1
|
Zhang Y, Yang Z, Chen M, Xue Z, Chen J, Zhao M, Li Y, Kang S, Dai B, Zheng L, Zhuang S, Zhang D. Transcriptomic modifications across the genome and potential hazards of pulmonary fibrosis caused by metal-organic frameworks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178504. [PMID: 39848150 DOI: 10.1016/j.scitotenv.2025.178504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/26/2024] [Accepted: 01/11/2025] [Indexed: 01/25/2025]
Abstract
Metal-Organic Frameworks (MOFs) have shown great promise in environmental protection, owing to their exceptional properties including ultrahigh surface area and porosity, tunable pore size, and easy chemical functionalization. However, emerging evidence from experimental studies indicates that MOFs have side effects on human health due to metal ions doping, resulting in excessive reactive oxygen species (ROS) production, pro-inflammatory responses, and liver fibrosis. In this study, we investigated the impact of MOF-199 on human bronchial epithelial (HBE) cells by using transcriptome sequencing analysis. The results indicated that the stimulation of MOF-199 enhanced ROS generation, upregulated cytoplasmic Ca2+ levels, then activated the Grb2/SOS/Ras/Raf pathway, induced cell apoptosis, and ultimately resulted in lung fibroblasts through TGF-β secretion. The results were validated in vitro and in vivo. Therefore, it is necessary to carefully evaluate the nanosafety of MOF-199 in environment treatments.
Collapse
Affiliation(s)
- Yule Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhijin Yang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mengya Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zhiwei Xue
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jingwei Chen
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Mantong Zhao
- Department of Physics and Electronic Engineering, Heze University, Heze 274015, PR China
| | - Yuhao Li
- College of Science, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Shifei Kang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Bo Dai
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Songlin Zhuang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical System, Shanghai Engineering Research Center of Environmental Biosafety Instruments and Equipment, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Shanghai Institute of Intelligent Science and Technology, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
2
|
Tang Z, Liang C, Zhong Q, Yang J, Ma Y, Yuan Y, Zeng Y, Wu X, Yang ST. Environmental Stability Determines the Cytotoxicity of Metal-Organic Frameworks to a Nitrogen-Fixing Bacterium Azotobacter vinelandii. Chem Res Toxicol 2025; 38:151-162. [PMID: 39556503 DOI: 10.1021/acs.chemrestox.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
During widespread applications of metal-organic frameworks (MOFs), the environmental hazards and risks of MOFs have aroused great concerns. In this study, we aimed to reveal the importance of the environmental stability of MOFs on their toxicity. Two Zn-MOFs, namely, ZIF-8 with high aqueous stability and Zn-BDC with low aqueous stability, were compared directly in the toxicological evaluations of a nitrogen-fixing bacterium Azotobacter vinelandii. Zn-BDC showed strong cytotoxicity at 100 mg/L and higher, inducing growth inhibition, cell apoptosis, structural changes, oxidative damage, and, consequently, loss of nitrogen fixation ability. In contrast, ZIF-8 was nearly nontoxic to A. vinelandii. The transcriptome analysis showed that Zn-BDC directly disturbed the ribosome pathway and lowered the expression level of nitrogen-fixing nif cluster genes. On the other hand, ZIF-8 stress could regulate the flagellar assembly, siderophore group nonribosomal peptide biosynthesis, bacterial chemotaxis, and amino sugar and nucleotide sugar metabolism pathways to promote the cell growth of A. vinelandii. Beyond that, the toxicity of Zn-MOFs to A. vinelandii was associated with the release of Zn2+, but Zn-MOFs were less toxic than the mixtures of their starting materials. Overall, our results suggested that the environmental stability of Zn-MOFs determined their environmental toxicity through different molecular pathways. Designing stable MOFs is preferred due to environment-friendly considerations.
Collapse
Affiliation(s)
- Ziqi Tang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Jinwei Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yusen Ma
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Yiming Zeng
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
- Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
3
|
Chen YC, Lin KYA, Chen YC, Hong YY, Hsu YF, Lin CH. Impact of photoaging on the chemical and cytotoxic properties of nanoscale zeolitic imidazolate framework-8. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135536. [PMID: 39191015 DOI: 10.1016/j.jhazmat.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
This study investigated the influence of photoaging on a nanoscale metal-organic framework (MOF), truncated rhombic dodecahedron nano-zeolitic imidazolate framework-8 (nZIF-8), focusing on its oxidative stress, inflammation, and implications for pulmonary diseases. We observed significant photodegradation-induced transformations in nZIF-8, characterized by a reduction in particle size from 200.5 to 101.4 nm and notable structural disintegration after prolonged exposure to simulated solar radiation. This alteration resulted in a marked decrease in oxidative cytotoxicity in BEAS-2B cells, which was attributed to changes in surface properties and reduced reactive oxygen species (ROS) production. Gene expression analysis further revealed a decrease in cytotoxic and inflammatory responses, which potentially lowers the risk of chronic obstructive pulmonary disease (COPD). Aged nZIF-8 also showed diminished capacity to induce pro-inflammatory cytokines and influence COPD-related gene expression, reducing its potential to exacerbate COPD pathogenesis. Our findings highlight the critical need for comprehensive safety evaluations of these materials, while considering their long-term environmental and biological impacts. The diminished cytotoxicity and inflammatory potential of aged nZIF-8 highlighted its enhanced suitability for broader applications, indicating that photoaging may lead to safer and more sustainable material utilization.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City 106, Taiwan; Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yin-Chu Chen
- Department of Civil Engineering, National Taipei University of Technology, Taipei City 106, Taiwan
| | - Yan-Yu Hong
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Yu-Fang Hsu
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin 63208, Taiwan.
