1
|
Tiwari DD, Thorat VM, Pakale PV, Patil S, Chavan D. Evaluation of Lipid Profile Modulation by Berberis asiatica, Withania somnifera, and Their Synergy in Type 2 Diabetic Wistar Rats. Cureus 2024; 16:e67974. [PMID: 39347326 PMCID: PMC11433459 DOI: 10.7759/cureus.67974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and hyperglycemia, leading to complications such as dyslipidemia, which increases cardiovascular risks. Current treatments for dyslipidemia often have undesirable side effects. This study aims to evaluate the effects of Berberis asiatica (BA), Withania somnifera (WS), and their combination in the ratio of 1:1 on the lipid profile in T2DM-induced Wistar rats. Additionally, the study investigates the potential synergistic effects of these two herbs. Materials and methods Mature albino Wistar rats of both sexes were employed, weighing 150-250 g. Rats were obtained from the Central Animal House of Krishna Institute of Medical Sciences and kept under standard laboratory conditions. The study was conducted per the guidelines set by the Committee for Control and Supervision of Experiments on Animals (CCSEA). T2DM was induced using streptozotocin (STZ) and nicotinamide (NIC). Thirteen groups of rats were formed, including normal control (NC), diabetic control (DC), and various treatment groups received varying dosages of BA, WS, their polyherbal combination (PHC), and the conventional medications metformin (MET) and glimepiride (GLI). Lipid profiles were measured, and the data were analyzed using one-way ANOVA, followed by the Tukey-Kramer post-hoc test. Results The study revealed that both BA and WS showed statistically significant lipid-lowering effects in diabetic rats. The BA-treated groups displayed a statistically significant and considerable decrease in total cholesterol (TC) and low-density lipoprotein (LDL) levels compared to the DC group. Similarly, WS-treated groups also showed statistically significant reduced levels of TC and LDL, along with an increase in high-density lipoprotein (HDL). The PHC of BA and WS exhibited enhanced lipid-lowering effects compared to individual treatments. No significant differences in triglyceride (TG) levels were observed among the treatment groups. Conclusion BA and WS, individually and in combination, effectively modulate lipid profiles in T2DM rats. Their synergistic effects provide a promising alternative for managing dyslipidemia in diabetic patients. Further research is needed to determine the clinical consequences of these findings.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sarika Patil
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Dhanashri Chavan
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
2
|
Tiwari DD, Thorat VM, Pakale PV, Patil S. Effects of Berberis asiatica, Withania somnifera, and Their Combination on Body Weight in Streptozotocin-Nicotinamide-Induced Type 2 Diabetes in Wistar Rats. Cureus 2024; 16:e68295. [PMID: 39350820 PMCID: PMC11441830 DOI: 10.7759/cureus.68295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance, impaired insulin secretion, and beta cell dysfunction, often leading to chronic hyperglycemia and associated complications. Berberis asiatica (BA) and Withania somnifera (WS) are ancient medicinal plants with a reputation for having potential therapeutic effects in diabetes management. The purpose of this study was to look into how body weight (BW) was affected in streptozotocin-nicotinamide (STZ-NIC) induced T2DM in Wistar rats by BA, WS, and their polyherbal combination (PHC). Materials and methods Seventy-eight Wistar rats of both sexes were divided into 13 groups, with six rats in each group, including normal and diabetic controls, and treated with varying doses of BA, WS, and PHC. The rats were under observation over the course of 35 days for any change in BW. The Organization for Economic Co-operation and Development (OECD) rules and guidelines were followed in the conduct of acute toxicity tests. One-way analysis of variance (ANOVA), followed by Tukey-Kramer post hoc tests, was used for statistical analysis. Results The findings indicated that the highest dose of BA (1000 mg/kg) significantly improved BW in diabetic rats, approaching that of the normal control group. The combination of BA and WS also demonstrated significant improvements in BW, suggesting a synergistic effect. The standard antidiabetic drugs, metformin and glimepiride, were effective in increasing BW in diabetic rats. Conclusion The study concludes that BA, WS, and their combination have a positive impact on BW management in T2DM rats, with the combination therapy showing enhanced effects. These findings support the potential utilization of these herbs in managing BW and other T2DM-associated metabolic disturbances and abnormalities.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| | - Sarika Patil
- Department of Pharmacology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, IND
| |
Collapse
|
3
|
Tiwari DD, Thorat VM, Pakale PV, Patil SJ. Study of Antidiabetic Properties of Berberis asiatica and Withania somnifera in Streptozotocin-Nicotinamide-Induced Type II Diabetes Mellitus in Wistar Rats. Cureus 2024; 16:e64379. [PMID: 39131036 PMCID: PMC11316953 DOI: 10.7759/cureus.64379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Background and aim Diabetes is a chronic metabolic disorder characterized by elevated blood glucose levels. Although current antidiabetic drugs are highly effective, they are associated with various adverse drug reactions, including life-threatening hypoglycemia, skin rashes, and gastrointestinal intolerance, in addition to being costly. This animal-based experimental study aims to develop a herbal alternative or adjuvant to current antidiabetic drugs using Berberis asiatica (BA) and Withania somnifera (WS), which could potentially have fewer adverse drug reactions and reduce the required dose of existing antidiabetic medications. Material and methods Seventy-eight adult albino Wistar rats weighing between 150 and 250 g were used for the study. Diabetes mellitus (DM) was induced by intraperitoneal (i.p) injections of streptozotocin (STZ) (65 mg/kg) 15 minutes after nicotinamide (NIC) (110 mg/kg) administration. As the diabetes was confirmed (blood glucose level > 250 mg/dL), rats were divided into 13 different groups mentioned. The standard antidiabetic drugs (metformin [MET] and glimepiride [GLI]) and polyherbal combinations (PHC) (BA + WS) were administered orally, individually (WS and BA), and in combination (BA + WS). Blood samples were collected for biochemical analysis using the tail vein prick method. The study is based on a total of 13 groups, six rats in each group. Groups 1 and 2 (normal control [NC] and diabetic control [DC]) received distilled water at a dose of 10 mL/kg orally for 28 days. Groups 3-5 (BA 250, 500, and 1000) received dried ethanolic root extract of BA at a dose of 250, 500, and 1000 mg/kg orally, respectively, for 28 days. Groups 6-8 (WS 250, 500, and 1000) received dried ethanolic root extract of WS at a dose of 250, 500, and 1000 mg/kg orally, respectively, for 28 days. Groups 9-11 (PHC 250, 500, and 1000) received dried ethanolic root extract of BA + WS at a dose of 250, 500, and 1000 mg/kg orally, respectively, for 28 days. Groups 12 and 13 (MET and GLI) received standard drugs MET and GLI at a dose of 250 and 10 mg/kg orally, respectively, for 28 days. Results The dried ethanolic root extract of medicinal herbal plants BA and WS and their combination exhibited significant antidiabetic efficacy. PHC has been shown to have a superior antidiabetic effect than individuals. PHC 500 and 1000 showed blood glucose levels similar to those of the GLI group (P < 0.05). Additionally, PHC 1000 showed blood glucose levels similar to those of the MET group (P < 0.05). Conclusion Our results indicate that both BA and WS possess hypoglycemic activity, and their combination also has a synergistic antidiabetic effect compared to the individual extract. These findings are promising in developing new safe and cost-effective herbal combinations as alternatives or additives to currently used synthetic antidiabetic drugs.
