunction. This shift was accompanied by an increase in the levels of phosphorylated PDHE1α (S293) and PDK1 and a concomitant marked increase in several key markers of the HIF-1α signaling pathway (HIF-1α, p-PKM2, GLUT1 and HK-2). In addition, utilizing an in vitro model in which lung epithelial cells are cultured with macrophages, we determined that arsenic treatment polarizes macrophages towards the M2 phenotype through lactate. In the human study, the serum lactate and TGF-β levels were higher in arsenic-exposed subjects than that in reference subjects (t= 4.50, 6.24, both p < 0.05), while FVC and FEV1 were both lower (t= 5.47, 7.59, both p < 0.05). Pearson correlation analyses showed a significant negative correlation between the serum TGF-β and lactate levels and the lung function parameters (pcorrelation<0.05). In mediation analyses, lactate and TGF-β significantly mediated 24.3% and 9.0%, respectively, of the association between arsenic and FVC (pmediation<0.05), while lactate and TGF-β significantly mediated 22.2% and 12.5%, respectively, of the association between arsenic and FEV1 (pmediation<0.05). Together, the results of the in vitro and human studies indicated that there is complex communication between metabolic reprogramming and immune dysfunction, resulting in exacerbated effects in a feedback loop with increased arsenic-induced lung damage.
Collapse
Affiliation(s)
- Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Fanyan Zheng
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Changhu Lin
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
30
|
Corsi F, Carotenuto F, Di Nardo P, Teodori L. Harnessing Inorganic Nanoparticles to Direct Macrophage Polarization for Skeletal Muscle Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1963. [PMID: 33023138 PMCID: PMC7600736 DOI: 10.3390/nano10101963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/15/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Modulation of macrophage plasticity is emerging as a successful strategy in tissue engineering (TE) to control the immune response elicited by the implanted material. Indeed, one major determinant of success in regenerating tissues and organs is to achieve the correct balance between immune pro-inflammatory and pro-resolution players. In recent years, nanoparticle-mediated macrophage polarization towards the pro- or anti-inflammatory subtypes is gaining increasing interest in the biomedical field. In TE, despite significant progress in the use of nanomaterials, the full potential of nanoparticles as effective immunomodulators has not yet been completely realized. This work discusses the contribution that nanotechnology gives to TE applications, helping native or synthetic scaffolds to direct macrophage polarization; here, three bioactive metallic and ceramic nanoparticles (gold, titanium oxide, and cerium oxide nanoparticles) are proposed as potential valuable tools to trigger skeletal muscle regeneration.
Collapse
Affiliation(s)
- Francesca Corsi
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, 00044 Frascati, Italy; (F.C.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Felicia Carotenuto
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, 00044 Frascati, Italy; (F.C.); (F.C.)
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Interdepartmental Center of Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Paolo Di Nardo
- Department of Clinical Science and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Interdepartmental Center of Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
- L.L. Levshin Institute of Cluster Oncology, I. M. Sechenov First Medical University, 119991 Moscow, Russia
| | - Laura Teodori
- Department of Fusion and Technologies for Nuclear Safety and Security, Diagnostic and Metrology (FSN-TECFIS-DIM), ENEA, 00044 Frascati, Italy; (F.C.); (F.C.)
