1
|
Marhaendra LIA, Rosandi Y, Gazzali AM, Novitasari D, Muchtaridi M. Comparison Between Molecular Dynamics Potentials for Simulation of Graphene-Based Nanomaterials for Biomedical Applications. Drug Dev Ind Pharm 2025:1-31. [PMID: 39835740 DOI: 10.1080/03639045.2025.2457387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/08/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
OBJECTIVE This article provides a substantial review of recent research and comparison on molecular dynamics potentials to determine which are most suitable for simulating the phenomena in graphene-based nanomaterials (GBNs). SIGNIFICANCE GBNs gain significant attention due to their remarkable properties and potential applications, notably in nanomedicine. However, the physical and chemical characteristics toward macromolecules that justify their nanomedical applications are not yet fully understood. The molecular interaction through molecular dynamic simulation offers the benefits for simulating inorganic molecules like GBNs, with necessary adjustments to account for physical and chemical interactions, or thermodynamic conditions. METHOD In this review, we explore various molecular dynamics potentials (force fields) used to simulate interactions and phenomena in graphene-based nanomaterials. Additionally, we offer a brief overview of the benefits and drawbacks of each force fields that available for analysis to assess which one is suitable to study the molecular interaction of graphene-based nanomaterials. RESULT We identify and compare various molecular dynamics potentials that available for analysing GBNs, providing insights into their suitability for simulating specific phenomena in graphene-based nanomaterials. The specification of each force fields and its purpose can be used for further application of molecular dynamics simulation on GBNs. CONCLUSION GBNs hold significant promise for applications like nanomedicine, but their physical and chemical properties must be thoroughly studied for safe clinical use. Molecular dynamics simulations, using either reactive or non-reactive MD potentials depending on the expected chemical changes, are essential for accurately modeling these properties, requiring careful selection based on the specific application.
Collapse
Affiliation(s)
- Laurentius Ivan Ageng Marhaendra
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Geophysics Department, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Amirah Mohd Gazzali
- Department Pharmaceutical Technology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Dhania Novitasari
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
2
|
Hou J, Liu M, Gao W, Yan K, Li B, Zheng W, Gong S, Zhang X, Sun W. Understanding the Adsorption and Diffusion Behaviors of PBUT in Biocompatible MOFs. J Phys Chem B 2024; 128:8886-8895. [PMID: 39226469 DOI: 10.1021/acs.jpcb.4c02830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
With the increasing incidence of chronic kidney disease, the effective control of protein-bound uremic toxins (PBUTs), which are difficult to remove through dialysis, has become a priority. In this study, the adsorption and diffusion behaviors of several metal-organic frameworks (MOFs) for PBUTs (indoxyl sulfate and p-cresyl sulfate) were studied by molecular dynamics (MD) simulations and umbrella sampling. For the NU series of MOFs, good correlations between the Gibbs free energy (ΔG) and the experimental clearance rates of PBUTs are found. For the adsorption behaviors, in terms of ΔG, DAJWET exhibits the best adsorption effect for indoxyl sulfate (IS), whereas NU-1000 shows the best effect for p-cresyl sulfate (pCS). Similar trends observed in the radial distribution function and mean square displacement results suggest that the π-π stacking interactions play a crucial role in the adsorption and diffusion of PBUTs by MOFs. Furthermore, it can be concluded that MOFs with highly conjugated groups (porphyrin rings and pyrene groups) tend to generate more PBUT attraction, and provide design principles for potential MOF candidates in the removal of PBUTs.