Collapse
Affiliation(s)
- Devkumar D Tiwari
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| | - Vandana M Thorat
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| | - Prathamesh V Pakale
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| | - Sarika J Patil
- Department of Pharmacology, Krishna Vishwa Vidyapeeth (Deemed to be University), Satara, IND
| |
Collapse
|
4
|
Zhang K, Han Y, Gu F, Gu Z, Zhao J, Chen J, Chen B, Gao M, Hou Z, Yu X, Cai T, Gao Y, Hu R, Xie J, Liu T, Liu K. Association between serum chloride and in-hospital mortality in congestive heart failure with diabetes: Data from the MIMIC-IV database. J Diabetes Metab Disord 2024; 23:859-870. [PMID: 38932886 PMCID: PMC11196478 DOI: 10.1007/s40200-023-01362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/27/2023] [Indexed: 06/28/2024]
Abstract
Background Congestive heart failure (CHF) demonstrates a heightened prevalence in individuals with diabetes mellitus within Intensive Care Units. The occurrence of abnormal chloride levels is frequently observed in critically ill patients, yet its clinical significance remains subject to debate. This study endeavors to explore the relationship between serum chloride levels and in-hospital mortality among patients affected by both congestive heart failure and diabetes. Methods A retrospective cohort study was conducted, utilizing data from the Medical Information Mart for Intensive Care-IV (MIMIC-IV) database, focusing on adult patients in the United States. The impact of serum chloride levels upon ICU admission on in-hospital mortality was analyzed using multivariable logistic regression models, generalized additive models and subgroup analysis. Results The study encompassed 7,063 patients with coexisting diabetes and congestive heart failure. The fully adjusted model revealed an inverse association between serum chloride levels and in-hospital mortality. As a tertile variable (Q3 vs Q1), the odds ratio (OR) was 0.73 with a 95% confidence interval (CI) of 0.54-0.98 (p = 0.039). As a continuous variable, per 1 mmol/L increment, the OR (95% CI) was 0.97 (0.96-0.99, p = 0.01). The relationship between serum chloride and in-hospital mortality demonstrated linearity (non-linear p = 0.958). Stratified analyses further validated the robustness of this correlation. Conclusions Serum chloride levels exhibited a negative association with in-hospital mortality in patients with both congestive heart failure and diabetes. Nevertheless, prospective, randomized, controlled studies are warranted to corroborate and validate the findings presented in this investigation.
Collapse
Affiliation(s)
- Kai Zhang
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin Province China
| | - Yu Han
- Department of Ophthalmology, First Hospital of Jilin University, Changchun, China
| | - Fangming Gu
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Zhaoxuan Gu
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - JiaYu Zhao
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Jianguo Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Bowen Chen
- Bethune First College of Clinical Medicine, Jilin University, Changchun, China
| | - Min Gao
- Department of Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Zhengyan Hou
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Xiaoqi Yu
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Tianyi Cai
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Yafang Gao
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Rui Hu
- Bethune Third College of Clinical Medicine, Jilin University, Changchun, China
| | - Jinyu Xie
- Bethune Second College of Clinical Medicine, Jilin University, Changchun, China
| | - Tianzhou Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Kexiang Liu
- Cardiovascular Surgery Department of the Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin Province China
| |
Collapse
|
5
|
Ji X, Liu N, Huang S, Zhang C. A Comprehensive Review of Licorice: The Preparation, Chemical Composition, Bioactivities and Its Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:667-716. [PMID: 38716617 DOI: 10.1142/s0192415x24500289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Licorice (Glycyrrhiza) is a medicinal and food homologue of perennial plants derived from the dried roots and rhizomes of the genus Glycyrrhiza in the legume family. In recent years, the comprehensive utilization of licorice resources has attracted people's attention. It is widely utilized to treat diseases, health food products, food production, and other industrial applications. Furthermore, numerous bioactive components of licorice are found using advanced extraction processes, which mainly include polyphenols (flavonoids, dihydrostilbenes, benzofurans, and coumarin), triterpenoids, polysaccharides, alkaloids, and volatile oils, all of which have been reported to possess a variety of pharmacological characteristics, including anti-oxidant, anti-inflammatory, antibacterial, antiviral, anticancer, neuroprotective, antidepressive, antidiabetic, antiparasitic, antisex hormone, skin effects, anticariogenic, antitussive, and expectorant activities. Thereby, all of these compounds promote the development of novel and more effective licorice-derived products. This paper reviews the progress of research on extraction techniques, chemical composition, bioactivities, and applications of licorice to provide a reference for further development and application of licorice in different areas.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Ning Liu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, P. R. China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang 471023, P. R. China
- Henan Engineering Research Center of Livestock and Poultry, Emerging Disease Detection and Control, Luoyang 471023, P. R. China
| |
Collapse
|
6
|
Cui Q, Song X, Zhou L, Dong J, Wei Y, Liu Z, Wu X. Fabrication of resveratrol-loaded soy protein isolate-glycyrrhizin nanocomplex for improving bioavailability via pH-responsive hydrogel properties. Int J Biol Macromol 2024; 258:128950. [PMID: 38143068 DOI: 10.1016/j.ijbiomac.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Resveratrol (RES) is a functional polyphenol that suffers from low water solubility and poor bioavailability. A novel RES-loaded soy protein isolate-dipotassium glycyrrhizinate (SPI-DG) nanocomplex (RES@SPI-DG) was designed and evaluated in this study. RES@SPI-DG was prepared using a simple but novel self-assembly ultrasonic-assisted pH-driven method. The interactions between RES and SPI-DG were non-covalent bonds, including hydrophobic interactions, hydrogen bonds, and van der Waals interactions. RES@SPI-DG exhibited high encapsulation efficiency (97.60 ± 0.38 %) and loading capacity (8.74 ± 0.03 %) of RES with a uniform small size (68.39 ± 1.10 nm). RES in RES@SPI-DG was in an amorphous state and demonstrated a 24-h apparent solubility 482.53-fold higher than bare RES. RES@SPI-DG also showed strong in vitro antioxidant properties. The pH-responsive hydrogel character of SPI-DG makes it an effective intestine-targeted delivery system that could retard the release of RES in a simulated stomach and accelerate it in a simulated intestine. In animal experiments, the bioavailability of RES@SPI-DG was 5.17 times higher than that of bare RES, and the biodistribution was also significantly improved. RES@SPI-DG demonstrated a strong hepatoprotective effect against overdose acetaminophen-induced liver injury. The SPI-DG complex might be a promising nano-platform for enhancing the bioavailability and efficacy of hydrophobic polyphenols such as RES.
Collapse
Affiliation(s)
- Qingchen Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China
| | - Xiaoying Song
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Liping Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Junjie Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China
| | - Zongtao Liu
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China.
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
7
|
Shaukat A, Zaidi A, Anwar H, Kizilbash N. Mechanism of the antidiabetic action of Nigella sativa and Thymoquinone: a review. Front Nutr 2023; 10:1126272. [PMID: 37818339 PMCID: PMC10561288 DOI: 10.3389/fnut.2023.1126272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 07/27/2023] [Indexed: 10/12/2023] Open
Abstract
Introduction Long used in traditional medicine, Nigella sativa (NS; Ranunculaceae) has shown significant efficacy as an adjuvant therapy for diabetes mellitus (DM) management by improving glucose tolerance, decreasing hepatic gluconeogenesis, normalizing blood sugar and lipid imbalance, and stimulating insulin secretion from pancreatic cells. In this review, the pharmacological and pharmacokinetic properties of NS as a herbal diabetes medication are examined in depth, demonstrating how it counteracts oxidative stress and the onset and progression of DM. Methods This literature review drew on databases such as Google Scholar and PubMed and various gray literature sources using search terms like the etiology of diabetes, conventional versus herbal therapy, subclinical pharmacology, pharmacokinetics, physiology, behavior, and clinical outcomes. Results The efficiency and safety of NS in diabetes, notably its thymoquinone (TQ) rich volatile oil, have drawn great attention from researchers in recent years; the specific therapeutic dose has eluded determination so far. TQ has anti-diabetic, anti-inflammatory, antioxidant, and immunomodulatory properties but has not proved druggable. DM's intimate link with oxidative stress, makes NS therapy relevant since it is a potent antioxidant that energizes the cell's endogenous arsenal of antioxidant enzymes. NS attenuates insulin resistance, enhances insulin signaling, suppresses cyclooxygenase-2, upregulates insulin-like growth factor-1, and prevents endothelial dysfunction in DM. Conclusion The interaction of NS with mainstream drugs, gut microbiota, and probiotics opens new possibilities for innovative therapies. Despite its strong potential to treat DM, NS and TQ must be examined in more inclusive clinical studies targeting underrepresented patient populations.
