1
|
Gongalsky MB, Tsurikova UA, Kudryavtsev AA, Pervushin NV, Sviridov AP, Kumeria T, Egoshina VD, Tyurin-Kuzmin PA, Naydov IA, Gonchar KA, Kopeina GS, Andreev VG, Zhivotovsky B, Osminkina LA. Amphiphilic Photoluminescent Porous Silicon Nanoparticles as Effective Agents for Ultrasound-Amplified Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:374-385. [PMID: 39701827 DOI: 10.1021/acsami.4c15725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
This study investigates the use of photoluminescent amphiphilic porous silicon nanoparticles (αϕ-pSiNPs) as effective ultrasound (US) amplifiers for cancer sonodynamic theranostics. αϕ-pSiNPs were synthesized via a novel top-down approach involving porous silicon (pSi) films electrochemical etching, borate oxidation, and hydrophobic coating with octadecylsilane (C18), resulting in milling into nanoparticles with hydrophilic exteriors and hydrophobic interiors. These properties promote gas trapping and cavitation nucleation, significantly lowering the US cavitation threshold and resulting in selective destruction of cancer cells in the presence of nanoparticles. Efficient internalization of αϕ-pSiNPs in cell cytoplasm was demonstrated by their intrinsic photoluminescence, activated by partial oxidation of mesoporous silicon films in borate solutions, which resulted in quantum confinement of excitons in 2-5 nm Si quantum dots/wires. Combined with US exposure above the cavitation threshold, αϕ-pSiNPs caused a significant decrease in cell viability through mechanical stretching and microflows generated by oscillating microbubbles. Meanwhile, αϕ-pSiNPs exhibit high biocompatibility up to concentrations of 1 mg/mL without US activation. Their photoluminescent properties facilitate bioimaging, while their US contrast capabilities may enhance both imaging and therapy. The dual functionality of αϕ-pSiNPs supports a theranostic approach, enabling simultaneous diagnostics and treatment with a single agent. This study underscores the potential of αϕ-pSiNPs in sonodynamic therapy and bioimaging, offering a promising strategy for effective and safe anticancer therapy.
Collapse
Affiliation(s)
- Maxim B Gongalsky
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Melbourne, VIC 3052, Australia
| | - Uliana A Tsurikova
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Andrey A Kudryavtsev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Nikolay V Pervushin
- Faculty of Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Andrey P Sviridov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Victoria D Egoshina
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Pyotr A Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Ilia A Naydov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Kirill A Gonchar
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Gelina S Kopeina
- Faculty of Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
| | - Valery G Andreev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| | - Boris Zhivotovsky
- Faculty of Medicine, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, 119991 Moscow, Russia
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Box 210, Stockholm SE-171 77, Sweden
| | - Liubov A Osminkina
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russian Federation
| |
Collapse
|
2
|
Hu HY, Sun YJ, Yuan XF, Han JF, Liao TT, Zhang FY, Mao JD, Zhang L, Ye WL. Ultrasound-controllable dexamethasone-loaded nanobubbles for highly effective rheumatoid arthritis therapy. J Mater Chem B 2025. [PMID: 39757977 DOI: 10.1039/d4tb01120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that seriously threatens human health and affects the quality of life of patients. At present, pharmacotherapy is still the mainstream treatment for RA, but most methods have shortcomings, such as poor drug targeting, a low effective drug dosage at the inflammatory site, and high systemic toxicity. The combined application of drug-loaded nanobubbles and ultrasound technology provides a new technique for the treatment of RA. Low-intensity focused ultrasound (LIFU) traces the transmission of drug-loaded nanobubbles in the body, and high-intensity focused ultrasound (HIFU) causes the nanobubbles to rupture to release drugs at the inflammatory site, thereby reducing their toxicity to normal tissues. In this study, a drug-loaded nanobubble delivery system (DEXsp@Liposomes/C3F8) with ultrasonic response characteristics was successfully constructed, and its therapeutic effect was evaluated for the treatment of RA in vitro and in vivo. DEXsp@Liposomes/C3F8 + LIFU had good biocompatibility and excellent ultrasound imaging ability. DEXsp@Liposomes/C3F8 +HIFU distinctly increased the cellular uptake of DEXsp and significantly reduced the secretion of related inflammatory factors in RAW264.7 cells. Moreover, DEXsp@Liposomes/C3F8 + HIFU effectively alleviated the symptoms of RA in model rats and significantly improved their exercise capacity. In conclusion, the prepared ultrasound-mediated DEXsp@Liposomes/C3F8 system exhibits good imaging, monitoring and therapeutic effects, and the results of this study provide a new direction for the diagnosis and treatment of RA.
Collapse
Affiliation(s)
- Hang-Yi Hu
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Ying-Jian Sun
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Xiao-Feng Yuan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
- Department of Pharmacy, Chinese People's Liberation Army Logistics Support Force No. 967 Hospital, Dalian, 116021, China
| | - Jiang-Fan Han
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Tian-Tian Liao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Fei-Yue Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jin-Dong Mao
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| | - Lin Zhang
- Department of Outpatient Service, 986th Hospital Affilliated to Air Force Medical University, Xi'an, China.
| | - Wei-Liang Ye
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wu X, Ma L, Zhang Y, Liu S, Cheng L, You C, Dong Z. Application progress of nanomaterials in the treatment of prostate cancer. ANNALES PHARMACEUTIQUES FRANÇAISES 2025; 83:1-12. [PMID: 39187009 DOI: 10.1016/j.pharma.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Prostate cancer is one of the most common malignant tumors in men, which seriously threatens the survival and quality of life of patients. At present, there are serious limitations in the treatment of prostate cancer, such as drug tolerance, drug resistance and easy recurrence. Sonodynamic therapy and chemodynamic therapy are two emerging tumor treatment methods, which activate specific drugs or sonosensitizers through sound waves or chemicals to produce reactive oxygen species and kill tumor cells. Nanomaterials are a kind of nanoscale materials with many excellent physical properties such as high targeting, drug release regulation and therapeutic monitoring. Sonodynamic therapy and chemodynamic therapy combined with the application of nanomaterials can improve the therapeutic effect of prostate cancer, reduce side effects and enhance tumor immune response. This article reviews the application progress of nanomaterials in the treatment of prostate cancer, especially the mechanism, advantages and challenges of nanomaterials in sonodynamic therapy and chemodynamic therapy, which provides new ideas and prospects for research in this field.