| |
Collapse
|
4
|
Khafaga DSR, El-Morsy MT, Faried H, Diab AH, Shehab S, Saleh AM, Ali GAM. Metal-organic frameworks in drug delivery: engineering versatile platforms for therapeutic applications. RSC Adv 2024; 14:30201-30229. [PMID: 39315019 PMCID: PMC11418013 DOI: 10.1039/d4ra04441j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
Recently, metal-organic frameworks (MOFs) have attracted much attention as versatile materials for drug delivery and personalized medicine. MOFs are porous structures made up of metal ions coupled with organic ligands. This review highlights the synthesis techniques used to design MOFs with specific features such as surface area and pore size, and the drug encapsulation within MOFs not only improves their stability and solubility but also allows for controlled release kinetics, which improves therapeutic efficacy and minimizes adverse effects. Furthermore, it discusses the challenges and potential advantages of MOF-based drug delivery, such as MOF stability, biocompatibility, and scale-up production. With further advancements in MOF synthesis, functionalization techniques, and understanding of their interactions using biological systems, MOFs can have significant promise for expanding the area of personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Doaa S R Khafaga
- Health Sector, Faculty of Science, Galala University New Galala City 43511 Suez Egypt
| | - Manar T El-Morsy
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Habiba Faried
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ayah H Diab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Shaimaa Shehab
- Biotechnology Department, Faculty of Science, Cairo University Giza 12613 Egypt
| | - Ahmed M Saleh
- Bionanotechnology Department, Faculty of Nanotechnology, Cairo University Giza 12613 Egypt
| | - Gomaa A M Ali
- College of Marine Science and Aquatic Biology, University of Khorfakkan 18119 Sharjah United Arab Emirates
- Faculty of Science, Galala University 43511 Suez Egypt
- Chemistry Department, Faculty of Science, Al-Azhar University Assiut 71524 Egypt
| |
Collapse
|
5
|
Hu R, Huang H, Chen H, Zhang J, Zhong Q, Wu X, Yang S. Phytotoxicity of metal-organic framework MOF-74(Co) nanoparticles to pea seedlings. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:710-720. [PMID: 38385295 DOI: 10.1039/d3em00503h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metal-organic framework (MOF) materials have unique structure and fantastic properties for wide-ranging applications. Pilot studies highlighted the toxicity and potential threats of MOF materials to the environment. In this study, we revealed the phytotoxicity of MOF-74(Co) nanoparticles (NPs) and their inhibitory effects on the photosynthesis of pea seedlings (Pisum sativum L.). MOF-74(Co) NPs have limited influences on the germination of pea seeds, but distinct environmental effects of MOF-74(Co) NPs were found in pea seedlings. The root length of pea seedlings, fresh weight and dry weight decreased by 50.0%, 29.2% and 36.4%, respectively, compared with the control group, when the material concentration was greater than 100 mg L-1. The net photosynthetic rate decreased by 48% and the intercellular CO2 concentration increased by 183% upon exposure to MOF-74(Co) NPs. Mechanistically, MOF-74(Co) exposure led to Co uptake in pea seedlings; the increases were 223% for the root, 267% for the stem and 6562% for the leaves, respectively, when the MOF-74(Co) NP concentration was 10 mg L-1. The released Co ions from MOF-74(Co) NPs caused oxidative damage to leaves and induced damage to the acceptor side of photosynthesis system II. Our results indicated that the environmental toxicity of MOF materials was largely regulated by the metal centers. MOF materials with nontoxic metal elements are desirable for future applications.
Collapse
Affiliation(s)
- Ruonan Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Heyu Huang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Hua Chen
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Jiahao Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Qinmei Zhong
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| | - Xian Wu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China.
| |
Collapse
|
6
|
Han X, Zhou C, Luo X, Pang H, Han C, Tang L, Yang Z, Nong Y, Lu C. Tumor Targeting with Apatinib-loaded Nanoparticles and Sonodynamic Combined Therapy. Curr Mol Med 2024; 24:648-666. [PMID: 37312441 DOI: 10.2174/1566524023666230613140341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION This study implies the enhancement of apatinib killing effect in 4T1 tumor cells through constructing drug-loaded nanoparticles apatinib/Ce6@ZIF- 8@Membranes (aCZM) to enhance tumor therapeutic targeting and reduce toxic side following sonodynamic therapy (SDT). METHODS apatinib/Ce6@ZIF-8 (aCZ) were synthesized by in situ encapsulation, and aCZM were constructed by encapsulating the nanoparticles with extracted breast cancer 4T1 cell membranes. aCZM were characterized and tested for the stability by electron microscopy, and the membrane proteins on the nanoparticles' surface were assessed using SDS-PAGE gel electrophoresis. The cell viability of 4T1 cells following treatment with aCZM was tested using cell counting kit-8 (CCK-8). The uptake of nanoparticles was detected by laser confocal microscopy and flow cytometry, and the SDT-mediated production of reactive oxygen species (ROS) was verified by singlet oxygen sensor green (SOSG), electron spin resonance (ESR), and DCFH-DA fluorescent probes. The CCK-8 assay and flow cytometry using Calcein/PI were used to assess the antitumoral effect of aCZM nanoparticles under SDT. The biosafety of aCZM was further verified in vitro and in vivo using the hemolysis assay, routine blood test and H&E staining of vital organs in Balb/c mice. RESULTS aCZM with an average particle size of about 210.26 nm were successfully synthesized. The results of the SDS-PAGE gel electrophoresis experiment showed that aCZM have a band similar to that of pure cell membrane proteins. The CCK-8 assay demonstrated the absence of effects on cell viability at a low concentration range, and the relative cell survival rate reached more than 95%. Laser confocal microscopy and flow cytometry analysis showed that aCZM treated group has the strongest fluorescence and the highest cellular uptake of nanoparticles. SOSG, ESR, and DCFH-DA fluorescent probes all indicated that the aCZM + SDT treated group has the highest ROS production. The CCK-8 assay also showed that when the ultrasound intensity was fixed at 0.5 W/cm2, the relative cell survival rates in the medium concentration group (10 μg/ml) (5.54 ± 1.26%) and the high concentration group (20 μg/ml) (2.14 ± 1.63%) were significantly lower than those in the low concentration group (5 μg/ml) (53.40 ± 4.25%). Moreover, there was a concentration and intensity dependence associated with the cellkilling effect. The mortality rate of the aCZM in the ultrasound group (44.95 ± 3.03%) was significantly higher than that of the non-ultrasound (17.00 ± 2.26%) group and aCZ + SDT group (24.85 ± 3.08%) (P<0.0001). The live and dead cells' staining (Calcein/PI) also supported this result. Finally, in vitro hemolysis test at 4 and 24 hours showed that the hemolysis rate of the highest concentration group was less than 1%. The blood routine, biochemistry, and H&E staining results of major organs in Balb/c mice undergoing nano-treatments showed no obvious functional abnormalities and tissue damage in 30 days. CONCLUSION In this study, a multifunctional bionic drug delivery nanoparticles (aCZM) system with good biosafety and compatibility in response to acoustic dynamics was successfully constructed and characterized. This system enhanced apatinib killing effect on tumor cells and reduced toxic side effects under SDT.