Collapse
Affiliation(s)
- Arslan Shaukat
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Arsalan Zaidi
- National Probiotic Laboratory, National Institute for Biotechnology and Genetic Engineering College - NIBGE-C, Faisalabad, Punjab, Pakistan
- Pakistan Institute of Engineering and Applied Sciences - PIEAS, Nilore, Islamabad, Pakistan
| | - Haseeb Anwar
- Department of Physiology, Government College University - GCU, Faisalabad, Punjab, Pakistan
| | - Nadeem Kizilbash
- Department Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
8
|
Shabani H, Karami MH, Kolour J, Sayyahi Z, Parvin MA, Soghala S, Baghini SS, Mardasi M, Chopani A, Moulavi P, Farkhondeh T, Darroudi M, Kabiri M, Samarghandian S. Anticancer activity of thymoquinone against breast cancer cells: Mechanisms of action and delivery approaches. Biomed Pharmacother 2023; 165:114972. [PMID: 37481931 DOI: 10.1016/j.biopha.2023.114972] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/25/2023] Open
Abstract
The rising incidence of breast cancer has been a significant source of concern in the medical community. Regarding the adverse effects and consequences of current treatments, cancers' health, and socio-economical aspects have become more complicated, leaving research aimed at improved or new treatments on top priority. Medicinal herbs contain multitarget compounds that can control cancer development and advancement. Owing to Nigella Sativa's elements, it can treat many disorders. Thymoquinone (TQ) is a natural chemical derived from the black seeds of Nigella sativa Linn proved to have anti-cancer and anti-inflammatory properties. TQ interferes in a broad spectrum of tumorigenic procedures and inhibits carcinogenesis, malignant development, invasion, migration, and angiogenesis owing to its multitargeting ability. It effectively facilitates miR-34a up-regulation, regulates the p53-dependent pathway, and suppresses Rac1 expression. TQ promotes apoptosis and controls the expression of pro- and anti-apoptotic genes. It has also been shown to diminish the phosphorylation of NF-B and IKK and decrease the metastasis and ERK1/2 and PI3K activity. We discuss TQ's cytotoxic effects for breast cancer treatment with a deep look at the relevant stimulatory or inhibitory signaling pathways. This review discusses the various forms of polymeric and non-polymeric nanocarriers (NC) and the encapsulation of TQ for increasing oral bioavailability and enhanced in vitro and in vivo efficacy of TQ-combined treatment with different chemotherapeutic agents against various breast cancer cell lines. This study can be useful to a broad scientific community, comprising pharmaceutical and biological scientists, as well as clinical investigators.
Collapse
Affiliation(s)
- Hadi Shabani
- Department of Biology, Faculty of Basic Sciences, Islamic Azad University, Islamshahr Branch, Iran
| | | | - Jalili Kolour
- Cellular and Molecular Biology master student, Department of Life Sciences and Systems Biology, University of Turin, Italy
| | - Zeinab Sayyahi
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Amir Parvin
- Department of Cell and Molecular Biology, school of Biology, University of Tehran, Tehran, Iran
| | - Shahrad Soghala
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sadegh Shojaei Baghini
- Plant Biotechnology Department, National Institute of Genetic Engineering and Biotechnology(NIGEB), Tehran, Iran
| | - Mahsa Mardasi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C., Evin, Tehran, Iran
| | - Ali Chopani
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Pooria Moulavi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Basic Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Mahboubeh Kabiri
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Mahadev M, Dubey A, Shetty A. Ultrasonically Fabricated Beta-Carotene Nanoemulsion: Optimization, Characterization and Evaluation of Combinatorial Effect with Quercetin on Streptozotocin-Induced Diabetic Rat Model. Pharmaceutics 2023; 15:pharmaceutics15020574. [PMID: 36839896 PMCID: PMC9962907 DOI: 10.3390/pharmaceutics15020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Diabetes mellitus (D.M.) is a metabolic disease that has affected over 500 million people globally. Bioactive compounds such as β-carotene and Quercetin have gained research interest for their potential antidiabetic properties, and bioactives have reported superior combinatorial effects in several ailments, including D.M. However, poor oral bioavailability has limited their potential application. Thus, the present study was focused on developing ultrasonically fabricated β-Carotene nanoemulsion (βC-NE) by employing capmul as the oil phase, Gelucire 44/14 as surfactant and Acconon MCM C8 as co-surfactant. The 3 factor- 3 level Box-Behnken design (BBD) was applied to optimise the βC-NE and study the impact of selected independent variables such as % Smix (5 to 9%), amplitude (20-30%) and sonication time (2.5-7.5 min) on responses including globule size (G.S.), poly dispersibility Index (PDI) and entrapment efficiency (E.E.). Further, the combinatorial effect of βC-NE with Quercetin Nanoemulsion (QU-NE) in the streptozotocin-induced diabetic rat model was evaluated. The results exhibited that 7% Smix at 25% amplitude for 5 min produced βC-NE with a droplet size of 153.1 ± 12.25 nm, 0.200 ± 0.04 PDI, and 73.25 ± 3.25% E.E. The βC-NE showed superior in-vivo bioavailability by 5.38 folds. The βC-NE, combined with QU-NE, exhibited potential therapeutic benefits in controlling body weight, blood sugar level, lipid levels, and tissue damage markers. Additionally, the pancreatic cells and hepatic cells were well protected. These results demonstrate the potential benefits of βC-NE and QU-NE in combination and recommend them as a substitute strategy for diabetes.
Collapse
Affiliation(s)
- Manohar Mahadev
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
- Department of Pharmaceutics, JSS College of Pharmacy, JSS AHER, Mysuru 570015, India
- Correspondence: ; Tel.: +91-81054-94968
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Deralakatte, Mangalore 575018, India
| |
Collapse
|
10
|
Kaplan ABU, Cetin M, Bayram C, Yildirim S, Taghizadehghalehjoughi A, Hacimuftuoglu A. In Vivo Evaluation of Nanoemulsion Formulations for Metformin and Repaglinide Alone and Combination. J Pharm Sci 2023; 112:1411-1426. [PMID: 36649792 DOI: 10.1016/j.xphs.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Repaglinide and Metformin are used to treat Type 2 diabetes. Repaglinide with poor water solubility has relatively low oral bioavailability (56%) and undergoes hepatic first-pass metabolism. The oral bioavailability of metformin HCl is also low (about 50-60%). The purpose of this study was to prepare nanoemulsion formulations containing metformin HCl or repaglinide alone or in combination and characterize them in vitro and in vivo. Nanoemulsion formulations containing metformin HCl and/or repaglinide were successfully prepared and in vitro characterized. In addition, in vivo efficacy of nanoemulsion formulations was evaluated in a streptozotocin-nicotinamide-induced diabetic rat model. Biochemical, histopathological, and immunohistochemical evaluations were also performed. The mean droplet size and zeta potential values of nanoemulsion formulations were in the range of 110.15±2.64-120.23±2.16 nm and -21.95 - -24.33 mV, respectively. The percent entrapment efficiency values of nanoemulsion formulations were in the range of 93.600%-96.152%. All nanoemulsion formulations had a PDI of ≤0.223. A statistically significant decrease was observed in the blood glucose values of the diabetic rats treated with nanoemulsion formulations containing active substance/substances, compared to diabetic rats (control) (p<0.05). Nanoemulsion formulations (especially nanoemulsion containing metformin HCl and repaglinide combination) have a better antidiabetic activity and are more effective in reducing oxidative stress caused by diabetes.