Collapse
Affiliation(s)
- Xuewu Wu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Longtu Ma
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Yang Zhang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, China
| | - Shuai Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Long Cheng
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Chengyu You
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China
| | - Zhilong Dong
- The Second Hospital & Clinical Medical School, Lanzhou University, Gansu 730030, China.
| |
Collapse
|
4
|
Zhang X, He N, Zhang L, Dai T, Sun Z, Shi Y, Li S, Yu N. Application of high intensity focused ultrasound combined with nanomaterials in anti-tumor therapy. Drug Deliv 2024; 31:2342844. [PMID: 38659328 PMCID: PMC11047217 DOI: 10.1080/10717544.2024.2342844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
High intensity focused ultrasound (HIFU) has demonstrated its safety, efficacy and noninvasiveness in the ablation of solid tumor. However, its further application is limited by its inherent deficiencies, such as postoperative recurrence caused by incomplete ablation and excessive intensity affecting surrounding healthy tissues. Recent research has indicated that the integration of nanomaterials with HIFU exhibits a promising synergistic effect in tumor ablation. The concurrent utilization of nanomaterials with HIFU can help overcome the limitations of HIFU by improving targeting and ablation efficiency, expanding operation area, increasing operation accuracy, enhancing stability and bio-safety during the process. It also provides a platform for multi-therapy and multi-mode imaging guidance. The present review comprehensively expounds upon the synergistic mechanism between nanomaterials and HIFU, summarizes the research progress of nanomaterials as cavitation nuclei and drug carriers in combination with HIFU for tumor ablation. Furthermore, this review highlights the potential for further exploration in the development of novel nanomaterials that enhance the synergistic effect with HIFU on tumor ablation.
Collapse
Affiliation(s)
- Xuehui Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Liang Zhang
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Dai
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zihan Sun
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yuqing Shi
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ning Yu
- Department of Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
5
|
Huang Y, Ouyang W, Lai Z, Qiu G, Bu Z, Zhu X, Wang Q, Yu Y, Liu J. Nanotechnology-enabled sonodynamic therapy against malignant tumors. NANOSCALE ADVANCES 2024; 6:1974-1991. [PMID: 38633037 PMCID: PMC11019498 DOI: 10.1039/d3na00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Sonodynamic therapy (SDT) is an emerging approach for malignant tumor treatment, offering high precision, deep tissue penetration, and minimal side effects. The rapid advancements in nanotechnology, particularly in cancer treatment, have enhanced the efficacy and targeting specificity of SDT. Combining sonodynamic therapy with nanotechnology offers a promising direction for future cancer treatments. In this review, we first systematically discussed the anti-tumor mechanism of SDT and then summarized the common nanotechnology-related sonosensitizers and their recent applications. Subsequently, nanotechnology-related therapies derived using the SDT mechanism were elaborated. Finally, the role of nanomaterials in SDT combined therapy was also introduced.
Collapse
Affiliation(s)
- Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
| | - Zijia Lai
- First Clinical Medical College, Guangdong Medical University 524000 Zhanjiang China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Zhaoting Bu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
- Faculty of Medicine, Macau University of Science and Technology Taipa Macao PR China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| |
Collapse
|
6
|
Liang J, Qiao X, Qiu L, Xu H, Xiang H, Ding H, Chen Y. Engineering Versatile Nanomedicines for Ultrasonic Tumor Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305392. [PMID: 38041509 PMCID: PMC10797440 DOI: 10.1002/advs.202305392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/15/2023] [Indexed: 12/03/2023]
Abstract
Due to the specific advantages of ultrasound (US) in therapeutic disease treatments, the unique therapeutic US technology has emerged. In addition to featuring a low-invasive targeted cancer-cell killing effect, the therapeutic US technology has been demonstrated to modulate the tumor immune landscape, amplify the therapeutic effect of other antitumor therapies, and induce immunosensitization of tumors to immunotherapy, shedding new light on the cancer treatment. Tremendous advances in nanotechnology are also expected to bring unprecedented benefits to enhancing the antitumor efficiency and immunological effects of therapeutic US, as well as therapeutic US-derived bimodal and multimodal synergistic therapies. This comprehensive review summarizes the immunological effects induced by different therapeutic US technologies, including ultrasound-mediated micro-/nanobubble destruction (UTMD/UTND), sonodynamic therapy (SDT), and focused ultrasound (FUS), as well as the main underlying mechanisms involved. It is also discussed that the recent research progress of engineering intelligent nanoplatform in improving the antitumor efficiency of therapeutic US technologies. Finally, focusing on clinical translation, the key issues and challenges currently faced are summarized, and the prospects for promoting the clinical translation of these emerging nanomaterials and ultrasonic immunotherapy in the future are proposed.