Collapse
Affiliation(s)
- Xiao Han
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caifu Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiaoling Luo
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongbing Pang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Libo Tang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Ziye Yang
- Department of Immunology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, China
| | - Yingdan Nong
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Chunmiao Lu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
7
|
Larasati L, Lestari WW, Firdaus M. Dual-Action Pt(IV) Prodrugs and Targeted Delivery in Metal-Organic Frameworks: Overcoming Cisplatin Resistance and Improving Anticancer Activity. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Larasati Larasati
- Master of Chemistry Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Witri Wahyu Lestari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| | - Maulidan Firdaus
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret Surakarta, Jl. Ir. Sutami No. 36A, Kentingan Jebres, Surakarta, Central Java, Indonesia, 57126
| |
Collapse
|
8
|
Lan S, Zhang J, Li X, Pan L, Li J, Wu X, Yang ST. Low Toxicity of Metal-Organic Framework MOF-74(Co) Nano-Particles In Vitro and In Vivo. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193398. [PMID: 36234530 PMCID: PMC9565312 DOI: 10.3390/nano12193398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 06/03/2023]
Abstract
With the rapid development of metal-organic frameworks (MOF), the toxicity and environmental safety of MOF materials should be thoroughly investigated. The behaviors and bio-effects of MOF materials after oral exposure are largely unknown. In this study, we performed a pilot toxicity evaluation of MOF-74(Co) nanoparticles (NPs) both in vitro and in vivo. The cell viability and cell cycle were monitored after LO2 cells were incubated with MOF-74(Co). The Co contents, bodyweight, serum biochemistry, histopathological changes, and oxidative stress parameters were measured after oral exposure to MOF-74(Co) NPs in mice. LO2 cells showed viability loss at 100 mg/L. The cell cycle arrest was more sensitive, which was observed even at 12.5 mg/L. MOF-74(Co) NPs led to a significant accumulation of Co in the liver and kidneys. No bodyweight loss was observed and the serum biochemical index was mainly unchanged. Except for slight inflammation, the histopathological images of the liver and kidneys after oral exposure to MOF-74(Co) NPs were normal compared to the control. Meaningful oxidative stress was found in the liver and kidneys. The results collectively indicated the low toxicity of MOF-74(Co) NPs after oral exposure in mice.
Collapse
Affiliation(s)
- Suke Lan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xin Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Lejie Pan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Juncheng Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
9
|
Rezaee T, Fazel-Zarandi R, Karimi A, Ensafi AA. Metal-organic frameworks for pharmaceutical and biomedical applications. J Pharm Biomed Anal 2022; 221:115026. [PMID: 36113325 DOI: 10.1016/j.jpba.2022.115026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022]
Abstract
Metal-organic framework (MOF) materials provide unprecedented opportunities for evaluating valuable compounds for various medical applications. MOFs merged with biomolecules, used as novel biomaterials, have become particularly useful in biological environments. Bio-MOFs can be promising materials in the global to avoid utilization above toxicological substances. Bio-MOFs with crystallin and porosity nature offer flexible structure via bio-linker and metal node variation, which improves their wide applicability in medical science.
Collapse
Affiliation(s)
- Tooba Rezaee
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | | | - Afsaneh Karimi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Ali A Ensafi
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran; Adjunct Professor, Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
10
|
Hao F, Yan Z, Yan X. Recent Advances in Research on the Effect of Physicochemical Properties on the Cytotoxicity of Metal–Organic Frameworks. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Zhu‐Ying Yan
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiu‐Ping Yan
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi 214122 China
- International Joint Laboratory on Food Safety School of Food Science and Technology Jiangnan University Wuxi 214122 China
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education Jiangnan University Wuxi 214122 China
| |
Collapse
|
11
|
Linnane E, Haddad S, Melle F, Mei Z, Fairen-Jimenez D. The uptake of metal-organic frameworks: a journey into the cell. Chem Soc Rev 2022; 51:6065-6086. [PMID: 35770998 PMCID: PMC9289890 DOI: 10.1039/d0cs01414a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Indexed: 12/25/2022]
Abstract
The application of metal-organic frameworks (MOFs) in drug delivery has advanced rapidly over the past decade, showing huge progress in the development of novel systems. Although a large number of versatile MOFs that can carry and release multiple compounds have been designed and tested, one of the main limitations to their translation to the clinic is the limited biological understanding of their interaction with cells and the way they penetrate them. This is a crucial aspect of drug delivery, as MOFs need to be able not only to enter into cells but also to release their cargo in the correct intracellular location. While small molecules can enter cells by passive diffusion, nanoparticles (NPs) usually require an energy-dependent process known as endocytosis. Importantly, the fate of NPs after being taken up by cells is dependent on the endocytic pathways they enter through. However, no general guidelines for MOF particle internalization have been established due to the inherent complexity of endocytosis as a mechanism, with several factors affecting cellular uptake, namely NP size and surface chemistry. In this review, we cover recent advances regarding the understanding of the mechanisms of uptake of nano-sized MOFs (nanoMOFs)s, their journey inside the cell, and the importance of biological context in their final fate. We examine critically the impact of MOF physicochemical properties on intracellular trafficking and successful cargo delivery. Finally, we highlight key unanswered questions on the topic and discuss the future of the field and the next steps for nanoMOFs as drug delivery systems.