Collapse
Affiliation(s)
| | - Meltem Cetin
- Atatürk University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Turkey.
| | - Cemil Bayram
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| | - Serkan Yildirim
- Atatürk University, Faculty of Veterinary Medicine, Department of Pathology, Turkey
| | | | - Ahmet Hacimuftuoglu
- Atatürk University, Faculty of Medicine, Department of Medical Pharmacology, Turkey
| |
Collapse
|
11
|
Lu W, Yu L, Wang L, Liu S, Li M, Wu Z, Chen S, Hu R, Hao H. Metformin Hydrochloride Mucosal Nanoparticles-Based Enteric Capsule for Prolonged Intestinal Residence Time, Improved Bioavailability, and Hypoglycemic Effect. AAPS PharmSciTech 2022; 24:31. [PMID: 36577873 DOI: 10.1208/s12249-022-02402-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022] Open
Abstract
Metformin hydrochloride enteric-coated capsule (MH-EC) is a commonly used clinical drug for the treatment of type 2 diabetes. In this study, we described a metformin hydrochloride mucosal nanoparticles enteric-coated capsule (MH-MNPs-EC) based on metformin hydrochloride chitosan mucosal nanoparticles (MH-CS MNPs) and its preparation method to improve the bioavailability and hypoglycemic effect duration of MH-EC. In intestinal adhesion study, the residue rates of free drugs and mucosal nanoparticles were 10.52% and 67.27%, respectively after cleaned with PBS buffer. MH-CS MNPs could significantly improve the efficacy of MH and promote the rehabilitation of diabetes rats. In vitro release test of MH-MNPs-EC showed continuous release over 12 h, while commercial MH-EC released completely within about 1 h in intestinal environment (pH 6.8). Pharmacokinetic study was performed in beagle dogs compared to the commercial MH-EC. The durations of blood MH concentration above 2 μg/mL were 9 h for MH-MNPs-EC versus 2 h for commercial MH-EC. The relative bioavailability of MH-MNPs-EC was determined as 185.28%, compared with commercial MH-EC. In conclusion, MH-CS MNPs have good intestinal adhesion and can significantly prolong the residence time of MH in the intestine. MH-MNPs-EC has better treatment effect compared with MH-EC, and it is expected to be a potential drug product for the treatment of diabetes because of its desired characteristics.
Collapse
Affiliation(s)
- Wenjie Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Lingfei Yu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Lujun Wang
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Songlin Liu
- Anhui Huangshan Capsule Co. Ltd., Huangshan, 242700, Anhui, China
| | - Manman Li
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Zijun Wu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China
| | - Shengqi Chen
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Rongfeng Hu
- Anhui Province Key Laboratory of Pharmaceutical Technology and Application; Key Laboratory of Xin'an Medicine Ministry of Education, Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China.
| | - Haiping Hao
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
12
|
Abdualmjid RJ, Sergi CM. Mitochondrial Dysfunction and Induction of Apoptosis in Hepatocellular Carcinoma and Cholangiocarcinoma Cell Lines by Thymoquinone. Int J Mol Sci 2022; 23:ijms232314669. [PMID: 36498999 PMCID: PMC9737800 DOI: 10.3390/ijms232314669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Thymoquinone (TQ), a plant-based bioactive constituent derived from the volatile oil of Nigella sativa, has been shown to possess some anti-neoplastic activities. The present study aimed to investigate the mitochondria and apoptosis observed when TQ is applied against hepatocellular carcinoma (HepG2) and cholangiocarcinoma (HuCCT1) cells, two of the most common primary tumors of the liver. All cell lines were treated with increasing concentrations of TQ for varying durations. The anti-proliferative effect of TQ was measured using the methoxyphenyl-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and resulted in dose- and time-dependent growth inhibition in both cell lines. Cell cycle, apoptosis, and assessment of mitochondria viability by morphology assessment and evaluation of the mitochondrial membrane potential were investigated. The present study confirms that TQ caused cell cycle arrest at different phases and induced apoptosis in both cell lines. A systematic review of rodent animal models was also carried out. Overall, our data seem to represent the most robust results, suggesting that TQ possesses promising therapeutic potential as an anti-tumor agent for the treatment of hepatocellular carcinoma and cholangiocarcinoma.
Collapse
Affiliation(s)
- Reem J. Abdualmjid
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Consolato M. Sergi
- Department of Lab. Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
- Anatomic Pathology, Children’s Hospital of Eastern Ontario (CHEO), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: ; Tel.: +1-613-737-7600 (ext. 2427); Fax: +1-613-738-4837
| |
Collapse
|
13
|
Tan D, Tseng HHL, Zhong Z, Wang S, Vong CT, Wang Y. Glycyrrhizic Acid and Its Derivatives: Promising Candidates for the Management of Type 2 Diabetes Mellitus and Its Complications. Int J Mol Sci 2022; 23:10988. [PMID: 36232291 PMCID: PMC9569462 DOI: 10.3390/ijms231910988] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, which is characterized by hyperglycemia, chronic insulin resistance, progressive decline in β-cell function, and defect in insulin secretion. It has become one of the leading causes of death worldwide. At present, there is no cure for T2DM, but it can be treated, and blood glucose levels can be controlled. It has been reported that diabetic patients may suffer from the adverse effects of conventional medicine. Therefore, alternative therapy, such as traditional Chinese medicine (TCM), can be used to manage and treat diabetes. In this review, glycyrrhizic acid (GL) and its derivatives are suggested to be promising candidates for the treatment of T2DM and its complications. It is the principal bioactive constituent in licorice, one type of TCM. This review comprehensively summarized the therapeutic effects and related mechanisms of GL and its derivatives in managing blood glucose levels and treating T2DM and its complications. In addition, it also discusses existing clinical trials and highlights the research gap in clinical research. In summary, this review can provide a further understanding of GL and its derivatives in T2DM as well as its complications and recent progress in the development of potential drugs targeting T2DM.
Collapse
Affiliation(s)
| | | | | | | | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
14
|
Al Zarzour RH, Kamarulzaman EE, Saqallah FG, Zakaria F, Asif M, Abdul Razak KN. Medicinal plants' proposed nanocomposites for the management of endocrine disorders. Heliyon 2022; 8:e10665. [PMID: 36185142 PMCID: PMC9520215 DOI: 10.1016/j.heliyon.2022.e10665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 05/07/2022] [Accepted: 09/09/2022] [Indexed: 01/14/2023] Open
Abstract
Extensive attention has been focused on herbal medicine for the treatment of different endocrine disorders. In fact, compelling scientific evidence indicates that natural compounds might act as endocrine modulators by mimicking, stimulating, or inhibiting the actions of different hormones, such as thyroid, sex, steroidal, and glucose regulating hormones. These potentials might be effectively employed for therapeutic purposes related to the endocrine system as novel complementary choices. Nevertheless, despite the remarkable therapeutic effects, inadequate targeting efficiency and low aqueous solubility of the bioactive components are still essential challenges in their clinical accreditation. On the other hand, nanotechnology has pushed the wheels of combining inorganic nanoparticles with biological structures of medicinal bioactive compounds as one of the utmost exciting fields of research. Nanoparticle conjugations create an inclusive array of applications that provide greater compliance, higher bioavailability, and lower dosage. This can safeguard the global availability of these wealthy natural sources, regardless of their biological occurrence. This review inspects future challenges of medicinal plants in various endocrine disorders for safe and alternative treatments with examples of their nanoparticle formulations.