Collapse
Affiliation(s)
- Jing Liang
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Xiaohui Qiao
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Luping Qiu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huning Xu
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Huijing Xiang
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| | - Hong Ding
- Department of UltrasoundHuashan HospitalFudan UniversityShanghai200040China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai2000444China
| |
Collapse
|
7
|
Dai X, Du Y, Li Y, Yan F. Nanomaterials-based precision sonodynamic therapy enhancing immune checkpoint blockade: A promising strategy targeting solid tumor. Mater Today Bio 2023; 23:100796. [PMID: 37766898 PMCID: PMC10520454 DOI: 10.1016/j.mtbio.2023.100796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.
Collapse
Affiliation(s)
- Xinlun Dai
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Yangyang Du
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yumei Li
- Department of Pediatric Intensive Care Unit, First Hospital of Jilin University, 71 Xinmin Street, Changchun 130021, China
| | - Fei Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
8
|
Liang Y, Zhang M, Zhang Y, Zhang M. Ultrasound Sonosensitizers for Tumor Sonodynamic Therapy and Imaging: A New Direction with Clinical Translation. Molecules 2023; 28:6484. [PMID: 37764260 PMCID: PMC10537038 DOI: 10.3390/molecules28186484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
With the rapid development of sonodynamic therapy (SDT), sonosensitizers have evolved from traditional treatments to comprehensive diagnostics and therapies. Sonosensitizers play a crucial role in the integration of ultrasound imaging (USI), X-ray computed tomography (CT), and magnetic resonance imaging (MRI) diagnostics while also playing a therapeutic role. This review was based on recent articles on multifunctional sonosensitizers that were used in SDT for the treatment of cancer and have the potential for clinical USI, CT, and MRI applications. Next, some of the shortcomings of the clinical examination and the results of sonosensitizers in animal imaging were described. Finally, this paper attempted to inform the future development of sonosensitizers in the field of integrative diagnostics and therapeutics and to point out current problems and prospects for their application.
Collapse
Affiliation(s)
- Yunlong Liang
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang 712046, China;
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Yujie Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mingxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Medical University, Xi’an 710077, China
| |
Collapse
|
9
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
10
|
Kumar M, Jha A, Mishra B. Polymeric nanosystems for cancer theranostics. POLYMERIC NANOSYSTEMS 2023:657-697. [DOI: 10.1016/b978-0-323-85656-0.00004-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Chintapula U, Yang S, Nguyen T, Li Y, Jaworski J, Dong H, Nguyen KT. Supramolecular Peptide Nanofiber/PLGA Nanocomposites for Enhancing Pulmonary Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56498-56509. [PMID: 36475601 DOI: 10.1021/acsami.2c15204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Effective drug delivery to pulmonary sites will benefit from the design and synthesis of novel drug delivery systems that can overcome various tissue and cellular barriers. Cell penetrating peptides (CPPs) have shown promise for intracellular delivery of various imaging probes and therapeutics. Although CPPs improve delivery efficacy to a certain extent, they still lack the scope of engineering to improve the payload capacity and protect the payload from the physiological environment in drug delivery applications. Inspired by recent advances of CPPs and CPP-functionalized nanoparticles, in this work, we demonstrate a novel nanocomposite consisting of fiber-forming supramolecular CPPs that are coated onto polylactic-glycolic acid (PLGA) nanoparticles to enhance pulmonary drug delivery. These nanocomposites show a threefold higher intracellular delivery of nanoparticles in various cells including primary lung epithelial cells, macrophages, and a 10-fold increase in endothelial cells compared to naked PLGA nanoparticles or a twofold increase compared to nanoparticles modified with traditional monomeric CPPs. Cell uptake studies suggest that nanocomposites likely enter cells through mixed macropinocytosis and passive energy-independent mechanisms, which is followed by endosomal escape within 24 h. Nanocomposites also showed potent mucus permeation. More importantly, freeze-drying and nebulizing formulated nanocomposite powder did not affect their physiochemical and biological activity, which further highlights the translative potential for use as a stable drug carrier for pulmonary drug delivery. We expect nanocomposites based on peptide nanofibers, and PLGA nanoparticles can be custom designed to encapsulate and deliver a wide range of therapeutics including nucleic acids, proteins, and small-molecule drugs when employed in inhalable systems to treat various pulmonary diseases.
Collapse
Affiliation(s)
- Uday Chintapula
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - Su Yang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Chemistry & Physics Building, Room 130, 700 Planetarium Place, Arlington, Texas 76019, United States
| | - Trinh Nguyen
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - Yang Li
- Department of Biophysics, University of Texas at Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Justyn Jaworski
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| | - He Dong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Chemistry & Physics Building, Room 130, 700 Planetarium Place, Arlington, Texas 76019, United States
| | - Kytai T Nguyen
- Department of Bioengineering, University of Texas at Arlington, Engineering Research Building, Room 226, 500 UTA Blvd., Arlington, Texas 76010, United States
| |
Collapse
|
12
|
Bottens RA, Yamada T. Cell-Penetrating Peptides (CPPs) as Therapeutic and Diagnostic Agents for Cancer. Cancers (Basel) 2022; 14:cancers14225546. [PMID: 36428639 PMCID: PMC9688740 DOI: 10.3390/cancers14225546] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Cell-Penetrating Peptides (CPPs) are short peptides consisting of <30 amino acids. Their ability to translocate through the cell membrane while carrying large cargo biomolecules has been the topic of pre-clinical and clinical trials. The ability to deliver cargo complexes through membranes yields potential for therapeutics and diagnostics for diseases such as cancer. Upon cellular entry, some CPPs have the ability to target specific organelles. CPP-based intracellular targeting strategies hold tremendous potential as they can improve efficacy and reduce toxicities and side effects. Further, recent clinical trials show a significant potential for future CPP-based cancer treatment. In this review, we summarize recent advances in CPPs based on systematic searches in PubMed, Embase, Web of Science, and Scopus databases until 30 September 2022. We highlight targeted delivery and explore the potential uses for CPPs as diagnostics, drug delivery, and intrinsic anti-cancer agents.