- Interdepartmental Center of Regenerative Medicine (CIMER), University of Rome “Tor Vergata”, 00133 Rome, Italy
| |
Collapse
|
31
|
Sequential release of immunomodulatory cytokines binding on nano-hydroxyapatite coated titanium surface for regulating macrophage polarization and bone regeneration. Med Hypotheses 2020; 144:110241. [PMID: 33254547 DOI: 10.1016/j.mehy.2020.110241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/30/2020] [Accepted: 08/30/2020] [Indexed: 11/22/2022]
Abstract
Inflammation occurs when the material is implanted into the body. As one of the important immune cells in the regulation of inflammation, macrophages are able to remove pathogens and necrotic cells, and polarize to different phenotypes to regulate inflammatory response for tissue regeneration. Therefore, it is known that the sequential release of immunomodulatory cytokines from the surface of titanium (Ti) implants can regulate the polarization of macrophages and promote osseointegration of implants. In order to control the switch of macrophage phenotypes at desired time, we fabricated hydroxyapatite (HAp) nanotube arrays coating on Ti surface, by acid-etching, alkali-heating and HAp coating sequentially. Then we loaded the interleukin-4 (IL-4) encapsulated by poly (lactic-co-glycolic acid) (PLGA) on the bottom of the nanotube and the interferon-γ (IFN-γ) encapsulated by sodium hyaluronate (SH) on the top of the nanotube. Based on the physical and chemical properties of PLGA and SH and the spatial distribution of loaded cytokines, we hypothesized that the programmed release of IFN-γ and IL-4, which made the phenotypic transition of macrophages at a specific time, so as to regulate inflammation and promote osteogenic repair. Our hypothesis created a new type of drug sustained release system, which has high research value for improving the osseointegration of implants.
Collapse
|
32
|
Huo S, Meng X, Zhang S, Yue B, Zhao Y, Long T, Nie B, Wang Y. Hydrofluoric acid and nitric acid cotreatment for biofunctionalization of polyetheretherketone in M2 macrophage polarization and osteogenesis. J Biomed Mater Res A 2020; 109:879-892. [PMID: 32780520 DOI: 10.1002/jbm.a.37079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Due to its excellent mechanical and low-friction properties, polyetheretherketone (PEEK) has been widely investigated for use in orthopedic applications over the past decade. However, the bioinertness and poor osteogenic properties of PEEK have hampered its clinical application. In this study, the surface of PEEK was modified by co-treatment with hydrofluoric acid and nitric acid (AFN). The microstructures of the modified PEEK surfaces were investigated using scanning electron microscopy. The water contact angles of the surfaces were also measured. To evaluate their cytocompatibility, PEEK samples were used as substrates to culture rat bone mesenchymal stem cells, and cell adhesion, viability, and expression of specific marker genes were measured. Treatment of PEEK with AFN (PEEK-AFN) was found to enable better osteoblast adhesion, spreading, and proliferation; the activity of alkaline phosphatase (an early osteogenic differentiation marker) was also found to be enhanced post-treatment. Furthermore, PEEK-AFN was able to modulate macrophage polarization and down regulated the expression of proinflammatory factors via inhibiting the NF-κB pathway. Thus, treatment of PEEK with AFN could promote M2 polarization of the macrophages and stimulate the differentiation of osteoblasts. These results provide valuable information that could facilitate the use of PEEK-based composites as bone implant materials.
Collapse
Affiliation(s)
- Shicheng Huo
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xiangchao Meng
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Shutao Zhang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bing Yue
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Yaochao Zhao
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Teng Long
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Bin'en Nie
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - You Wang
- Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
33
|
Toyama N, Tsuchiya S, Kamio H, Okabe K, Kuroda K, Okido M, Hibi H. The effect of macrophages on an atmospheric pressure plasma-treated titanium membrane with bone marrow stem cells in a model of guided bone regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:70. [PMID: 32705350 DOI: 10.1007/s10856-020-06412-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Guided bone regeneration (GBR) is an established treatment. However, the mechanisms of GBR are not fully understood. Recently, a GBR membrane was identified that acts as a passive barrier to regenerate bone via activation and migration of macrophages (Mps) and bone marrow stem cells (BMSCs). Atmospheric pressure plasma treatment of the titanium membrane (APP-Ti) activated macrophages. The purpose of this study was to analyze whether macrophages attached to an APP-Ti membrane affected differentiation of BMSCs in a GBR model. Human THP-1 macrophages (hMps) were cultured on non-treated Ti (N-Ti) and APP-Ti membrane. Macrophage polarization was analyzed by RT-PCR and immunocytochemistry. Secreted proteins from hMps on N-Ti and APP-Ti were detected by LC/MS/MS. hBMSCs were co-cultured with hMps on N-Ti or APP-Ti and analyzed by osteogenic differentiation, Alizarin red S staining, and alkaline phosphatase (ALP) activity. N-Ti and APP-Ti membrane were also implanted into bone defects of rat calvaria. hMps on APP-Ti were polarized M2-like macrophages. hMps on N-Ti secreted plasminogen activator inhibitor-1 and syndecan-2, but hMps on APP-Ti did not. hBMSCs co-cultured with hMps on APP-Ti increased cell migration and gene expression of osteogenic markers, but suppressed mineralization, while ALP activity was similar to that of hMps on N-Ti in vitro. The volume of newly formed bone was not significantly different between N-Ti and APP-Ti membrane in vivo. M2 polarized hMps on APP-Ti suppressed osteogenic induction of hBMSCs in vitro. The indirect role of hMps on APP-Ti in newly formed bone was limited.