Collapse
Affiliation(s)
- Junyi Hou
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mengjie Liu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiqun Gao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kexin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bihong Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weizhong Zheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaomin Gong
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Xiaoyan Zhang
- Department of Nephrology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
| | - Weizhen Sun
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Santos-Luna D, Sixto-López Y, Bravo-Alfaro D, Cano-Sarmiento C, García H, Correa-Basurto J. Design and simulation of a caprylic acid enzymatically modified phosphatidylcholine micelle using a coarse-grained molecular dynamics simulations approach. J Biomol Struct Dyn 2023; 41:13902-13913. [PMID: 36826442 DOI: 10.1080/07391102.2023.2180434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023]
Abstract
Computationally simulated micelle models provide useful structural information on the molecular and biological sciences. One strategy to study the self-aggregation process of surfactant molecules that make up a micelle is through molecular dynamics (MD) simulations. In this study, a theoretical approach with a coarse-grained MD simulation (CG-MD) was employed to evaluate the critical micellar concentration (CMC), the micellization process, building a tridimensional (3D) model system of a micelle using data from the experimentally enzymatically modified phospholipids (PL) by phospholipase A1 (PA1). This required enzymatic interesterification of soybean phosphatidylcholine (PC) with caprylic acid, along with purification and characterization by chromatographic techniques to measure the esterified fatty acids and the corresponding PL composition. The number of molecules used in the CG-MD simulation system was determined from the experimental CMC data which was 0.025%. The molecular composition of the system is: 1 C 18:2, 2 C 8:0/8:0, 3 C 8:0/18:3n-9, 4 C 8:0/18:0, 5 C8:0/18:2n-6, 6 C8:0/18:1n-9, and 7 C 8:0/16:0. According to our theoretical results, the micelle model is structurally stable with an average Rg of 3.64 ± 0.10 Å, and might have an elliptical form with a radius of 24.6 Å. Regarding CMC value there was a relationship between the experimental data of the modified PLs and the theoretical analysis by GC-MD, which suggest that the enzymatic modification of PLs does not affect their self-aggregation properties. Finally, the micellar system obtained in the current research can be used as a simple and useful model to design optimal biocompatible nanoemulsions as possible vehicles for bioactive small molecules.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dalia Santos-Luna
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Yudibeth Sixto-López
- Departamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, Campus de Cartuja, Granada, Spain
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| | - Diego Bravo-Alfaro
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - Cynthia Cano-Sarmiento
- CONACyT-Unidad de Investigación y Desarrollo de Alimentos, Tecnologico Nacional de México/IT de Veracruz, Veracruz, México
| | - Hugo García
- Unidad de Investigación y Desarrollo de Alimentos, Tecnológico Nacional de México/IT de Veracruz, Veracruz, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation) SEPI-ESM, Instituto Politécnico Nacional, México, Mexico City, Mexico
| |
Collapse
|
4
|
Al-Kuraishy HM, Al-Gareeb AI, Kaushik A, Kujawska M, Ahmed EA, Batiha GES. SARS-COV-2 infection and Parkinson's disease: Possible links and perspectives. J Neurosci Res 2023; 101:952-975. [PMID: 36717481 DOI: 10.1002/jnr.25171] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 02/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The hallmarks are the presence of Lewy bodies composed mainly of aggregated α-synuclein and immune activation and inflammation in the brain. The neurotropism of SARS-CoV-2 with induction of cytokine storm and neuroinflammation can contribute to the development of PD. Interestingly, overexpression of α-synuclein in PD patients may limit SARS-CoV-2 neuroinvasion and degeneration of dopaminergic neurons; however, on the other hand, this virus can speed up the α-synuclein aggregation. The review aims to discuss the potential link between COVID-19 and the risk of PD, highlighting the need for further studies to authenticate the potential association. We have also overviewed the influence of SARS-CoV-2 infection on the PD course and management. In this context, we presented the prospects for controlling the COVID-19 pandemic and related PD cases that, beyond global vaccination and novel anti-SARS-CoV-2 agents, may include the development of graphene-based nanoscale platforms offering antiviral and anti-amyloid strategies against PD.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyia University, Baghdad, Iraq
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, Florida, USA
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznan, Poland
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
5
|
Huang W, Wang Z, Luo J. Molecular Dynamics Study of the Curvature-Driven Interactions between Carbon-Based Nanoparticles and Amino Acids. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020482. [PMID: 36677540 PMCID: PMC9861389 DOI: 10.3390/molecules28020482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
We researched the interaction between six representative carbon-based nanoparticles (CBNs) and 20 standard amino acids through all-atom molecular dynamics simulations. The six carbon-based nanoparticles are fullerene(C60), CNT55L3, CNT1010L3, CNT1515L3, CNT2020L3, and two-dimensional graphene (graphene33). Their curvatures decrease sequentially, and all of the CNTs are single-walled carbon nanotubes. We observed that as the curvature of CBNs decreases, the adsorption effect of the 20 amino acids with them has an increasing trend. In addition, we also used multi-dimensional clustering to analyze the adsorption effects of 20 amino acids on six carbon-based nanoparticles. We observed that the π-π interaction still plays an extremely important role in the adsorption of amino acids on carbon-based nanoparticles. Individual long-chain amino acids and "Benzene-like" Pro also have a strong adsorption effect on carbon-based nanoparticles.