Collapse
Affiliation(s)
- Ryan A. Bottens
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, College of Medicine, University of Illinois, Chicago, IL 60612, USA
- Richard & Loan Hill Department of Biomedical Engineering, College of Medicine and Engineering, University of Illinois, Chicago, IL 60607, USA
- Correspondence:
| |
Collapse
|
13
|
Zhang Y, Zhao Y, Zhang Y, Liu Q, Zhang M, Tu K. The crosstalk between sonodynamic therapy and autophagy in cancer. Front Pharmacol 2022; 13:961725. [PMID: 36046833 PMCID: PMC9421066 DOI: 10.3389/fphar.2022.961725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
As a noninvasive treatment approach for cancer and other diseases, sonodynamic therapy (SDT) has attracted extensive attention due to the deep penetration of ultrasound, good focusing, and selective irradiation sites. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, nanoparticles as sonosensitizers or as a vehicle to deliver sonosensitizers have been designed and used to target tissues or tumor cells with high specificity and accuracy. Autophagy is a common metabolic alteration in both normal cells and tumor cells. When autophagy happens, a double-membrane autophagosome with sequestrated intracellular components is delivered and fused with lysosomes for degradation. Recycling these cell materials can promote survival under a variety of stress conditions. Numerous studies have revealed that both apoptosis and autophagy occur after SDT. This review summarizes recent progress in autophagy activation by SDT through multiple mechanisms in tumor therapies, drug resistance, and lipid catabolism. A promising tumor therapy, which combines SDT with autophagy inhibition using a nanoparticle delivering system, is presented and investigated.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanru Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Wang C, Tian Y, Wu B, Cheng W. Recent Progress Toward Imaging Application of Multifunction Sonosensitizers in Sonodynamic Therapy. Int J Nanomedicine 2022; 17:3511-3529. [PMID: 35966148 PMCID: PMC9365495 DOI: 10.2147/ijn.s370767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/23/2022] [Indexed: 12/13/2022] Open
Abstract
Sonodynamic therapy (SDT) is a rapidly developing non-surgical therapy that initiates sensitizers’ catalytic reaction using ultrasound, showing great potential for cancer treatment due to its high safety and non-invasive nature. In addition, recent research has found that using different diagnostic and therapeutic methods in tandem can lead to better anticancer outcomes. Therefore, as essential components of SDT, sonosensitizers have been extensively explored to optimize their functions and integrate multiple medical fields. The review is based on five years of articles evaluating the combined use of SDT and imaging in treating cancer. By developing multifunctional sonosensitive particles that combine imaging and sonodynamic therapy, we have integrated diagnosis into the treatment of precision medicine applications, improving SDT cell uptake and antitumor efficacy utilizing different tumour models. This paper describes the imaging principle and the results of cellular and animal imaging of the multifunctional sonosensitizers. Efforts are made in this paper to provide data and design references for future SDT combined imaging research and clinical application development and to provide offer suggestions.
Collapse
Affiliation(s)
- Chunyue Wang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Bolin Wu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China
- Correspondence: Wen Cheng; Bolin Wu, Department of Ultrasound, Harbin Medical University Cancer Hospital, No. 150, Haping Road, Nangang District, Harbin, 150081, People’s Republic of China, Tel +86 13313677182; +86 15663615088, Fax +86 451 85718392; +86 451 86298651, Email ;
| |
Collapse
|
15
|
Fu D, Huang X, Lv Z, Zhang Y, Chen M, Zhang W, Su D. Ultrasound and magnetic resonance imaging of cyclic arginine glycine aspartic acid-gadopentetic acid-polylactic acid in human breast cancer by targeting αvβ3 in xenograft-bearing nude mice. Bioengineered 2022; 13:7105-7117. [PMID: 35259049 PMCID: PMC8973589 DOI: 10.1080/21655979.2022.2045832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Effective early detection shows the potential to reduce breast cancer mortality. This study aimed to establish a targeted contrast agent for Magnetic Resonance Imaging (MRI)/ultrasound dual-modality molecular radiography for breast cancer. The cyclic arginine-glycine-aspartate-gadopentetic acid-polylactic acid (cRGD and Gd-DTPA) coated by multi-functional blank poly (lactic-co-glycolic acid) (PLGA) nanoparticles) was successfully constructed by chemical synthesis method with high stability. The safety of cRGD-Gd-DTPA-PLGA was demonstrated in vitro and in vivo, and their affinity to breast cancer cells was revealed. Moreover, MRI/ultrasound dual-modality molecular radiography in vitro showed that as the concentration of contrast agent increased, the echo enhancement and signal intensity of MRI imaging were also elevated. The mouse models of human breast cancer also indicated significant target enhancements of cRGD-Gd-DTPA-PLGA magnetic nanoparticles in the mouse tumor. Thus, cRGD-Gd-DTPA-PLGA magnetic nanoparticles were suggested as qualified MRI/ultrasound dual-modality molecular radiography contrast agent. We further explored the targeting mechanism of cRGD-Gd-DTPA-PLGA in breast cancer. The results showed that αvβ3 was highly expressed in breast cancer tissues, and cRGD-Gd-DTPA-PLGA used for MRI/ultrasound dual-modality molecular radiography by targeting αvβ3. Additionally, we found that the signal-to-noise ratio of MRI was positively correlated with microvessel density (MVD). The cRGD-Gd-DTPA-PLGA dynamicly and quantitatively monitored breast cancer by monitoring the state of neovascularization. In conclusion, in the present study, we successfully constructed the cRGD-Gd-DTPA-PLGA magnetic nanoparticles for MRI/ultrasound dual-modality molecular radiography. The cRGD-Gd-DTPA-PLGA showed potential in early detection and diagnosis of metastasis, and dynamic evaluation of the efficacy of molecular targeted therapy of integrin αvβ3.