Collapse
Affiliation(s)
- Raghdaa Hamdan Al Zarzour
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
- Department of Pharmacology, Faculty of Pharmacy, Arab International University, Daraa Highway, Ghabagheb Syria
| | - Ezatul Ezleen Kamarulzaman
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fadi G. Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Fauziahanim Zakaria
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100 Punjab, Pakistan
| | - Khairul Niza Abdul Razak
- Discipline of Physiology & Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
15
|
Khalid A, Naseem I. Antidiabetic and antiglycating potential of chrysin is enhanced after nano formulation: An in vitro approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
A Review on the Delivery of Plant-Based Antidiabetic Agents Using Nanocarriers: Current Status and Their Role in Combatting Hyperglycaemia. Polymers (Basel) 2022; 14:polym14152991. [PMID: 35893954 PMCID: PMC9330056 DOI: 10.3390/polym14152991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Diabetes mellitus is a prevalent metabolic syndrome that is associated with high blood glucose levels. The number of diabetic patients is increasing every year and the total number of cases is expected to reach more than 600 million worldwide by 2045. Modern antidiabetic drugs alleviate hyperglycaemia and complications that are caused by high blood glucose levels. However, due to the side effects of these drugs, plant extracts and bioactive compounds with antidiabetic properties have been gaining attention as alternative treatments for diabetes. Natural products are biocompatible, cheaper and expected to cause fewer side effects than the current antidiabetic drugs. In this review, various nanocarrier systems are discussed, such as liposomes, niosomes, polymeric nanoparticles, nanoemulsions, solid lipid nanoparticles and metallic nanoparticles. These systems have been applied to overcome the limitations of the current drugs and simultaneously improve the efficacy of plant-based antidiabetic drugs. The main challenges in the formulation of plant-based nanocarriers are the loading capacity of the plant extracts and the stability of the carriers. A brief review of lipid nanocarriers and the amphipathic properties of phospholipids and liposomes that encapsulate hydrophilic, hydrophobic and amphiphilic drugs is also described. A special emphasis is placed on metallic nanoparticles, with their advantages and associated complications being reported to highlight their effectiveness for treating hyperglycaemia. The present review could be an interesting paper for researchers who are working in the field of using plant extract-loaded nanoparticles as antidiabetic therapies.
Collapse
|
17
|
Bakr AF, Shao P, Farag MA. Recent advances in glycyrrhizin metabolism, health benefits, clinical effects and drug delivery systems for efficacy improvement; a comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153999. [PMID: 35220130 DOI: 10.1016/j.phymed.2022.153999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/06/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Glycyrrhizin (GL) is a major active constituent of licorice root (Glycyrrhiza glabra) that is considered one of the oldest and most frequently employed botanicals in Chinese medicine and worldwide, with most effects attributed to its rich GL content. Structurally, GL a triterpene saponin that is widely used as a flavoring agent in foodstuffs and cosmetics, and also proposed for various clinical applications with a myriad of health benefits. Pharmacological and biological activities of GL include antiviral, anti-inflammatory, antioxidant, and anticancer activities (in vitro and in vivo). Currently, there is no comprehensive review on GL biological effects and its action mechanisms. PURPOSE This review summarizes GL pharmacological actions from a molecular biology perception, presented on its metabolism and side effects based on in vitro, in vitro and clinical studies. Moreover, the potential of GL as a nanomedicine delivery system is also summarized. The progress in drug delivery research using GL presented herein is expected to provide a theoretical basis for developing other novel drugs formulations. METHODS A systematic review was carried out in several electronic databases (Science Direct, SpringerLink, CNKI, PubMed, Web of Science, Elsevier, and Scopus), using the following key words: glycyrrhizin "AND" bioactivity "OR" clinic "OR" therapeutic "OR" drug delivery. This search included manuscripts published between 1989 and 2021. RESULTS 126 researches were selected and summarized in this review. The analysis of these studies indicated that GL has antiviral activity against different viruses. Further, GL efficiently suppressed the respiratory manifestations associated with COVID-19 by reducing the expression of angiotensin converting enzyme 2 (ACE2) that employed by the virus as an entry point. Otherwise, GL was found to induce antioxidant, anti-inflammatory, immune-modulatory, and anticancer activity. Besides, diminution the particle size of GL to nanometer size significantly augments their action and biodistribution. CONCLUSION This article summarizes the pharmacological actions of GL. The potential of GL as a nanomedicine delivery system is also presented. Nevertheless, most studies reported provide no deep insight of GL health effects warranting for more future studies to elucidate its action mechanism and potential therapeutic benefits through preclinical and clinical trials.
Collapse
Affiliation(s)
- Alaa F Bakr
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Gamaa St., Giza 12211, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, China.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini St., P.B. 11562, Cairo, Egypt.
| |
Collapse
|
18
|
Shoaib A, Azmi L, Pal S, Alqahtani SS, Rahamathulla M, Hani U, Alshehri S, Ghoneim MM, Shakeel F. Integrating nanotechnology with naturally occurring phytochemicals in neuropathy induced by diabetes. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Sen S. Liposome-encapsulated glycyrrhizin alleviates hyperglycemia and glycation-induced iron-catalyzed oxidative reactions in streptozotocin-induced diabetic rats. J Liposome Res 2022; 32:376-385. [PMID: 35166624 DOI: 10.1080/08982104.2022.2036756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Glycyrrhizin, a bioactive constituent of Glycyrrhiza glabra has been reported to ameliorate diabetes. Here, the effects of liposome-encapsulated glycyrrhizin on STZ-induced diabetes and associated oxidative stress were investigated. Wistar rats were grouped as control (NC, received placebo), diabetic (DC, STZ-induced), diabetic treated with free glycyrrhizin (DTG, 3 i.v. doses, 1.6 mg/0.5 ml), empty liposomes (DTl, 3 i.v. doses), and liposome-encapsulated glycyrrhizin (DTbd, 3 i.v. doses, 1.6 mg/0.5 ml). Serum glucose, insulin, intraperitoneal glucose tolerance test and glycohemoglobin were estimated. Free iron and iron-mediated oxidative stress were examined. Histological examinations of the kidney and liver were performed. Liposomal-glycyrrhizin treatment caused significant improvement of hyperglycemia (DC vs. DTbd p < .05), glucose intolerance (DC vs. DTG p < .01 and DC vs. DTbd p < .05), insulin (DC vs. DTG p < .1, DTbd vs. DC p < .05 and DTbd vs. DTG p < .1) and glycohemoglobin (DC vs. DTG p < .1 and DC vs. DTbd p < .05) levels in the DTbd group. Alleviation of free iron release (DC vs. DTbd p < .05), lipid peroxidation (DC + H2O2 vs. DTbd + H2O2 p < .05), deoxyribose (DC + H2O2 vs. DTbd + H2O2, p < .05), and DNA degradation occurred in the DTbd group. The abnormalities of the kidney and liver were abolished in the DTbd group. The inhibitory effects were more pronounced compared to free glycyrrhizin. Liposome-encapsulated glycyrrhizin treatment caused inhibition of diabetic complications through its antioxidant effects and can be exploited for effective treatment of diabetes.