Collapse
Affiliation(s)
- Wanying Huang
- T-Life Research Center, State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
- Zhejiang Lab, Nanhu-Kechuang Avenue, Yuhang District, Hangzhou 310000, China
| | - Zhenyu Wang
- T-Life Research Center, State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| | - Junyan Luo
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310000, China
- Correspondence:
| |
Collapse
|
6
|
Oz T, Kaushik AK, Kujawska M. Advances in graphene-based nanoplatforms and their application in Parkinson's disease. MATERIALS ADVANCES 2023; 4:6464-6477. [DOI: 10.1039/d3ma00623a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Graphene and GBNs offer diverse PD management modalities by targeting neurodegeneration, exerting regenerative properties and their use as carriers, biosensors, and imaging agents.
Collapse
Affiliation(s)
- Tuba Oz
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Ajeet Kumar Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun, India
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| |
Collapse
|
7
|
Detection and modulation of neurodegenerative processes using graphene-based nanomaterials: Nanoarchitectonics and applications. Adv Colloid Interface Sci 2023; 311:102824. [PMID: 36549182 DOI: 10.1016/j.cis.2022.102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Neurodegenerative disorders (NDDs) are caused by progressive loss of functional neurons following the aggregation and fibrillation of proteins in the central nervous system. The incidence rate continues to rise alarmingly worldwide, particularly in aged population, and the success of treatment remains limited to symptomatic relief. Graphene nanomaterials (GNs) have attracted immense interest on the account of their unique physicochemical and optoelectronic properties. The research over the past two decades has recognized their ability to interact with aggregation-prone neuronal proteins, regulate autophagy and modulate the electrophysiology of neuronal cells. Graphene can prevent the formation of higher order protein aggregates and facilitate the clearance of such deposits. In this review, after highlighting the role of protein fibrillation in neurodegeneration, we have discussed how GN-protein interactions can be exploited for preventing neurodegeneration. A comprehensive understanding of such interactions would contribute to the exploration of novel modalities for controlling neurodegenerative processes.
Collapse
|
8
|
Ghasemy E, Miri Jahromi A, Khedri M, Zandi P, Maleki R, Tayebi L. In-silico study on viability of MXenes in suppressing the coronavirus infection and distribution. J Biomol Struct Dyn 2022; 40:11460-11466. [PMID: 34328374 DOI: 10.1080/07391102.2021.1957711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Herein, based on the paramount importance of combating emerging diseases, through employing a detailed in-silico study, the possibility of using MXenes in suppressing the coronavirus infection was elucidated. To this end, first, interactions of MXene nanosheets (Mn2C, Ti2C, and Mo2C) and spike protein (SP), the main infecting portion of the COVID-19, were investigated. It was found that the modeled MXenes were effective in attracting the SP, so that they can be exploited in filtering the coronavirus. In addition, the effect of the MXenes on the SP structure was assessed which demonstrated that the secondary structure of the SP could be changed. Therefore, the post-interactions of the SP/ACE2 (receptor of coronavirus in the body) could be interrupted, declaring the lower chance of coronavirus infecting. The in-silico studies revealed that the MXenes not only can be used to adsorb and hinder the distribution of the coronavirus but also affect the SP structure and the SP/ACE2 interactions to interrupt the COVID-19 threat. Therefore, MXenes can be exploited with simultaneous roles in physical inhibition and reactive weakening of the COVID-19. In this regard, the Mn2C nanosheet was well suited, which is suggested as a promising candidate to combat the coronavirus.
Collapse
Affiliation(s)
- Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Zandi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
9
|
Khedri M, Maleki R, Dahri M, Sadeghi MM, Rezvantalab S, Santos HA, Shahbazi MA. Engineering of 2D nanomaterials to trap and kill SARS-CoV-2: a new insight from multi-microsecond atomistic simulations. Drug Deliv Transl Res 2022; 12:1408-1422. [PMID: 34476766 PMCID: PMC8413075 DOI: 10.1007/s13346-021-01054-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2021] [Indexed: 12/23/2022]
Abstract
In late 2019, coronavirus disease 2019 (COVID-19) was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Spike protein is one of the surface proteins of SARS-CoV-2 that is essential for its infectious function. Therefore, it received lots of attention for the preparation of antiviral drugs, vaccines, and diagnostic tools. In the current study, we use computational methods of chemistry and biology to study the interaction between spike protein and its receptor in the body, angiotensin-I-converting enzyme-2 (ACE2). Additionally, the possible interaction of two-dimensional (2D) nanomaterials, including graphene, bismuthene, phosphorene, p-doped graphene, and functionalized p-doped graphene, with spike protein is investigated. The functionalized p-doped graphene nanomaterials were found to interfere with spike protein better than the other tested nanomaterials. In addition, the interaction of the proposed nanomaterials with the main protease (Mpro) of SARS-CoV-2 was studied. Functionalized p-doped graphene nanomaterials showed more capacity to prevent the activity of Mpro. These 2D nanomaterials efficiently reduce the transmissibility and infectivity of SARS-CoV-2 by both the deformation of the spike protein and inhibiting the Mpro. The results suggest the potential use of 2D nanomaterials in a variety of prophylactic approaches, such as masks or surface coatings, and would deserve further studies in the coming years.