Collapse
Affiliation(s)
- Naoto Toyama
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Shuhei Tsuchiya
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| | - Hisanobu Kamio
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazuto Okabe
- Nagoya University Hospital Oral and Maxillofacial Surgery, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kensuke Kuroda
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Masazumi Okido
- Institute of Materials and Systems for sustainability (IMaSS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| | - Hideharu Hibi
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
34
|
Shen K, Tang Q, Fang X, Zhang C, Zhu Z, Hou Y, Lai M. The sustained release of dexamethasone from TiO 2 nanotubes reinforced by chitosan to enhance osteoblast function and anti-inflammation activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111241. [PMID: 32806259 DOI: 10.1016/j.msec.2020.111241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 01/07/2023]
Abstract
Controlling macrophage response to biomaterials is critical for the reduction of inflammation after implantation. Here we designed a sustained release system from TiO2 nanotubes (TNTs) to improve osteogenesis on titanium implants with anti-inflammatory properties. TNTs (around 70 nm diameter) were first fabricated on titanium surfaces by anodization, directly filled with the anti-inflammatory drug, dexamethasone (DEX) and then covered by chitosan (CHI) multilayer films. Primary osteoblast and macrophage (RAW 264.7) cells were cultured on untreated and treated titanium surfaces in vitro. Osteoblasts grown on CHI-coated Dex-filled TNTs surfaces displayed higher alkaline phosphatase (ALP) and mineralization, which was consistent with qRT-PCR analysis of osteoblastic genes including collagen type I (Col I), osteocalcin (OCN), osteopontin (OPN) and runt related transcription factor 2 (Runx2). In contrast, protein levels of nitric oxide (NO) and proinflammatory cytokines (TNF-α and IL-1β) from macrophages on Dex-filled TNTs, CHI-coated TNTs and CHI-coated Dex-filled TNTs were significantly lower, especially on CHI-coated Dex-filled TNTs surfaces compared to levels on titanium and TNTs. These results indicate that CHI-coated Dex-filled TNTs enhanced osteoblast differentiation and decreased the inflammatory response of macrophages. The approach presented here provides new insight into the modification of TNTs for the development of titanium-based implants.
Collapse
Affiliation(s)
- Ke Shen
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xingtang Fang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Chunlei Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Zhaojing Zhu
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
35
|
Huang Y, Feng Q, Jiang H, Zhou W, Chen J, Gao J, Wang K, Wan X, Yu Y. Mimicking the Endometrial Cancer Tumor Microenvironment to Reprogram Tumor-Associated Macrophages in Disintegrable Supramolecular Gelatin Hydrogel. Int J Nanomedicine 2020; 15:4625-4637. [PMID: 32636622 PMCID: PMC7326693 DOI: 10.2147/ijn.s252074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 12/31/2022] Open
Abstract
Purpose Besides the tumor cells themselves, solid tumors are comprised of numerous cell types including infiltrating immune cells such as tumor-associated macrophages (TAMs). TAMs are vital stromal components of host immune system and play a critical role in the development of cancer. TAMs can be divided into two subtypes: M1 tumor-suppressive macrophage and M2 tumor-supportive macrophage. To better address the observations of TAMs functional performance, we describe an in vitro system that mimics the populations of TAMs infiltrated into the tumor mass by using our disintegrable supramolecular gelatin (DSG) hydrogels, which are physically crosslinked by host-guest complexations. Materials and Methods The host–guest interaction was adopted between the aromatic groups of gelatin and the photocrosslinkable acrylated β-cyclodextrins (Ac-β-CDs) to form the DSG hydrogels. The convenient macrophage/endometrial cancer cells heterospheroid 3D model was set up by DSG hydrogels. RT-PCR and Western blot assays were developed to evaluate the efficiencies of inducers on the macrophages. The ELISA and oxygen saturation assays were performed to measure the secretion of VEGF and consumption of oxygen of tumor and/or macrophages, respectively. To determine the antitumor effects of M2 reprogrammed macrophages in vitro and in vivo, migration assay and tumor xenograft model were used, respectively. Results The host-guest complexations of DSG hydrogels were controllably broken efficiently by soaking into the solution of competitive guest monomers 1-adamantanamine hydrochloride. The DSG hydrogels help IFN-γ reprogram the M2 to M1 and then decrease the tumor/M2 reprogrammed macrophage cells heterospheroid secretion of VEGF and increase the relative oxygen saturation. Significantly, the co-cultural tumor/M2 reprogrammed group from the disintegrated DSG hydrogels reduced the migration of cancer cells in vitro and the tumor growth in vivo. Conclusion We obtain a TAMs/tumor microenvironment-responsive 3D model based on the novel DSG hydrogels, and will be of utility in cancer therapy and drug discovery.