Collapse
Affiliation(s)
- Emily Linnane
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Salame Haddad
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Francesca Melle
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - Zihan Mei
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| | - David Fairen-Jimenez
- The Adsorption & Advanced Materials Laboratory (A2ML), Department of Chemical Engineering and Biotechnology, University of Cambridge, Phillipa Fawcett Drive, CB3 0AS, UK.
| |
Collapse
|
12
|
Wen J, Yang L. Transport of ZIF-8 in porous media under the influence of surfactant type and nanoparticle concentration. WATER RESEARCH 2022; 218:118490. [PMID: 35490456 DOI: 10.1016/j.watres.2022.118490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/02/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Knowledge of the fate and transport of metal-organic frameworks (MOFs) in porous media is essential to understanding their environmental impacts. However, to date, the transport mechanisms of MOFs are not fully revealed. Meanwhile, surfactants can promote MOFs dispersion by forming a stable suspension. They also allow MOFs to migrate in the aqueous environment, which would increase the risks of MOFs being exposed to human health and the ecological environment. In this study, the effect of surfactants type and nanoparticle (NP) concentrations (50, 100, and 200 mg/L) were investigated using a sand column to study the transportability of ZIF-8 NPs in saturated porous media. Surfactants used were categorized into three groups, including cationic surfactants (CTAB, DTAB), anionic surfactants (SDBS, SDS), and nonionic surfactants (Tween 80, Tween 20). Experimental results showed that the ionic surfactants significantly increased the transportability of ZIF-8 NPs. Furthermore, a low concentration of NPs tended to break through the column under ionic surfactant conditions, and the maximum effluent recovery of ZIF-8 NPs (50 mg/L) was 87.4% in the presence of SDS. Nevertheless, ZIF-8 NPs tended to deposit in the inlet of the sand column in the presence of nonionic surfactants due to hydrodynamic bridging and straining. This research provides a comprehensive understanding of the deposition mechanism of ZIF-8 NPs as affected by surfactant types and NP concentrations. Most importantly, the study highlights those ionic surfactants had a significant impact on the mobility of ZIF-8 NPs, which arouses attention to the ecological and human health risk assessment related to the manufacturing of MOFs with the aid of various dispersing agents.
Collapse
Affiliation(s)
- Jia Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Lisha Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P. R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China
| |
Collapse
|
13
|
Ouyang B, Liu F, Liang C, Zhang J, Hu R, Yuan H, Hai R, Yuan Y, Wu X, Yang ST. Toxicity and activity inhibition of metal-organic framework MOF-199 to nitrogen-fixing bacterium Azotobacter vinelandii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151912. [PMID: 34838921 DOI: 10.1016/j.scitotenv.2021.151912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 05/10/2023]
Abstract
Metal-organic framework (MOF) materials with fantastic properties have found important applications in various areas. Learning the lessons from plastics and microplastics, it is urgent to investigate the environmental impacts of emerging materials to avoid potential pollution. However, the environmental toxicity and risks of MOF materials are seldom reported. Herein, we studied the toxicity and activity inhibition of MOF-199 to nitrogen-fixing bacterium Azotobacter vinelandii. MOF-199 significantly suppressed the growth of A. vinelandii and led to cell death at 40 mg/L. MOF-199 penetrated the cell wall and induced the shrinking of bacterial cells. MOF-199 reduced the nitrogen fixation activity of A. vinelandii at 40 mg/L by decreasing the gene nifH levels and inhibiting the Ca2+Mg2+-ATPase activity, which was further confirmed by the changes in oxidative phosphorylation related genes. Complete growth inhibition and activity loss of A. vinelandii occurred at 60 mg/L of MOF-199. The toxicological mechanism of MOF-199 to A. vinelandii was assigned to the oxidative stress, which occurred at 20 mg/L and higher. Both Cu2+ release and particulates themselves contributed to the toxicity of MOF-199 to A. vinelandii. These findings highlighted the environmental hazards and risks of MOF materials to nitrogen-fixing bacteria and nitrogen fixation in the biogeochemical cycle.
Collapse
Affiliation(s)
- Bowei Ouyang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Fangshi Liu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Chengzhuang Liang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiahao Zhang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ruonan Hu
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Huahui Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Ruiduo Hai
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yue Yuan
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Xian Wu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| |
Collapse
|
14
|
Life-Related Hazards of Materials Applied to Mg–S Batteries. ENERGIES 2022. [DOI: 10.3390/en15041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nowadays, rechargeable batteries utilizing an S cathode together with an Mg anode are under substantial interest and development. The review is made from the point of view of materials engaged during the development of the Mg–S batteries, their sulfur cathodes, magnesium anodes, electrolyte systems, current collectors, and separators. Simultaneously, various hazards related to the use of such materials are discussed. It was found that the most numerous groups of hazards are posed by the material groups of cathodes and electrolytes. Such hazards vary widely in type and degree of danger and are related to human bodies, aquatic life, flammability of materials, or the release of flammable or toxic gases by the latter.