Collapse
Affiliation(s)
- Mohammad Khedri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Moein Sadeghi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sima Rezvantalab
- Renewable Energies Department, Faculty of Chemical Engineering, Urmia University of Technology, 57166-419, Urmia, Iran.
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00014, Helsinki, Finland.
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland.
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran.
| |
Collapse
|
10
|
Khedri M, Afsharchi F, Souderjani AH, Rezvantalab S, Didandeh M, Maleki R, Musaie K, Santos HA, Shahbazi M. Molecular scale study on the interactions of biocompatible nanoparticles with macrophage membrane and blood proteins. NANO SELECT 2022. [DOI: 10.1002/nano.202200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Amirhosein Hasanpour Souderjani
- Department of Pharmaceutical Engineering, School of Chemical Engineering College of Engineering, University of Tehran Tehran Iran
| | - Sima Rezvantalab
- Renewable Energies Department Faculty of Chemical Engineering Urmia University of Technology Urmia Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering Tarbiat Modares University Tehran Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG) Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC) Zanjan University of Medical Sciences Zanjan Iran
| | - Hélder A. Santos
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
- Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical Engineering University Medical Center Groningen University of Groningen Groningen The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science University of Groningen/University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
11
|
Khedri M, Moraveji MK. Microfluidic Engineering of RGD
[1]
‐Terminated Nanocarriers Micellization and In‐Situ Docetaxel Encapsulation: An Atomistic Insight. ChemistrySelect 2022. [DOI: 10.1002/slct.202103597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mohammad Khedri
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) c No. 350, Hafez Ave, Valiasr Square 15916-34311 Tehran Iran
| | - Mostafa keshavarz Moraveji
- Department of Chemical Engineering Amirkabir University of Technology (Tehran Polytechnic) c No. 350, Hafez Ave, Valiasr Square 15916-34311 Tehran Iran
| |
Collapse
|
12
|
Nahhas AF, Nahhas AF, Alshaikh AA, Webster TJ. Inhibiting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Variants: Targeting the Spike and Envelope Proteins Using Nanomaterial Like Peptides. J Biomed Nanotechnol 2022; 18:1121-1130. [PMID: 35854452 DOI: 10.1166/jbn.2022.3307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coronavirus disease (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused significant death, economic crisis, and the world to almost completely shut down. This present study focused on targeting the novel SARS-CoV-2 envelope protein, which has not been frequently mutating, and the S protein with a much larger peptide capable of inhibiting virus-mammalian cell attraction. In doing so, molecular dynamics software was used here to model six peptides including: NapFFTLUFLTUTE, NapFFSLAFLTATE, NapFFSLUFLSUTE, NapFFTLAFLTATE, NapFFSLUFLSUSE, and NapFFMLUFLMUME. Results showed that two of these completely hydrophobic peptides (NapFFTLUFLTUTE and NapFFMLUFLMUME) had a strong ability to bind to the virus, preventing its binding to a mammalian cell membrane, entering the cell, and replicating by covering many cell attachment sites on SARS-CoV-2. Further cell modeling results demonstrated the low toxicity and suitable pharmacokinetic properties of both peptides making them ideal for additional in vitro and in vivo investigation. In this manner, these two peptides should be further explored for a wide range of present and future COVID-19 therapeutic and prophylactic applications.