Collapse
Affiliation(s)
- Yujia Huang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Qian Feng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, People's Republic of China
| | - Huabo Jiang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Wanding Zhou
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China.,Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jinhong Chen
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, People's Republic of China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Xiaoping Wan
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
36
|
Chen Y, Guan M, Ren R, Gao C, Cheng H, Li Y, Gao B, Wei Y, Fu J, Sun J, Xiong W. Improved Immunoregulation of Ultra-Low-Dose Silver Nanoparticle-Loaded TiO 2 Nanotubes via M2 Macrophage Polarization by Regulating GLUT1 and Autophagy. Int J Nanomedicine 2020; 15:2011-2026. [PMID: 32273699 PMCID: PMC7102919 DOI: 10.2147/ijn.s242919] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction The bone regeneration of endosseous implanted biomaterials is often impaired by the host immune response, especially macrophage-related inflammation which plays an important role in the bone healing process. Thus, it is a promising strategy to design an osteo-immunomodulatory biomaterial to take advantage of the macrophage-related immune response and improve the osseointegration performance of the implant. Methods In this study, we developed an antibacterial silver nanoparticle-loaded TiO2 nanotubes (Ag@TiO2-NTs) using an electrochemical anodization method to make the surface modification and investigated the influences of Ag@TiO2-NTs on the macrophage polarization, osteo-immune microenvironment as well as its potential molecular mechanisms in vitro and in vivo. Results The results showed that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions had the excellent ability to induce the macrophage polarization towards the M2 phenotype and create a suitable osteo-immune microenvironment in vitro, via inhibiting PI3K/Akt, suppressing the downstream effector GLUT1, and activating autophagy. Moreover, Ag@TiO2-NTs surface could improve bone formation, suppress inflammation, and promote osteo-immune microenvironment compared to the TiO2-NTs and polished Ti surfaces in vivo. These findings suggested that Ag@TiO2-NTs with controlled releasing of ultra-low-dose Ag+ ions could not only inhibit the inflammation process but also promote the bone healing by inducing healing-associated M2 polarization. Discussion Using this surface modification strategy to modulate the macrophage-related immune response, rather than prevent the host response, maybe a promising strategy for implant surgeries in the future.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ming Guan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chenghao Gao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hao Cheng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, People's Republic of China
| | - Yong Li
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Biao Gao
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Yong Wei
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jijiang Fu
- The State Key Laboratory of Refractories and Metallurgy, School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China
| | - Jun Sun
- Department of Biochemistry and Molecular Biology, Basic Medical School, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
37
|
Dukhinova MS, Prilepskii AY, Shtil AA, Vinogradov VV. Metal Oxide Nanoparticles in Therapeutic Regulation of Macrophage Functions. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1631. [PMID: 31744137 PMCID: PMC6915518 DOI: 10.3390/nano9111631] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Macrophages are components of the innate immune system that control a plethora of biological processes. Macrophages can be activated towards pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the cue; however, polarization may be altered in bacterial and viral infections, cancer, or autoimmune diseases. Metal (zinc, iron, titanium, copper, etc.) oxide nanoparticles are widely used in therapeutic applications as drugs, nanocarriers, and diagnostic tools. Macrophages can recognize and engulf nanoparticles, while the influence of macrophage-nanoparticle interaction on cell polarization remains unclear. In this review, we summarize the molecular mechanisms that drive macrophage activation phenotypes and functions upon interaction with nanoparticles in an inflammatory microenvironment. The manifold effects of metal oxide nanoparticles on macrophages depend on the type of metal and the route of synthesis. While largely considered as drug transporters, metal oxide nanoparticles nevertheless have an immunotherapeutic potential, as they can evoke pro- or anti-inflammatory effects on macrophages and become essential for macrophage profiling in cancer, wound healing, infections, and autoimmunity.