Collapse
Affiliation(s)
- Danhui Fu
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Xiangyang Huang
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Zheng Lv
- Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Yupeng Zhang
- Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Miao Chen
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou, Guangxi, China
| | - Danke Su
- Departments of Radiology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.,Medical Imaging Department, Guangxi Key Clinical Specialty, China.,Medical Imaging Department, Dominant Cultivation Discipline of Guangxi Medical University Cancer Hospital
| |
Collapse
|
16
|
Gao H, Wang Z, Tan M, Liu W, Zhang L, Huang J, Cao Y, Li P, Wang Z, Wen J, Shang T, Ran H. pH-Responsive Nanoparticles for Enhanced Antitumor Activity by High-Intensity Focused Ultrasound Therapy Combined with Sonodynamic Therapy. Int J Nanomedicine 2022; 17:333-350. [PMID: 35115772 PMCID: PMC8800590 DOI: 10.2147/ijn.s336632] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Therapeutic ultrasound (US) has been extensively explored for its inherent high tissue-penetrating capability and on-demand irradiation without radioactive damage. Although high-intensity focused ultrasound (HIFU) is evolved as such an outstanding US-based approach, its insufficient therapeutic effect and the high-intensity induced potential damage to surrounding normal tissues hindered its development towards practical application. As opposed to high intensity ultrasound, sonodynamic therapy (SDT) is a low intensity US-based method which exhibits certain therapeutic effects against cancer via sonosensitizers-generated reactive oxygen species (ROS) overproduction. METHODS Hematoporphyrin monomethyl ether (HMME) loaded CaCO3 nanoparticles (designated as Ca@H) were synthesized by a gas diffusion method. The pH-responsive performance, in vitro SDT, ex vivo HIFU therapy (HIFUT), photoacoustic (PA) imaging and in vivo HIFUT combined with SDT were investigated thoroughly. RESULTS Ca@H NPs gradually decomposed in acid tumor microenvironment, produced CO2 and released HMME. Both CO2 and HMME enhanced photoacoustic (PA) imaging. The generated CO2 bubbles also enhanced HIFUT by inducing an enlarged ablation area. The tumor ablation efficiency (61.04%) was significantly improved with a combination of HIFU therapy and SDT. CONCLUSION pH-responsive Ca@H NPs have been successfully constructed for PA imaging-guided/monitored HIFUT combined with SDT. With the assistance of pH-responsive Ca@H NPs, the combination of these two US-based therapies is expected to play a role in the treatment of non-invasive tumor in the future.
Collapse
Affiliation(s)
- Hui Gao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhaoxia Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Mixiao Tan
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Liang Zhang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ju Huang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Yang Cao
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Pan Li
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jiexin Wen
- Department of Ultrasound, Children’s Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Tingting Shang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
17
|
Miranda RR, Sampaio I, Zucolotto V. Exploring silver nanoparticles for cancer therapy and diagnosis. Colloids Surf B Biointerfaces 2021; 210:112254. [PMID: 34896692 DOI: 10.1016/j.colsurfb.2021.112254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/26/2021] [Accepted: 11/27/2021] [Indexed: 12/26/2022]
Abstract
Nanomaterials have emerged as promising candidates for cancer therapy and diagnosis as they can solve long-term issues such as drug solubility, systemic distribution, tumor acquired resistance, and improve the performance of diagnostic methods. Among inorganic nanomaterials, AgNPs have been extensively studied in the context of cancer treatment and the reported results have raised exciting expectations. In this review, we provide an overview of the recent research on AgNPs antitumoral properties, their application in different cancer treatment modalities, their potential in biosensors development, and also highlight the main challenges and possible strategies to enable its translation to clinical use.
Collapse
Affiliation(s)
- Renata Rank Miranda
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| | - Isabella Sampaio
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- Physics Institute of São Carlos, São Paulo University, São Carlos, SP, Brazil.
| |
Collapse
|
18
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Feng ZY, Liu TT, Sang ZT, Lin ZS, Su X, Sun XT, Yang HZ, Wang T, Guo S. Microfluidic Preparation of Janus Microparticles With Temperature and pH Triggered Degradation Properties. Front Bioeng Biotechnol 2021; 9:756758. [PMID: 34568306 PMCID: PMC8458873 DOI: 10.3389/fbioe.2021.756758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022] Open
Abstract
Based on the phase separation phenomenon in micro-droplets, polymer-lipid Janus particles were prepared on a microfluidic flow focusing chip. Phase separation of droplets was caused by solvent volatilization and Janus morphology was formed under the action of interfacial tension. Because phase change from solid to liquid of the lipid hemisphere could be triggered by physiological temperature, the lipid hemisphere could be used for rapid release of drugs. While the polymer we selected was pH sensitive that the polymer hemisphere could degrade under acidic conditions, making it possible to release drugs in a specific pH environment, such as tumor tissues. Janus particles with different structures were obtained by changing the experimental conditions. To widen the application range of the particles, fatty alcohol and fatty acid-based phase change materials were also employed to prepare the particles, such as 1-tetradecanol, 1-hexadecanol and lauric acid. The melting points of these substances are higher than the physiological temperature, which can be applied in fever triggered drug release or in thermotherapy. The introduction of poly (lactic-co-glycolic acid) enabled the formation of multicompartment particles with three distinct materials. With different degradation properties of each compartment, the particles generated in this work may find applications in programmed and sequential drug release triggered by multiple stimuli.