Collapse
Affiliation(s)
- Subhrojit Sen
- Department of Biophysics, Molecular Biology & Bioinformatics, University College of Science, University of Calcutta, Kolkata, India
| |
Collapse
|
20
|
Gum-based nanocapsules comprising naphthoquinones enhance the apoptotic and trypanocidal activity against Trypanosoma evansi. Eur J Pharm Sci 2022; 171:106118. [PMID: 35007713 DOI: 10.1016/j.ejps.2022.106118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/21/2022]
Abstract
Nanoencapsulation is a promising approach to enhance the therapeutic potential of a drug. Herein, three selected naphthoquinone (NTQ) derivatives, based on the IC50 value against Trypanosoma evansi, were encapsulated using gum damar as biocompatible and biodegradable natural gum via nanoprecipitation method. Nanoformulation of NTQs (NNTQs) was less than 150 nm in size, was found to be stable and released the drug in a sustained manner. All the three NNTQs exhibited significant antitrypanosomal effect and morphological changes at approximately two to three times lesser drug concentrations. The nanoformulations exhibited enhanced production of reactive oxygen species (ROS) in the axenic culture of T. evansi and less cytotoxic effect on horse peripheral blood mononuclear cells relative to pure NTQs. As evidenced by flow cytometry, the NNTQs showed dose-dependent and time-dependent increased transition of live cells (AV-PI-) to early apoptotic cells (AV+PI-), late apoptotic cells (AV-PI+), and necrotic cells (AV+PI+) using annexin V/propidium iodide probe analysis. The results concluded that NNTQs induced more ROS, apoptosis and necrotic effects that exhibited more inhibitory effect on the growth of T. evansi with respect to respective NTQ by themselves.
Collapse
|
21
|
Zhao Y, Li W, Zhang D. Gycyrrhizic acid alleviates atherosclerotic lesions in rats with diabetes mellitus. Mol Med Rep 2021; 24:755. [PMID: 34476498 PMCID: PMC8436226 DOI: 10.3892/mmr.2021.12395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/05/2020] [Indexed: 11/22/2022] Open
Abstract
Gycyrrhizic acid (GA), an inhibitor of high mobility group box 1 (HMGB1), inhibits inflammatory responses and is involved in the occurrence and development of several inflammation-related diseases. However, the role of GA in the atherosclerotic lesions caused by diabetes mellitus (DM) remains unknown. In the present study, Sprague Dawley rats were selected to desi=gn a diabetic atherosclerosis (AS) model. Rats from the DM-AS group were subsequently divided into DM-AS, DM-AS + GA (50 mg/kg) and DM-AS + GA (150 mg/kg) groups. Biochemical analyzers were used to measure levels of blood glucose, fasting insulin, total cholesterol, total triglyceride, low-density lipoprotein and high-density lipoprotein. The number of plaques was recorded after collection of thoracic aortas from the rats. The intimal thickness of arterial tissue was detected by hematoxylin and eosin staining. The expression levels of CD68 and α-smooth muscle actin (α-SMA) were detected by immunohistochemistry. The expression of tumor necrosis factor-α, interleukin (IL)-6 and IL-1β in the serum of the rats was detected by ELISA. The expression of fatty acid synthetase, sterol regulatory element binding protein 1C, HMGB1 and receptor for advanced glycation end products (RAGE) was detected by western blotting. Reverse transcription quantitative PCR was used to detect the mRNA expression of HMGB1 and RAGE. The results demonstrated that GA treatment could decrease the body weight, blood glucose level and biochemical parameters of AS DM rats in a dose-dependent manner. In addition, GA decreased the intimal thickness of carotid artery and the formation of plaque in rats with diabetic AS. Furthermore, GA inhibited macrophage activation and decreased α-SMA expression in vascular smooth muscle cells, and decreased the expression of proteins (FAS and SREBP-1c) and inflammatory factors. Taken together, the findings from the present study demonstrated that GA may have a therapeutic effect on DM-associated AS. This study provides a theoretical basis for the treatment of diabetic AS.
Collapse
Affiliation(s)
- Yaodong Zhao
- Department of General Internal Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan 450052, P.R. China
| | - Wei Li
- Department of General Internal Medicine, The Fifth Affiliated Hospital of Zhengzhou University, Zhenzhou, Henan 450052, P.R. China
| | - Daimin Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
22
|
Sarkar C, Jamaddar S, Islam T, Mondal M, Islam MT, Mubarak MS. Therapeutic perspectives of the black cumin component thymoquinone: A review. Food Funct 2021; 12:6167-6213. [PMID: 34085672 DOI: 10.1039/d1fo00401h] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The dietary phytochemical thymoquinone (TQ), belonging to the family of quinones, mainly obtained from the black and angular seeds of Nigella sativa, is one of the promising monoterpenoid hydrocarbons, which has been receiving massive attention for its therapeutic potential and pharmacological properties. It plays an important role as a chemopreventive and therapeutic agent in the treatment of various diseases and illnesses. The aim of this review is to present a summary of the most recent literature pertaining to the use of TQ for the prevention and treatment of various diseases along with possible mechanisms of action, and the potential use of this natural product as a complementary or alternative medicine. Research findings indicated that TQ exhibits numerous pharmacological activities including antioxidant, anti-inflammatory, cardioprotective, hepatoprotective, antidiabetic, neuroprotective, and anticancer, among others. Conclusions of this review on the therapeutic aspects of TQ highlight the medicinal and folk values of this compound against various diseases and ailments. In short, TQ could be a novel drug in clinical trials, as we hope.
Collapse
Affiliation(s)
- Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj-8100, Bangladesh.
| | | | | | | | | | | |
Collapse
|
23
|
Olaniyi KS, Amusa OA, Akinnagbe NT, Ajadi IO, Ajadi MB, Agunbiade TB, Michael OS. Acetate ameliorates nephrotoxicity in streptozotocin-nicotinamide-induced diabetic rats: Involvement of xanthine oxidase activity. Cytokine 2021; 142:155501. [PMID: 33775493 DOI: 10.1016/j.cyto.2021.155501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/27/2022]
Abstract
Impaired renal function is a common complication of diabetes mellitus (DM) that often degenerates to cardiovascular disease, contributing to high morbidity and reduced survival worldwide. Short chain fatty acids (SCFAs), including acetate has shown potential benefits in glycemic or metabolic regulation but its effect on diabetes-associated renal toxicity/impairment is not clear. Herein, we investigated the hypothesis that acetate would ameliorate renal toxicity, accompanying DM, possibly by suppression of xanthine oxidase (XO) activity. Adult male Wistar rats (230-260 g) were allotted into groups (n = 6/group) namely: control (vehicle; po), sodium acetate (NaAc)-treated (200 mg/kg), diabetic with or without NaAc groups. DM was induced by intraperitoneal injection of streptozotocin 65 mg/kg after a dose of nicotinamide (110 mg/kg). Diabetic animals showed increased fasting glucose and insulin, renal triglyceride, total cholesterol, atherogenic lipid, malondialdehyde, XO, tissue necrosis factor-α, uric acid, interleukin-6, aspartate transaminase/alanine aminotransferase ratio, gamma-glutamyl transferase and decreased glutathione and nitric oxide concentration. The renal tissue was characterized with disrupted tissue architecture, enlarged Bowman's space, congested glomeruli and adherence of abnormal segments of tuft to Bowman's capsule with consequent elevated serum creatinine and urea concentration. However, these alterations were attenuated by NaAc. The study demonstrates that acetate ameliorates diabetes-induced nephrotoxicity, which is associated with suppressed XO and its accompanied pro-inflammatory mediators. Therefore, SCFAs, acetate would be a promising dietary-derived therapeutic agent for the prevention and management of diabetes-associated renal disturbances.