Collapse
|
15
|
Hao F, Yan XP. Nano-sized zeolite-like metal-organic frameworks induced hematological effects on red blood cell. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127353. [PMID: 34879558 DOI: 10.1016/j.jhazmat.2021.127353] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 05/10/2023]
Abstract
Understanding the toxicity of metal-organic frameworks (MOFs) is important for improving their biocompatibility in further applications, especially the hematotoxicity of MOFs due to the unavoidable contact of MOFs with blood in biomedical science. Here we report the hematotoxicity and underlying mechanisms of nano-sized zeolite-like MOFs ZIF-8 and ZIF-67 because of their wide applications in biomedical science. ZIF-67 induced significant hemolysis of red blood cell (Rb) through breaking the structure of membrane due to the generation of free radicals, whereas ZIF-8 was hematocompatible. ZIF-67 was thus internalized by Rb and then bound with hemoglobin via hydrogen bond and van der Waals force, which influenced the structure and function of hemoglobin in accompany with heme release. These findings reveal the detailed mechanism of the hematological effects of MOFs on Rb and are helpful to the assessment of the toxicity and potential health risks of MOFs and the design of biosafe MOFs for biomedical applications.
Collapse
Affiliation(s)
- Fang Hao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Salehipour M, Rezaei S, Rezaei M, Yazdani M, Mogharabi-Manzari M. Opportunities and Challenges in Biomedical Applications of Metal–Organic Frameworks. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02118-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Abramenko N, Deyko G, Abkhalimov E, Isaeva V, Pelgunova L, Krysanov E, Kustov L. Acute Toxicity of Cu-MOF Nanoparticles (nanoHKUST-1) towards Embryos and Adult Zebrafish. Int J Mol Sci 2021; 22:ijms22115568. [PMID: 34070324 PMCID: PMC8197559 DOI: 10.3390/ijms22115568] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 01/07/2023] Open
Abstract
Metal-organic frameworks (MOFs) demonstrate unique properties, which are prospective for drug delivery, catalysis, and gas separation, but their biomedical applications might be limited due to their obscure interactions with the environment and humans. It is important to understand their toxic effect on nature before their wide practical application. In this study, HKUST-1 nanoparticles (Cu-nanoMOF, Cu3(btc)2, btc = benzene-1,3,5-tricarboxylate) were synthesized by the microwave (MW)-assisted ionothermal method and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) techniques. The embryotoxicity and acute toxicity of HKUST-1 towards embryos and adult zebrafish were investigated. To gain a better understanding of the effects of Cu-MOF particles towards Danio rerio (D. rerio) embryos were exposed to HKUST-1 nanoparticles (NPs) and Cu2+ ions (CuSO4). Cu2+ ions showed a higher toxic effect towards fish compared with Cu-MOF NPs for D. rerio. Both forms of fish were sensitive to the presence of HKUST-1 NPs. Estimated LC50 values were 2.132 mg/L and 1.500 mg/L for zebrafish embryos and adults, respectively. During 96 h of exposure, the release of copper ions in a stock solution and accumulation of copper after 96 h were measured in the internal organs of adult fishes. Uptake examination of the major internal organs did not show any concentration dependency. An increase in the number of copper ions in the test medium was found on the first day of exposure. Toxicity was largely restricted to copper release from HKUST-1 nanomaterials structure into solution.
Collapse
Affiliation(s)
- Natalia Abramenko
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Gregory Deyko
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
| | - Evgeny Abkhalimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Science, Leninsky Prospect, 31-4, Moscow 119071, Russia;
| | - Vera Isaeva
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- National Science and Technology University MISiS, Leninsky Prospekt 4, Moscow 119071, Russia
| | - Lyubov Pelgunova
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Eugeny Krysanov
- A.N. Severtsov Institute of Problems of Ecology and Evolution, RAS, Leninsky Prospect, 33, Moscow 119071, Russia; (L.P.); (E.K.)
| | - Leonid Kustov
- N.D. Zelinsky Institute of Organic Chemistry, RAS, Leninsky pr. 47, Moscow 119991, Russia; (N.A.); (G.D.); (V.I.)
- National Science and Technology University MISiS, Leninsky Prospekt 4, Moscow 119071, Russia
- Chemistry Department, Moscow State University, Leninskie Gory 1, bldg. 3, Moscow 119991, Russia
- Correspondence: or
| |
Collapse
|
19
|
Rose OL, Bonciu A, Marascu V, Matei A, Liu Q, Rusen L, Dinca V, Dinu CZ. Thin Films of Metal-Organic Framework Interfaces Obtained by Laser Evaporation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1367. [PMID: 34064252 PMCID: PMC8224316 DOI: 10.3390/nano11061367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
Properties such as large surface area, high pore volume, high chemical and thermal stability, and structural flexibility render zeolitic imidazolate frameworks (ZIFs) well-suited materials for gas separation, chemical sensors, and optical and electrical devices. For such applications, film processing is a prerequisite. Herein, matrix-assisted pulsed laser evaporation (MAPLE) was successfully used as a single-step deposition process to fabricate ZIF-8 films. By correlating laser fluency and controlling the specific transfer of lab-synthesized ZIF-8, films with user-controlled physical and chemical properties were obtained. Films' characteristics were evaluated by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The analysis showed that frameworks of ZIF-8 can be deposited successfully and controllably to yield polycrystalline films. The deposited films maintained the integrity of the individual ZIF-8 framework, while undergoing minor crystalline and surface chemistry changes. No significant changes in particle size were observed. Our study demonstrated control over both the MAPLE deposition conditions and the outcome, as well as the suitability of the listed deposition method to create composite architectures that could potentially be used in applications ranging from selective membranes to gas sensors.
Collapse
Affiliation(s)
- Olivia L. Rose
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (O.L.R.); (Q.L.)
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (A.B.); (V.M.); (A.M.); (L.R.)
- Faculty of Physics, University of Bucharest, RO-077125 Magurele, Romania
- IN2—FOTOPLASMAT Center, RO-077125 Magurele, Romania
| | - Valentina Marascu
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (A.B.); (V.M.); (A.M.); (L.R.)