Collapse
Affiliation(s)
- Zi-Yi Feng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao-Tao Liu
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhen-Tao Sang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Zhen-Sheng Lin
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Xin Su
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiao-Ting Sun
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hua-Zhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang, China
| | - Ting Wang
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shu Guo
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
20
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
21
|
Stiltner J, McCandless K, Zahid M. Cell-Penetrating Peptides: Applications in Tumor Diagnosis and Therapeutics. Pharmaceutics 2021; 13:pharmaceutics13060890. [PMID: 34204007 PMCID: PMC8232808 DOI: 10.3390/pharmaceutics13060890] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/27/2023] Open
Abstract
Since their identification over twenty-five years ago, the plethora of cell-penetrating peptides (CPP) and their applications has skyrocketed. These 5 to 30 amino acid in length peptides have the unique property of breaching the cell membrane barrier while carrying cargoes larger than themselves into cells in an intact, functional form. CPPs can be conjugated to fluorophores, activatable probes, radioisotopes or contrast agents for imaging tissues, such as tumors. There is no singular mechanism for translocation of CPPs into a cell, and therefore, many CPPs are taken up by a multitude of cell types, creating the challenge of tumor-specific translocation and hindering clinical effectiveness. Varying strategies have been developed to combat this issue and enhance their diagnostic potential by derivatizing CPPs for better targeting by constructing specific cell-activated forms. These methods are currently being used to image integrin-expressing tumors, breast cancer cells, human histiocytic lymphoma and protease-secreting fibrosarcoma cells, to name a few. Additionally, identifying safe, effective therapeutics for malignant tumors has long been an active area of research. CPPs can circumvent many of the complications found in treating cancer with conventional therapeutics by targeted delivery of drugs into tumors, thereby decreasing off-target side effects, a feat not achievable by currently employed conventional chemotherapeutics. Myriad types of chemotherapeutics such as tyrosine kinase inhibitors, antitumor antibodies and nanoparticles can be functionally attached to these peptides, leading to the possibility of delivering established and novel cancer therapeutics directly to tumor tissue. While much research is needed to overcome potential issues with these peptides, they offer a significant advancement over current mechanisms to treat cancer. In this review, we present a brief overview of the research, leading to identification of CPPs with a comprehensive state-of-the-art review on the role of these novel peptides in both cancer diagnostics as well as therapeutics.
Collapse
Affiliation(s)
| | | | - Maliha Zahid
- Correspondence: ; Tel.: +1-412-692-8893; Fax: 412-692-6184
| |
Collapse
|
22
|
Ferrara B, Belbekhouche S, Habert D, Houppe C, Vallée B, Bourgoin-Voillard S, Cohen JL, Cascone I, Courty J. Cell surface nucleolin as active bait for nanomedicine in cancer therapy: a promising option. NANOTECHNOLOGY 2021; 32:322001. [PMID: 33892482 DOI: 10.1088/1361-6528/abfb30] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
Conventional chemotherapy used against cancer is mostly limited due to their non-targeted nature, affecting normal tissue and causing undesirable toxic effects to the affected tissue. With the aim of improving these treatments both therapeutically and in terms of their safety, numerous studies are currently being carried out using nanoparticles (NPs) as a vector combining tumor targeting and carrying therapeutic tools. In this context, it appears that nucleolin, a molecule over-expressed on the surface of tumor cells, is an interesting therapeutic target. Several ligands, antagonists of nucleolin of various origins, such as AS1411, the F3 peptide and the multivalent pseudopeptide N6L have been developed and studied as therapeutic tools against cancer. Over the last ten years or so, numerous studies have been published demonstrating that these antagonists can be used as tumor targeting agents with NPs from various origins. Focusing on nucleolin ligands, the aim of this article is to review the literature recently published or under experimentation in our research team to evaluate the efficacy and future development of these tools as anti-tumor agents.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sabrina Belbekhouche
- Université Paris-Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, F-94320 Thiais, France
| | - Damien Habert
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Claire Houppe
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Benoit Vallée
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Sandrine Bourgoin-Voillard
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
- Université Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-INSERM U1055-CHUGA, Grenoble, France
- Université Grenoble Alpes, CNRS, Grenoble INP, CHU Grenoble Alpes, TIMC, PROMETHEE Proteomic Platform, Grenoble, France
| | - José L Cohen
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - Ilaria Cascone
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| | - José Courty
- Université Paris-Est Creteil, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, F-94010 Créteil, France
| |
Collapse
|
23
|
Ngowi EE, Wang YZ, Qian L, Helmy YASH, Anyomi B, Li T, Zheng M, Jiang ES, Duan SF, Wei JS, Wu DD, Ji XY. The Application of Nanotechnology for the Diagnosis and Treatment of Brain Diseases and Disorders. Front Bioeng Biotechnol 2021; 9:629832. [PMID: 33738278 PMCID: PMC7960921 DOI: 10.3389/fbioe.2021.629832] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood–brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.