Collapse
Affiliation(s)
- Alaa F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alrayan F Nahhas
- Biochemistry Department, College of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman A Alshaikh
- Internal Medicine Department, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Thomas J Webster
- Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, United States
| |
Collapse
|
13
|
Karimi K, Rahsepar M. Optimization of the Urea Removal in a Wearable Dialysis Device Using Nitrogen-Doped and Phosphorus-Doped Graphene. ACS OMEGA 2022; 7:4083-4094. [PMID: 35155902 PMCID: PMC8829914 DOI: 10.1021/acsomega.1c05495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/12/2022] [Indexed: 05/31/2023]
Abstract
Dialysis has been recognized as an essential treatment for end-stage renal disease (ESRD). This therapy, however, suffers from several limitations leading to numerous complications in the patients. As dialysis cannot completely substitute healthy kidney functions, the health condition of an ESRD patient is ultimately affected. Wearable artificial kidney (WAK) can resolve the restrictions of blood purification by the dialysis method. However, absorbing large amounts of urea produced in the body is one of the main challenges of these WAK and overcoming this is necessary to improve both functionality and footprint of the device. This study investigates the adsorption capabilities of N- and P-doped graphene nanosorbents for the first time by using molecular dynamic simulation. Urea removal on carbon nanosheets was simulated with different percentages of phosphorus and nitrogen dopants along with the pristine graphene. Specifically, the effects of interaction energy, adsorption percentage, gyration radius, hydrogen bonding, and other molecular dynamic analyses on urea removal were also investigated. The results from this study match well with the existing research, demonstrating the accuracy of the model. The results further suggest that graphene nanosheets doped by 10% nitrogen are likely the most effective in removing urea given that it is associated with the maximum radial distribution function (RDF), the maximum reduction in gyration radius, a high number of hydrogen bonds, and the most negative adsorption energy. This molecular study offers attractive suggestions for the novel adsorbents of artificial kidney devices and paves the way for the development of novel and enhanced urea adsorbents.
Collapse
Affiliation(s)
- Keyvan Karimi
- Department of Materials Science
and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz 7134851154, Iran
| | - Mansour Rahsepar
- Department of Materials Science
and Engineering, School of Engineering, Shiraz University, Zand Boulevard, Shiraz 7134851154, Iran
| |
Collapse
|
14
|
Wang S, Zheng J, Ma L, Petersen RB, Xu L, Huang K. Inhibiting protein aggregation with nanomaterials: The underlying mechanisms and impact factors. Biochim Biophys Acta Gen Subj 2022; 1866:130061. [PMID: 34822925 DOI: 10.1016/j.bbagen.2021.130061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
Protein aggregation is correlated with the onset and progression of protein misfolding diseases (PMDs). Inhibiting the generation of toxic aggregates of misfolded proteins has been proposed as a therapeutic approach for PMDs. Due to their unique properties, nanomaterials have been extensively investigated for their ability to inhibit protein aggregation and have shown great potential in the diagnosis and treatment of PMDs. However, the precise mechanisms by which nanomaterials interact with amyloidogenic proteins and the factors influencing these interactions remain poorly understood. Consequently, developing a rational design strategy for nanomaterials that target specific proteins in PMDs has been challenging. In this review, we elucidate the effects of nanomaterials on protein aggregation and describe the mechanisms through which nanomaterials interfere with protein aggregation. The major factors impacting protein-nanomaterial interaction such as size, charge, concentration, surface modification and morphology that can be rationally addressed to achieve the desired effects of nanomaterials on protein aggregation are summarized. The prospects and challenges to the clinical application of nanomaterials for the treatment of PMDs are also discussed.
Collapse
Affiliation(s)
- Shilin Wang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaojiao Zheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Ma
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI 48859, USA
| | - Li Xu
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
15
|
Ebrahimi M, Asadi M, Akhavan O. Graphene-based Nanomaterials in Fighting the Most Challenging Viruses and Immunogenic Disorders. ACS Biomater Sci Eng 2021; 8:54-81. [PMID: 34967216 DOI: 10.1021/acsbiomaterials.1c01184] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently earned much attention thanks to its special and inspiring physicochemical properties, such as its large surface area, efficient thermal/electrical properties, carbon-based chemical purity with controllable biocompatibility, easy functionalization, capability of single-molecule detection, anticancer characteristics, 3D template feature in tissue engineering, and, in particular, antibacterial/antiviral activities. In this Review, the most important and challenging viruses of our era, such as human immunodeficiency virus, Ebola, SARS-CoV-2, norovirus, and hepatitis virus, and immunogenic disorders, such as asthma, Alzheimer's disease, and Parkinson's disease, in which graphene-based nanomaterials can effectively take part in the prevention, detection, treatment, medication, and health effect issues, have been covered and discussed.