- Université Paris-Saclay, CEA, INRAE, DMTS, SCBM, F-91191 Gif-sur-Yvette, France
| | - Andreea Matei
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (A.B.); (V.M.); (A.M.); (L.R.)
| | - Qian Liu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (O.L.R.); (Q.L.)
| | - Laurentiu Rusen
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (A.B.); (V.M.); (A.M.); (L.R.)
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, RO-077125 Magurele, Romania; (A.B.); (V.M.); (A.M.); (L.R.)
- IN2—FOTOPLASMAT Center, RO-077125 Magurele, Romania
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA; (O.L.R.); (Q.L.)
| |
Collapse
|
20
|
Teixeira de Alencar Filho JM, Sampaio PA, Silva de Carvalho I, Rocha da Silva A, Pereira ECV, Araujo E Amariz I, Nishimura RHV, Cavalcante da Cruz Araújo E, Rolim-Neto PJ, Rolim LA. Metal organic frameworks (MOFs) with therapeutic and biomedical applications: a patent review. Expert Opin Ther Pat 2021; 31:937-949. [PMID: 33915072 DOI: 10.1080/13543776.2021.1924149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Metal organic frameworks (MOFs) are a recent group of nano porous materials with exceptional physical properties, such as large surface areas, high pore volumes, low densities and well-defined pores. This type of material has been used frequently for biomedical and therapeutic applications, such as drug delivery systems and theranostic materials.Areas covered: In this review, the authors searched for patents filed in the last 10 years, found in different databases, related to the therapeutic or biomedical application of MOFs for use in different health fields. The possibility of these new materials becoming new therapeutic possibilities available to the population was emphasized.Expert opinion: The advances in research with MOFs have grown in the last 10 years and with that many possibilities for their applications have emerged in several areas, especially biomedical. The possibility of using these materials in drug delivery systems is the most common form of possibility of use in the health area, mainly due to easy obtaining and high reproducibility, which are seen very positively by the drug development technology sector.
Collapse
Affiliation(s)
| | - Pedrita Alves Sampaio
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | - Iure Silva de Carvalho
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Isabela Araujo E Amariz
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| | | | | | - Pedro José Rolim-Neto
- Laboratório de Tecnologia de Medicamentos, Universidade Federal de Pernambuco, Recife-PE, Brasil
| | - Larissa Araújo Rolim
- Central de Análises de Fármacos, Medicamentos E Alimentos, Universidade Federal do Vale do São Francisco, Petrolina-PE, Brasil
| |
Collapse
|
21
|
Guan X, Li Q, Maimaiti T, Lan S, Ouyang P, Ouyang B, Wu X, Yang ST. Toxicity and photosynthetic inhibition of metal-organic framework MOF-199 to pea seedlings. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124521. [PMID: 33221080 DOI: 10.1016/j.jhazmat.2020.124521] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 05/21/2023]
Abstract
Metal-organic framework (MOF) materials are star materials with unique structures and properties. To ensure safe production and applications, the toxicity and environmental hazards of MOF materials should be thoroughly investigated. However, the environmental impact of MOF materials on plants is completely unknown. Herein, we reported the toxicity and photosynthetic inhibitory properties of MOF-199 to pea plants (Pisum sativum L.). MOF-199 was synthesized by hydrothermal method. MOF-199 was copper containing double-pyramid of high surface area (668 m2/g). MOF-199 accelerated the germination of pea seeds, but the total germination rates were unchanged. MOF-199 inhibited the seedling growth at high concentrations. The net photosynthetic rate increased, while the total photosynthesis capability decreased. Damage to the acceptor side of photosystem II was evidenced by chlorophyll fluorescence. Mechanistically, MOF-199 released Cu2+ in the nutrient solution, led to Cu2+ accumulations in seedlings, and promoted oxidative stress. In addition, the photosynthetic inhibitions of MOF-199 were stronger than equivalent concentrations of Cu(NO3)2, implying that MOF-199 particles also contributed to the environmental hazards. Our results highlighted the potential threat of MOF materials to plant growth and photosynthesis.
Collapse
Affiliation(s)
- Xin Guan
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Qun Li
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Tusunniyaze Maimaiti
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Suke Lan
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Peng Ouyang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Bowei Ouyang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Xian Wu
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China
| | - Sheng-Tao Yang
- Key Laboratory of Basic Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, PR China.
| |
Collapse
|
22
|
Ahmadi M, Ayyoubzadeh SM, Ghorbani-Bidkorbeh F, Shahhosseini S, Dadashzadeh S, Asadian E, Mosayebnia M, Siavashy S. An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review. Heliyon 2021; 7:e06914. [PMID: 33997421 PMCID: PMC8100083 DOI: 10.1016/j.heliyon.2021.e06914] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Metal-organic frameworks (MOFs) are a fascinating class of crystalline porous materials composed of metal ions and organic ligands. Due to their attractive properties, MOFs can potentially offer biomedical field applications, such as drug delivery and imaging. This study aimed to systematically identify the affecting factors on the MOF characteristics and their effects on structural and biological characteristics. An electronic search was performed in four databases containing PubMed, Scopus, Web of Science, and Embase, using the relevant keywords. After analyzing the studies, 20 eligible studies were included in this review. As a result, various factors such as additives and organic ligand can influence the size and structure of MOFs. Additives are materials that can compete with ligand and may affect the nucleation and growth processes and, consequently, particle size. The nature and structure of ligand are influential in determining the size and structure of MOF. Moreover, synthesis parameters like the reaction time and initial reagents ratio are critical factors that should be optimized to regulate the size and structure. Of note is that the nature of the ligand and using a suitable additive can control the porosity of MOF. The more extended ligands aid in forming large pores. The choice of metallic nodes and organic ligand, and the MOF concentration are important factors since they can determine toxicity and biocompatibility of the final structure. The physicochemical properties of MOFs, such as hydrophobicity, affect the toxicity of nanoparticles. An increase in hydrophobicity causes increased toxicity of MOF. The biodegradability of MOF, as another property, depends on the organic ligand and metal ion and environmental conditions like pH. Photocleavable ligands can be served for controlled degradation of MOFs. Generally, by optimizing these affecting factors, MOFs with desirable properties will be obtained for biomedical applications.