Collapse
Affiliation(s)
- Ebenezeri Erasto Ngowi
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China.,Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Yi-Zhen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lei Qian
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yasmeen Ahmed Saleheldin Hassan Helmy
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, Henan University, Kaifeng, China
| | - Bright Anyomi
- Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Tao Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Meng Zheng
- International Joint Center for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, China
| | - En-She Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Nursing and Health, Institutes of Nursing and Health, Henan University, Kaifeng, China
| | - Shao-Feng Duan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Pharmacy, Institute for Innovative Drug Design and Evaluation, Henan University, Kaifeng, China
| | - Jian-She Wei
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Brain Research Laboratory, School of Life Sciences, Henan University, Kaifeng, China
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,School of Stomatology, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, China.,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
| |
Collapse
|
24
|
Yang Y, Fan Z, Zheng K, Shi D, Su G, Ge D, Zhao Q, Fu X, Hou Z. A novel self-targeting theranostic nanoplatform for photoacoustic imaging-monitored and enhanced chemo-sonodynamic therapy. J Mater Chem B 2021; 9:5547-5559. [PMID: 34165487 DOI: 10.1039/d1tb01025e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sonodynamic therapy has attracted wide attention as a noninvasive therapy due to deep tissue penetration. However, majority sonosensitizers often suffer from poor physiological stability, rapid blood clearance and nonspecific targeting, which seriously hinders their further practical applications. Inspired by the concept of active targeting drug delivery, both dual-functional chemo-drug pemetrexed (PEM, emerges an innate affinity toward the folate receptor) and amphiphilic d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) were selected to be covalently linked by an esterase-responsive ester linkage. The synthesized self-targeting TPGS-PEM prodrug and indocyanine green (ICG) as functional motifs can be self-assembled into a TPGS-PEM-ICG nanoplatform within an aqueous medium. The TPGS-PEM-ICG nanoplatform with outstanding structural and physiological stability not only protects the sonosensitizer from reticular endothelial system clearance but also achieves active targeting drug delivery and efficient tumor enrichment. Moreover, TPGS-PEM-ICG nanoplatform can selectively recognize tumor cells and then realize on-demand drug burst release by multiple stimuli of internal lysosomal acidity, esterase and external ultrasound, which guarantee low side effects toward normal tissues and organs. It is also worth noting that our nanoplatform exhibits protruding tumor enrichment under the precise guidance of photoacoustic/fluorescence imaging. Further in vitro and in vivo experimental results well confirmed that the TPGS-PEM-ICG nanoplatform possesses enhanced chemo-sonodynamic effects. Interestingly, the highly toxic reactive oxygen species can remarkably reduce the blood oxygen saturation signal of the tumor microenvironment via precise, multifunctional and high-resolution photoacoustic imaging. Taken together, the TPGS-PEM-ICG nanoplatform can be expected to hold enormous potential for diagnosis, prognosis and targeted therapy for tumor.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Zhongxiong Fan
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Kaili Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Dao Shi
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Guanghao Su
- Children's Hospital of Soochow University, Suzhou 215025, China
| | - Dongtao Ge
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xu Fu
- Lanzhou University Second Hospital, Lanzhou 730000, China.
| | - Zhenqing Hou
- Department of Biomaterials, College of Materials, Research Center of Biomedical Engineering of Xiamen & Key Laboratory of Biomedical Engineering of Fujian Province & Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
25
|
Sonodynamic therapy-derived multimodal synergistic cancer therapy. Cancer Lett 2020; 497:229-242. [PMID: 33122099 DOI: 10.1016/j.canlet.2020.10.037] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 01/07/2023]
Abstract
Sonodynamic therapy (SDT) represents a promising modality that provides the possibility of non-invasively eliminating solid tumors in a site-directed manner. In light of the complexity and heterogeneity of tumors, more and more studies are attempting to combine SDT with other therapeutic methods so as to achieve better tumor treatment effect, which sheds new light on the potential of SDT-based synergistic therapeutics. Herein, the representative studies of SDT-instructed multimodal synergistic cancer therapy are comprehensively presented, such as sono-chemotherapy, sono-radiotherapy, sono-immunotherapy, and sono-chemodynamic therapy, etc., and their incorporate mechanisms are discussed in detail. The current challenges and future prospects to promote the advanced development of SDT-based nanomedicines in this burgeoning research field are highlighted. It is believed that such an emerging synergistic therapeutic modality based on SDT will play a more significant role in the field of tumor precision treatment medicine.
Collapse
|
26
|
Zhu X, Kong Q, Niu X, Chen L, Ge C. Mapping Intellectual Structure and Research Performance for the Nanoparticles in Pancreatic Cancer Field. Int J Nanomedicine 2020; 15:5503-5516. [PMID: 32801702 PMCID: PMC7415461 DOI: 10.2147/ijn.s253599] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/13/2020] [Indexed: 01/15/2023] Open
Abstract
Objective To comprehensively analyze the global scientific outputs of nanoparticles in pancreatic cancer research. Methods Publications regarding the nanoparticles in pancreatic cancer research published from 1986 to 2019 were retrieved from the Web of Science Core Collection (WoSCC). Highly frequent keywords, publication years, journals, cited papers, cited journals and cited authors were identified using BICOMB software, and then a binary matrix and a co-word matrix were constructed. gCLUTO was used for double clustering of highly frequent journals. Co-citation analysis was performed using CiteSpace V software, including keywords, references, journals author or institution cooperation network. Results A total of 1171 publications were included in this study. Publications mainly came from 10 countries, led by the US (n=470) and China (n=349). Among the top 20 journals ranked by the number of citations, nanoscience nanotechnology was the leader with 300. Cluster analysis of citation network identified 12 co-citation clusters, headed by “stromal barrier” and “emerging inorganic nanomaterial”. Conclusion Our findings reveal the research performance and intellectual structure of the nanoparticles in pancreatic cancer research, which may help researchers understand the research trends and hotspots in this field.