Collapse
Affiliation(s)
- Kehinde S Olaniyi
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria; School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa.
| | - Oluwatobi A Amusa
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Nifesimi T Akinnagbe
- Cardio/Repro-metabolic and Microbiome Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Isaac O Ajadi
- School of Laboratory Medicine & Medical Sciences, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| | - Mary B Ajadi
- Department of Chemical Pathology, College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Nigeria; Department of Medical Biochemistry, School of Laboratory Medicine, University of KwaZulu-Natal, Private Bag X54001, Congella 4013, Westville, Durban, South Africa
| | - Toluwani B Agunbiade
- Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti 360101, Nigeria
| | - Olugbenga S Michael
- Cardiometabolic Research Unit, Department of Physiology, College of Health Sciences, Bowen University, Iwo, Nigeria
| |
Collapse
|
24
|
Hannan MA, Rahman MA, Sohag AAM, Uddin MJ, Dash R, Sikder MH, Rahman MS, Timalsina B, Munni YA, Sarker PP, Alam M, Mohibbullah M, Haque MN, Jahan I, Hossain MT, Afrin T, Rahman MM, Tahjib-Ul-Arif M, Mitra S, Oktaviani DF, Khan MK, Choi HJ, Moon IS, Kim B. Black Cumin ( Nigella sativa L.): A Comprehensive Review on Phytochemistry, Health Benefits, Molecular Pharmacology, and Safety. Nutrients 2021; 13:1784. [PMID: 34073784 PMCID: PMC8225153 DOI: 10.3390/nu13061784] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Mounting evidence support the potential benefits of functional foods or nutraceuticals for human health and diseases. Black cumin (Nigella sativa L.), a highly valued nutraceutical herb with a wide array of health benefits, has attracted growing interest from health-conscious individuals, the scientific community, and pharmaceutical industries. The pleiotropic pharmacological effects of black cumin, and its main bioactive component thymoquinone (TQ), have been manifested by their ability to attenuate oxidative stress and inflammation, and to promote immunity, cell survival, and energy metabolism, which underlie diverse health benefits, including protection against metabolic, cardiovascular, digestive, hepatic, renal, respiratory, reproductive, and neurological disorders, cancer, and so on. Furthermore, black cumin acts as an antidote, mitigating various toxicities and drug-induced side effects. Despite significant advances in pharmacological benefits, this miracle herb and its active components are still far from their clinical application. This review begins with highlighting the research trends in black cumin and revisiting phytochemical profiles. Subsequently, pharmacological attributes and health benefits of black cumin and TQ are critically reviewed. We overview molecular pharmacology to gain insight into the underlying mechanism of health benefits. Issues related to pharmacokinetic herb-drug interactions, drug delivery, and safety are also addressed. Identifying knowledge gaps, our current effort will direct future research to advance potential applications of black cumin and TQ in health and diseases.
Collapse
Affiliation(s)
- Md. Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Ataur Rahman
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Abdullah Al Mamun Sohag
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Mahmudul Hasan Sikder
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Gyeonggi-do, Anseong 17546, Korea;
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Partha Protim Sarker
- ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; (M.J.U.); (P.P.S.)
- Department of Biotechnology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahboob Alam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
- Division of Chemistry and Biotechnology, Dongguk University, Gyeongju 780-714, Korea
| | - Md. Mohibbullah
- Department of Fishing and Post Harvest Technology, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh;
| | - Md. Nazmul Haque
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh;
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Tahmeed Hossain
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Tania Afrin
- Interdisciplinary Institute for Food Security, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh;
| | - Md. Mahbubur Rahman
- Research and Development Center, KNOTUS Co., Ltd., Yeounsu-gu, Incheon 22014, Korea;
| | - Md. Tahjib-Ul-Arif
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh; (A.A.M.S.); (M.T.H.); (M.T.-U.-A.)
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Md Kawsar Khan
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh;
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.H.); (R.D.); (B.T.); (Y.A.M.); (M.A.); (S.M.); (D.F.O.); (H.J.C.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
25
|
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved Pharmacodynamic Potential of Rosuvastatin by Self-Nanoemulsifying Drug Delivery System: An in vitro and in vivo Evaluation. Int J Nanomedicine 2021; 16:905-924. [PMID: 33603359 PMCID: PMC7881784 DOI: 10.2147/ijn.s287665] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The purpose of this proposed research was to investigate a nano-formulation developed using self-nanoemulsifying drug delivery system (SNEDDS) to improve the pharmacodynamic potential of rosuvastatin by assisting its transportation through lymphatic circulation. METHODS The utilized lipids, surfactants, and co-surfactants for SNEDDS were selected on the basis of solubility studies. The SNEDDS formulation was optimized by implementing a D-optimal mixture design, wherein the effect of concentration of Capmul MCM EP (X1), Tween 20 (X2) and Transcutol P (X3) as independent variables was studied on droplet size (Y1), % cumulative drug release (Y2) and self-emulsification time (Y3) as dependent variables. The optimized formulation was evaluated via in vitro parameters and in vivo pharmacodynamic potential in Wistar rats. RESULTS The D-optimal mixture design and subsequent ANOVA application resulted in the assortment of the optimized SNEDDS formulation that exhibited a droplet size of nano range (14.91nm), in vitro drug release of >90% within 30 minutes, and self-emulsification time of 16 seconds. The in vivo pharmacodynamic study carried out using Wistar rats confirmed the better antihyperlipidemic potential of developed formulation in normalizing the lipidic level of serum in contrast to pure drug and marketed tablets. CONCLUSION This research reports the application of D-optimal mixture design for successful and systematic development of rosuvastatin-loaded SNEDDS with distinctly enhanced in vitro and in vivo performance in comparison to marketed formulation. Eventually, improved anti-hyperlipidemic efficacy was envisaged which might be attributed to increased drug solubility and absorption. Overall, this study shows the utility of SNEDDS for improving the dissolution rate and bioavailability of poor aqueous-soluble drugs. The present SNEDDS formulation could be a promising approach and alternative to conventional dosage form.
Collapse
Affiliation(s)
- Ravinder Verma
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Arts, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, USA
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh
| | - Mohamed M Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, M.D. University, Rohtak, Haryana, 124001, India
| |
Collapse
|
26
|
Ali MY, Akter Z, Mei Z, Zheng M, Tania M, Khan MA. Thymoquinone in autoimmune diseases: Therapeutic potential and molecular mechanisms. Biomed Pharmacother 2020; 134:111157. [PMID: 33370631 DOI: 10.1016/j.biopha.2020.111157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 02/07/2023] Open
Abstract
Autoimmune diseases (AUDs) are a multifactorial disease, among which rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis are more prevalent. Several anti-inflammatory, biologics, and AUD-modifying drugs are found effective against them, but their repeated use are associated with various adverse effects. In this review article, we have focused on the regulation of inflammatory molecules, molecular signaling pathways, immune cells, and epigenetics by natural product thymoquinone on AUDs. Studies indicate that thymoquinone can regulate inflammatory molecules including interferons, interleukins, tumor necrosis factor-α (TNF-α), oxidative stress, regulatory T cells, and various signaling pathways such as nuclear factor kappa beta (NF-κβ), janus kinase/signal transduction and activator of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) at the molecular level and epigenetic alteration. As these molecules and signaling pathways with defective immune function play an important role in AUD development, controlling these molecules and deregulated molecular mechanism is a significant feature of AUD therapeutics. Interestingly thymoquinone is reported to possess all these potential. This article reviewed the deregulated mechanism of AUDs, and the action of thymoquinone on inflammatory molecules, immune cells, signaling pathways, and epigenetic machinery. Thymoquinone can be regarded as a potential drug candidate for AUD treatment.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zakia Akter
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Meiling Zheng
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Mousumi Tania
- Research Division, Nature Study Society of Bangladesh, Dhaka, Bangladesh; Division of Molecular Cancer Biology, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China.
| |
Collapse
|
27
|
Nie X, Chen Z, Pang L, Wang L, Jiang H, Chen Y, Zhang Z, Fu C, Ren B, Zhang J. Oral Nano Drug Delivery Systems for the Treatment of Type 2 Diabetes Mellitus: An Available Administration Strategy for Antidiabetic Phytocompounds. Int J Nanomedicine 2020; 15:10215-10240. [PMID: 33364755 PMCID: PMC7751584 DOI: 10.2147/ijn.s285134] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/23/2020] [Indexed: 12/15/2022] Open
Abstract
In view of the worldwide serious health threat of type 2 diabetes mellitus (T2DM), natural sources of chemotherapies have been corroborated as the promising alternatives, with the excellent antidiabetic activities, bio-safety, and more cost-effective properties. However, their clinical application is somewhat limited, because of the poor solubility, instability in the gastrointestinal tract (GIT), low bioavailability, and so on. Nowadays, to develop nanoscaled systems has become a prominent strategy to improve the drug delivery of phytochemicals. In this review, we primarily summarized the intervention mechanisms of phytocompounds against T2DM and presented the recent advances in various nanosystems of antidiabetic phytocompounds. Selected nanosystems were grouped depending on their classification and structures, including polymeric NPs, lipid-based nanosystems, vesicular systems, inorganic nanocarriers, and so on. Based on this review, the state-of-the-art nanosystems for phytocompounds in T2DM treatment have been presented, suggesting the preponderance and potential of nanotechnologies.