Collapse
Affiliation(s)
- Mahnaz Ahmadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghorbani-Bidkorbeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Asadian
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Mosayebnia
- Pharmaceutical Chemistry and Radiopharmacy Department, School of Pharmacy, Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Siavashy
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Metal-organic frameworks for therapeutic gas delivery. Adv Drug Deliv Rev 2021; 171:199-214. [PMID: 33561450 DOI: 10.1016/j.addr.2021.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are gaseous signaling molecules (gasotransmitters) that regulate both physiological and pathological processes and offer therapeutic potential for the treatment of many diseases, such as cancer, cardiovascular disease, renal disease, bacterial and viral infections. However, the inherent labile nature of therapeutic gases results in difficulties in direct gases administration and their controlled delivery at clinically relevant ranges. Metal-organic frameworks (MOFs) with highly porous, stable, and easy-to-tailor properties have shown promising therapeutic gas delivery potential. Herein, we highlight the recent advances of MOF-based platforms for therapeutic gas delivery, either by endogenous (i.e., direct transfer of gases to targets) or exogenous (i.e., stimulating triggered release of gases) means. Reports that involve in vitro and/or in vivo studies are highlighted due to their high potential for clinical translation. Current challenges for clinical requirements and possible future innovative designs to meet variable healthcare needs are discussed.
Collapse
|
24
|
Chen YC, Andrew Lin KY, Chen KF, Jiang XY, Lin CH. In vitro renal toxicity evaluation of copper-based metal-organic framework HKUST-1 on human embryonic kidney cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116528. [PMID: 33486253 DOI: 10.1016/j.envpol.2021.116528] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
HKUST-1 is currently studied for a very diverse range of applications. Despite its exciting potential, significant concerns remain regarding the safety of HKUST-1. Therefore, human embryonic kidney 293 (HEK293) cells were used to verify the renal toxicity of HKUST-1. In this study, HKUST-1 induced concentration-dependent cytotoxic effects in HEK293 cells. The depolarization of mitochondrial membrane potential and formation of apoptotic bodies and autophagic vesicles were observed in HKUST-1-treated HEK293 cells. Oxidative (oxidative stress and haem oxygenase-1 activation) and inflammatory responses (NF-κB and NLRP3 activation) in HEK293 cells were induced by HKUST-1 exposure. In addition, the observed reduction in NAD(P)H levels in HKUST-1-treated HEK293 cells may be attributable to PARP-1 activation following DNA single- and double-strand breaks. The HKUST-1-induced depletion of zonula occludens proteins in HEK293 cells might lead to altered renal barrier integrity. The variations of α1-antitrypsin, oxidised α1-antitrypsin and NLRP3 protein expression in HEK293 cells suggested that HKUST-1 increases the risk of chronic kidney diseases. However, most of these adverse effects were significantly induced only by high HKUST-1 concentration (100 μg/mL), which do not reflect the actual exposure. Thus, the toxic risk of HKUST-1 appears to be negligible.
Collapse
Affiliation(s)
- Yi-Chun Chen
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan; Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Ku-Fan Chen
- Department of Civil Engineering, National Chi Nan University, Nantou, 54561, Taiwan
| | - Xin-Yu Jiang
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan
| | - Chia-Hua Lin
- Department of Biotechnology, National Formosa University, Yunlin, 63208, Taiwan.
| |
Collapse
|
25
|
Gao X, Xue Y, Zhu Z, Chen J, Liu Y, Cheng X, Zhang X, Wang J, Pei X, Wan Q. Nanoscale Zeolitic Imidazolate Framework-8 Activator of Canonical MAPK Signaling for Bone Repair. ACS APPLIED MATERIALS & INTERFACES 2021; 13:97-111. [PMID: 33354968 DOI: 10.1021/acsami.0c15945] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is an important type of metal organic framework and has found numerous applications in the biomedical field. Our previous studies have demonstrated that nano ZIF-8-based titanium implants could promote osseointegration; however, its osteogenic capacity and the related mechanisms in bone regeneration have not been fully clarified. Presented here is a nanoscale ZIF-8 that could drive rat bone mesenchymal stem cell (rBMSC) differentiation into osteoblasts both in vitro and in vivo, and interestingly, nano ZIF-8 exhibited a better osteogenic effect compared with ionic conditions of Zn at the same concentration of Zn2+. Moreover, the cellular uptake mechanisms of the nanoparticles were thoroughly clarified. Specifically, nano ZIF-8 could enter the rBMSC cytoplasm probably via caveolae-mediated endocytosis and macropinocytosis. The intracellular and extracellular Zn2+ released from nano ZIF-8 and the receptors involved in the endocytosis may play a role in inducing activation of key osteogenic pathways. Furthermore, through transcriptome sequencing, multiple osteogenic pathways were found to be upregulated, among which nano ZIF-8 primarily phosphorylated ERK, thus activating the canonical mitogen-activated protein kinase pathway and promoting the osteogenesis of rBMSCs. Taken together, this study helps to elucidate the mechanism by which nano ZIF-8 regulates osteogenesis and suggests it to be a potential biomaterial for constructing multifunctional composites in bone tissue engineering.
Collapse
Affiliation(s)
- Xiaomeng Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yiyuan Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xinting Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
26
|
Zhao W, Deng J, Ren Y, Xie L, Li W, Wang Q, Li S, Liu S. Antibacterial application and toxicity of metal-organic frameworks. Nanotoxicology 2020; 15:311-330. [PMID: 33259255 DOI: 10.1080/17435390.2020.1851420] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Metal-organic frameworks (MOFs), which are also referred to as coordination polymers, have been widely used in adsorption separation and catalysis, especially in the field of physical chemistry in the past few years, because of their unique physical structure and potential chemical properties. In recent years, particularly with the continuous expansion of the research field, deepening of research levels, and sustained advancements in science and technology, powerful and diverse MOFs that have demonstrated great biomedical application potential have been successively developed. Consequently, this study summarizes the origin, development, and common synthesis methods of MOFs, with major emphasis on their antibacterial application and safety evaluation in biomedicine.