Collapse
Affiliation(s)
- Xuan Zhu
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China.,Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, People's Republic of China.,Anshan Hospital, The First Affiliated Hospital of China Medical University, Anshan, Liaoning 114011, People's Republic of China
| | - Qingquan Kong
- Institute of Translational Medicine, China Medical University, Shenyang, Liaoning 110122, People's Republic of China
| | - Xing Niu
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Lijie Chen
- Department of Second Clinical College, Shengjing Hospital Affiliated to China Medical University, Shenyang 110004, Liaoning, People's Republic of China
| | - Chunlin Ge
- Department of General Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China
| |
Collapse
|
27
|
Xiong J, Jiang B, Luo Y, Zou J, Gao X, Xu D, Du Y, Hao L. Multifunctional Nanoparticles Encapsulating Astragalus Polysaccharide and Gold Nanorods in Combination with Focused Ultrasound for the Treatment of Breast Cancer. Int J Nanomedicine 2020; 15:4151-4169. [PMID: 32606670 PMCID: PMC7305853 DOI: 10.2147/ijn.s246447] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/25/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose Focused ultrasound (FUS) is a noninvasive method to produce thermal and mechanical destruction along with an immune-stimulatory effect against cancer. However, FUS ablation alone appears insufficient to generate consistent antitumor immunity. In this study, a multifunctional nanoparticle was designed to boost FUS-induced immune effects and achieve systemic, long-lasting antitumor immunity, along with imaging and thermal enhancement. Materials and Methods PEGylated PLGA nanoparticles encapsulating astragalus polysaccharides (APS) and gold nanorods (AuNRs) were constructed by a simple double emulsion method, characterized, and tested for cytotoxicity. The abilities of PA imaging and thermal-synergetic ablation efficiency were analyzed in vitro and in vivo. The immune-synergistic effect on dendritic cell (DC) differentiation in vitro and the immune response in vivo were also evaluated. Results The obtained APS/AuNR/PLGA-PEG nanoparticles have an average diameter of 255.00±0.1717 nm and an APS-loading efficiency of 54.89±2.07%, demonstrating their PA imaging capability and high biocompatibility both in vitro and in vivo. In addition, the as-prepared nanoparticles achieved a higher necrosis cell rate and induced apoptosis rate in an in vitro cell suspension assay, greater necrosis area and decreased energy efficiency factor (EEF) in an in vivo rabbit liver assay, and remarkable thermal-synergic performance. In particular, the nanoparticles upregulated the expression of MHC-II, CD80 and CD86 on cocultured DCs in vitro, followed by declining phagocytic function and enhanced interleukin (IL)-12 and interferon (INF)-γ production. Furthermore, they boosted the production of tumor necrosis factor (TNF)-α, IFN-γ, IL-4, IL-10, and IgG1 (P< 0.001) but not IgG2a. Immune promotion peaked on day 3 after FUS in vivo. Conclusion The multifunctional APS/AuNR/PLGA-PEG nanoparticles can serve as an excellent synergistic agent for FUS therapy, facilitating real-time imaging, promoting thermal ablation effects, and boosting FUS-induced immune effects, which have the potential to be used for further clinical FUS treatment.
Collapse
Affiliation(s)
- Jie Xiong
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Binglei Jiang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yong Luo
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Jianzhong Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xuan Gao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Die Xu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yan Du
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, People's Republic of China.,Ultrasonography Department, The Fourth People's Hospital of Chongqing, Central Hospital of Chongqing University, Chongqing 400014, People's Republic of China
| | - Lan Hao
- Institute of Ultrasound Imaging, Chongqing Medical University, Chongqing 400010, People's Republic of China
| |
Collapse
|
28
|
Jiang L, Wang J, Jiang J, Zhang C, Zhao M, Chen Z, Wang N, Hu D, Liu X, Peng H, Lian M. Sonodynamic therapy in atherosclerosis by curcumin nanosuspensions: Preparation design, efficacy evaluation, and mechanisms analysis. Eur J Pharm Biopharm 2019; 146:101-110. [PMID: 31841689 DOI: 10.1016/j.ejpb.2019.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/11/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Previous studies have shown that curcumin (Cur) induced by ultrasound has protective effects on atherosclerosis even if low bioavailability of the Cur. The enhancement of bioavailability of the Cur further improved the curative effect of sonodynamic therapy (SDT) on atherosclerosis through nanotechnology. Nanosuspensions as a good drug delivery system had obvious advantages in increasing the solubility and improving the effectiveness of insoluble drugs. The aim of this study was to develop curcumin nanosuspensions (Cur-ns) which used polyvinylpyrrolidone (PVPK30) and sodium dodecyl sulfate (SDS) as stabilizers to improve poor water solubility and bioavailability of the Cur. And then the therapeutic effects of Cur-ns-SDT on atherosclerotic plaques and its possible mechanisms would be investigated and elucidated. Cur-ns with a small particle size has been successfully prepared and the data have confirmed that Cur-ns could be more easily engulfed into RAW264.7 cells than free Cur and accumulated more under the stimulation of the ultrasound. Reactive oxygen species (ROS) inside RAW264.7 cells after SDT led to the decrease of mitochondrial membrane potential (MMP) and the higher expression of cleaved caspase-9/3. The results of in vivo experiments showed that Cur-ns-SDT reduced the level of total cholesterol (TC) and low density lipoprotein (LDL) and promoted the transformation from M1 to M2 macrophages, relieved atherosclerosis syndrome. Therefore, Cur-ns-SDT was a potential treatment of anti-atherosclerosis by enhancing macrophages apoptosis through mitochondrial pathway and inhibiting the progression of plaques by interfering with macrophages polarization.
Collapse
Affiliation(s)
- Lei Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Jiahe Wang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Jiaqi Jiang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Man Zhao
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Zhong Chen
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Na Wang
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Dandan Hu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Xiaoying Liu
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China.
| | - Mingming Lian
- Department of Pharmaceutics, Daqing Campus, Harbin Medical University, Key Laboratory of Research and Development of Natural Products at Harbin Medical University, Xin Yang Road, Daqing 163319, China
| |
Collapse
|