Collapse
Affiliation(s)
- Xin Nie
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999087, People’s Republic of China
| | - Lan Pang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Huajuan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Yi Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Zhen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Chaomei Fu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Bo Ren
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu611137, People’s Republic of China
| |
Collapse
|
28
|
Mechanisms of Antidiabetic Activity of Methanolic Extract of Punica granatum Leaves in Nicotinamide/Streptozotocin-Induced Type 2 Diabetes in Rats. PLANTS 2020; 9:plants9111609. [PMID: 33228177 PMCID: PMC7699557 DOI: 10.3390/plants9111609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/23/2022]
Abstract
The current study aimed to establish the mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves (MEPGL) in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Phytochemical screening, HPLC analysis, and acute toxicity study of MEPGL were carried out. Various concentrations of MEPGL (100, 200, 400, and 600 mg/kg) were administered orally to diabetic rats for 45 days on a daily basis. The antidiabetic effect of MEPGL was examined by measuring blood glucose, plasma insulin, and glycated hemoglobin (HbA1c) levels, as well as with an oral glucose tolerance test. The antioxidant effect of MEPGL was determined by analyzing hepatic and renal antioxidant markers, namely superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and lipid peroxidation. The other biochemical markers alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), urea, and creatinine, as well as total cholesterol, triglycerides, and high-density lipoprotein (HDL) were also studied. Type 2 diabetes significantly altered these parameters, while oral administration of the MEPGL significantly ameliorated them. Moreover, the pancreatic histopathological changes were attenuated with MEPGL treatment. In a nutshell, oral MEPGL administration in diabetic rats showed antidiabetic activity due to its antioxidant activity, most probably due to the gallic acid, ellagic acid, and apigenin found in MEPGL.
Collapse
|
29
|
Karabasz A, Bzowska M, Szczepanowicz K. Biomedical Applications of Multifunctional Polymeric Nanocarriers: A Review of Current Literature. Int J Nanomedicine 2020; 15:8673-8696. [PMID: 33192061 PMCID: PMC7654520 DOI: 10.2147/ijn.s231477] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric nanomaterials have become a prominent area of research in the field of drug delivery. Their application in nanomedicine can improve bioavailability, pharmacokinetics, and, therefore, the effectiveness of various therapeutics or contrast agents. There are many studies for developing new polymeric nanocarriers; however, their clinical application is somewhat limited. In this review, we present new complex and multifunctional polymeric nanocarriers as promising and innovative diagnostic or therapeutic systems. Their multifunctionality, resulting from the unique chemical and biological properties of the polymers used, ensures better delivery, and a controlled, sequential release of many different therapeutics to the diseased tissue. We present a brief introduction of the classical formulation techniques and describe examples of multifunctional nanocarriers, whose biological assessment has been carried out at least in vitro. Most of them, however, also underwent evaluation in vivo on animal models. Selected polymeric nanocarriers were grouped depending on their medical application: anti-cancer drug nanocarriers, nanomaterials delivering compounds for cancer immunotherapy or regenerative medicine, components of vaccines nanomaterials used for topical application, and lifestyle diseases, ie, diabetes.
Collapse
Affiliation(s)
- Alicja Karabasz
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Monika Bzowska
- Department of Cell Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
30
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
31
|
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-Based Antidiabetic Nanoformulations: The Emerging Paradigm for Effective Therapy. Int J Mol Sci 2020; 21:E2217. [PMID: 32210082 PMCID: PMC7139625 DOI: 10.3390/ijms21062217] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/10/2020] [Accepted: 03/19/2020] [Indexed: 12/27/2022] Open
Abstract
Diabetes mellitus is a life-threatening metabolic syndrome. Over the past few decades, the incidence of diabetes has climbed exponentially. Several therapeutic approaches have been undertaken, but the occurrence and risk still remain unabated. Several plant-derived small molecules have been proposed to be effective against diabetes and associated vascular complications via acting on several therapeutic targets. In addition, the biocompatibility of these phytochemicals increasingly enhances the interest of exploiting them as therapeutic negotiators. However, poor pharmacokinetic and biopharmaceutical attributes of these phytochemicals largely restrict their clinical usefulness as therapeutic agents. Several pharmaceutical attempts have been undertaken to enhance their compliance and therapeutic efficacy. In this regard, the application of nanotechnology has been proven to be the best approach to improve the compliance and clinical efficacy by overturning the pharmacokinetic and biopharmaceutical obstacles associated with the plant-derived antidiabetic agents. This review gives a comprehensive and up-to-date overview of the nanoformulations of phytochemicals in the management of diabetes and associated complications. The effects of nanosizing on pharmacokinetic, biopharmaceutical and therapeutic profiles of plant-derived small molecules, such as curcumin, resveratrol, naringenin, quercetin, apigenin, baicalin, luteolin, rosmarinic acid, berberine, gymnemic acid, emodin, scutellarin, catechins, thymoquinone, ferulic acid, stevioside, and others have been discussed comprehensively in this review.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Biswajit Mukherjee
- Pharmaceutics Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India;
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| |
Collapse
|
32
|
Rathore C, Rathbone MJ, Chellappan DK, Tambuwala MM, Pinto TDJA, Dureja H, Hemrajani C, Gupta G, Dua K, Negi P. Nanocarriers: more than tour de force for thymoquinone. Expert Opin Drug Deliv 2020; 17:479-494. [PMID: 32077770 DOI: 10.1080/17425247.2020.1730808] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Introduction: Thymoquinone (TQ), 2-isopropyl-5-methylbenzo-1, 4-quinone, the main active constituent of Nigella sativa (NS) plant, has been proven to be of great therapeutic aid in various in vitro and in vivo conditions. Despite the promising therapeutic activities of TQ, this molecule is not yet in the clinical trials, restricted by its poor biopharmaceutical properties including photo-instability.Area covered: This review compiles the different types of polymeric and lipidic nanocarriers (NCs), encapsulating TQ for their improved oral bioavailability, and augmented in vitro and in vivo efficacy, evidenced on various pathologies. Furthermore, we provide a comprehensive overview of TQ in relation to its encapsulation approaches advancing the delivery and improving the efficacy of TQ.Expert opinion: TQ was first identified in the essential oil of Nigella sativa L. black seed. TQ has not been used in formulations because it is a highly hydrophobic drug having poor aqueous solubility. To deal with the poor physicochemical problems associated with TQ, various NCs encapsulating TQ have been tried in the past. Nevertheless, these NCs could be impending in bringing forth this potential molecule to clinical reality. This will also be beneficial for a large research community including pharmaceutical & biological sciences and translational researchers.
Collapse
Affiliation(s)
- Charul Rathore
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | | | - Dinesh K Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Malaysia
| | - Murtaza M Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | | | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharishi Dayanand University, Rohtak, Haryana, India
| | - Chetna Hemrajani
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, Australia.,Centre for Inflammation, Centenary Institute, Royal Prince Alfred Hospital, Sydney, Australia.,School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, Australia.,Australia & Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, Newcastle, Australia
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| |
Collapse
|
33
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|