Collapse
Affiliation(s)
- Marina S. Dukhinova
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
| | | | - Alexander A. Shtil
- ITMO University, Saint-Petersburg 197101, Russia; (M.S.D.); (A.Y.P.); (A.A.S.)
- Blokhin National Medical Center of Oncology, Moscow 115478, Russia
| | | |
Collapse
|
38
|
Zhang T, Hu C, Wu Y, Wang S, Liu X, Zhang D, Huang F, Gao H, Wang Z. Carbon Disulfide Induces Embryo Implantation Disorder by Disturbing the Polarization of Macrophages in Mice Uteri. Chem Res Toxicol 2019; 32:1989-1996. [PMID: 31468960 DOI: 10.1021/acs.chemrestox.9b00119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon disulfide (CS2) induces embryo implantation disorders. Macrophages participate in the process of pregnancy. Therefore, we want to explore the effects of CS2 exposure on polarization and immune function of macrophages in pregnant mice uteri. The exposure times were gestation days 3 (GD3), 4 (GD4), and 5 (GD5), and the observation end points were arranged in a time series after CS2 exposure. The uterine tissues were collected to detect the expression levels of macrophages cytokines (IL-6, IL-12, TGF-β1, and Vegf-a) and downstream regulatory cytokines of Th1-type (IL-2 and IFN-γ) and Th2-type (IL-10 and IL-4) by flow cytometry, ELISA, and q-PCR. The results showed that, compared with the controls, the ratios of M1/M2 macrophages in the endometrium significantly increased by 96%, 110%, and 177% at the GD4, GD6, and GD7 observation end points after GD3 exposure and increased about 3.88-fold and 2.37-fold at the GD6 and GD7 observation end points after GD4 exposure, respectively. In contrast, the ratio of M1 and M2 macrophages significantly reduced by 53% at the GD5 observation end point after GD3 exposure. Meanwhile, the expression levels of IL-6 were significantly increased about 2.00-fold for mRNA and 1.60-fold for protein at GD4 observation end points after GD3 exposure, and the mRNA levels of IL-12 increased about 3.61-fold at the GD6 observation end points after GD4 exposure. The mRNA levels of TGF-β1 were significantly decreased by 41%, 25%, and 20% at the GD7 observation end points after exposure at GD3, GD4, and GD5, and the expression levels of Vegf-a mRNA and protein were decreased. Furthermore, the ratio of IL-2/IL4, IL-2/IL-10, IFN-γ/IL-4, and IFN-γ/IL-10 in the uterine tissue was significantly increased at the exposure groups. These findings suggest that the imbalanced polarization of macrophages is the key regulator in the progress of CS2-induced embryo loss.
Collapse
Affiliation(s)
- Tongchao Zhang
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Chengxia Hu
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Yanling Wu
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Shuting Wang
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Xiaojing Liu
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Danhua Zhang
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Fengyan Huang
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Han Gao
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| | - Zhiping Wang
- School of Public Health , Shandong University , 44 Wenhua Xi Road , Jinan , Shandong 250012 , P.R. China
| |
Collapse
|