Collapse
Affiliation(s)
- Wanling Zhao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinqiong Deng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.,Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yan Ren
- Guangdong Provincial People's Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liyuan Xie
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weirong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shengqing Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Sijun Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
27
|
Li X, Qin H, Zhou Z, Li Y, Wang J, Lin M, Dong X, Yang M, Li L. Cellular evaluation of the metal-organic framework PCN-224 associated with inflammation and autophagy. Toxicol In Vitro 2020; 70:105019. [PMID: 33058999 DOI: 10.1016/j.tiv.2020.105019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/15/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022]
Abstract
Metal-organic frameworks (MOFs) are innovative porous structures consisting of metal ions and organic ligands, which have been verified for extraordinary applications in nanomedicine and pharmaceuticals. PCN-224 is a type of Zr-based MOFs, which has recently emerged as one of the most attractive nanomaterials for various applications, such as drug delivery, bioimaging and cancer therapy due to its favorable and fascinating physical-chemical properties. However, the safety evaluation and the potential toxicological properties remain unclear. In this study, the general cytotoxicity of PCN-224 were examined in both human hepatocytes L-02 cells and mouse macrophages RAW264.7. Furthermore, the effect of inflammation and autophagy were measured in L-02 cells. The results indicated that PCN-224 was engulfed in L-02 cells and subsequently resulted in morphological changes, cell membrane destruction, and oxidative stress in L-02 cells. PCN-224 might trigger inflammation by promoting the secretion of inflammatory factors such as Tumor necrosis factors (TNF-α) and Interleukin (IL-6). PCN-224 might induce autophagosome accumulation and subsequently autophagic dysfunction. Additionally, PCN-224 induced cytotoxicity in RAW264.7 cells and increased the protein levels of the inflammasome component NLR Family Pyrin Domain Containing 3 (NLRP3) molecular, which indicated its cellular effects in different cell types. All of these results will support the reasonable use of PCN-224.
Collapse
Affiliation(s)
- Xiuping Li
- School of Public Health, Capital Medical University, Beijing, China
| | - Hua Qin
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Zehao Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yang Li
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Ji Wang
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China
| | - Mo Lin
- School of Public Health, Capital Medical University, Beijing, China
| | - Xuemeng Dong
- School of Public Health, Capital Medical University, Beijing, China
| | - Man Yang
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, China.
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
28
|
Abstract
Currently, apart from the widely known lithium-ion batteries, there are competitive solutions in the form of, for example, Li-S batteries. While the results of studies on the toxicity of Li-ion battery components are published, such studies on the components of Li-S cells are just beginning. The purpose of the current review was to identify materials used in the production of Li-S batteries and their toxicity, especially for humans. The review showed many kinds of materials with different levels of toxicity utilized for manufacturing of these cells. Some materials are of low toxicity, while some others are of the high one. A lot of materials have assigned different hazard statements. For some of the materials, no hazard statements were assigned, although such materials are toxic. No data related to the toxicity of some materials were found in the literature. This points out the need to further studies on their toxicity and legal actions to assign appropriate hazard statements.
Collapse
|
29
|
Jarai BM, Stillman Z, Attia L, Decker GE, Bloch ED, Fromen CA. Evaluating UiO-66 Metal-Organic Framework Nanoparticles as Acid-Sensitive Carriers for Pulmonary Drug Delivery Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38989-39004. [PMID: 32805901 PMCID: PMC7719435 DOI: 10.1021/acsami.0c10900] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Developing novel drug carriers for pulmonary delivery is necessary to achieve higher efficacy and consistency for treating pulmonary diseases while limiting off-target side effects that occur from alternative routes of administration. Metal-organic frameworks (MOFs) have recently emerged as a class of materials with characteristics well-suited for pulmonary drug delivery, with chemical tunability, high surface area, and pore size, which will allow for efficient loading of therapeutic cargo and deep lung penetration. UiO-66, a zirconium and terephthalic acid-based MOF, has displayed notable chemical and physical stability and potential biocompatibility; however, its feasibility for use as a pulmonary drug delivery vehicle has yet to be examined. Here, we evaluate the use of UiO-66 nanoparticles (NPs) as novel pulmonary drug delivery vehicles and assess the role of missing linker defects in their utility for this application. We determined that missing linker defects result in differences in NP aerodynamics but have minimal effects on the loading of model and therapeutic cargo, cargo release, biocompatibility, or biodistribution. This is a critical result, as it indicates the robust consistency of UiO-66, a critical feature for pulmonary drug delivery, which is plagued by inconsistent dosage because of variable properties. Not only that, but UiO-66 NPs also demonstrate pH-dependent stability, with resistance to degradation in extracellular conditions and breakdown in intracellular environments. Furthermore, the carriers exhibit high biocompatibility and low cytotoxicity in vitro and are well-tolerated in in vivo murine evaluations of orotracheally administered NPs. Following pulmonary delivery, UiO-66 NPs remain localized to the lungs before clearance over the course of seven days. Our results demonstrate the feasibility of using UiO-66 NPs as a novel platform for pulmonary drug delivery through their tunable NP properties, which allow for controlled aerodynamics and internalization-dependent cargo release while displaying remarkable pulmonary biocompatibility.
Collapse
Affiliation(s)
- Bader M. Jarai
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Zachary Stillman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Lucas Attia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
| | - Gerald E. Decker
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Eric D. Bloch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716
| | - Catherine A. Fromen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- corresponding author. Catherine A. Fromen, PhD, , 150 Academy St., Newark, DE 19716, (302) 831-3649
| |
Collapse
|