Collapse
Affiliation(s)
- Mahsa Ebrahimi
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| | - Mohamad Asadi
- Department of Electrical Engineering, Sharif University of Technology, 11155-4363 Tehran, Islamic Republic of Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, 11155-9161 Tehran, Islamic Republic of Iran
| |
Collapse
|
16
|
Mehdizadeh Chellehbari Y, Sayyad Amin J, Zendehboudi S. How Does a Microfluidic Platform Tune the Morphological Properties of Polybenzimidazole Nanoparticles? J Phys Chem B 2021; 126:308-326. [PMID: 34958735 DOI: 10.1021/acs.jpcb.1c08192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Microfluidic synthesis methods are among the most promising approaches for controlling the size and morphology of polymeric nanoparticles (NPs). In this work, for the first time, atomistic mechanisms involved in morphological changes of polybenzimidazole (PBI) NPs in microfluidic media are investigated. The multiscale molecular dynamic (MD) simulations are validated with the literature modeling and experimental data. A good agreement is obtained between the molecular modeling results and experimental data. The effects of mixing time, solvent type, dopant, and simulation box size at the molecular level are investigated. Mixing time has a positive impact on the morphology of the PBI NPs. Microfluidic technology can control the mixing time well and engineer the morphology of the NPs. In the process of morphological changes, at the optimum time (about 11.5 ms), the attraction energy between the polymer molecules is at the highest level (-37.65 kJ/mol). The size of the polymer NPs is minimal (2.3 nm), and the aspect ratio and entropy are at the lowest level, equal to 1.07 and 11.024 kJ/mol·K, respectively. It was found that the presence of water leads to the precipitation of polymeric NPs owing to the dominance of hydrophobic forces. Both dimethylacetamide (DMA) and phosphoric acid (PA) improve the control of the size and morphology of NPs. However, the addition of PA has a greater impact; PA acts as a cross-linker, making PBI NPs finer and more spherical. In addition, MD simulation reveals that PA increases the proton diffusion coefficient in PBI and enhances its efficiency in fuel cells. This study paves a new efficient way for morphological engineering of polymeric NPs using microfluidic technology.
Collapse
Affiliation(s)
| | - Javad Sayyad Amin
- Department of Chemical Engineering, University of Guilan, Rasht IR 41335, Iran
| | - Sohrab Zendehboudi
- Department of Process Engineering, Memorial University, St. John's, NL A1B 3X7, Canada
| |
Collapse
|
17
|
Ionic Transport Triggered by Asymmetric Illumination on 2D Nano-Membrane. Molecules 2021; 26:molecules26237078. [PMID: 34885657 PMCID: PMC8658790 DOI: 10.3390/molecules26237078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/17/2022] Open
Abstract
Ionic transport and ion sieving are important in the field of separation science and engineering. Based on the rapid development of nanomaterials and nano-devices, more and more phenomena occur on the nanoscale devices in the field of thermology, optics, mechanics, etc. Recently, we experimentally observed a novel ion transport phenomenon in nanostructured graphene oxide membrane (GOM) under asymmetric illumination. We first build a light-induced carriers’ diffusion model based on our previous experimental results. This model can reveal the light-induced ion transport mechanism and predict the carriers’ diffusion behavior under different operational situations and material characters. The voltage difference increases with the rise of illuminate asymmetry, photoresponsivity, recombination coefficient, and carriers’ diffusion coefficient ratio. Finally, we discuss the ion transport behavior with different surface charge densities using MD simulation. Moderate surface charge decreases the ion transport with the same type of charge due to the electrostatic repulsion; however, excess surface charge blocks both cation and anion because a thicker electrical double layer decreases effective channel height. Research here provides referenced operational and material conditions to obtain a greater voltage difference between the membrane sides. Also, the mechanism of ion transport and ion sieving can guide us to modify membrane material according to different aims.
Collapse
|
18
|
Yan Y, Chen Y, Liu Z, Cai F, Niu W, Song L, Liang H, Su Z, Yu B, Yan F. Brain Delivery of Curcumin Through Low-Intensity Ultrasound-Induced Blood-Brain Barrier Opening via Lipid-PLGA Nanobubbles. Int J Nanomedicine 2021; 16:7433-7447. [PMID: 34764649 PMCID: PMC8575349 DOI: 10.2147/ijn.s327737] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson's disease (PD) is a progressive neurodegenerative disorder. Owing to the presence of blood-brain barrier (BBB), conventional pharmaceutical agents are difficult to the diseased nuclei and exert their action to inhibit or delay the progress of PD. Recent literatures have demonstrated that curcumin shows the great potential to treat PD. However, its applications are still difficult in vivo due to its poor druggability and low bioavailability through the BBB. Methods Melt-crystallization methods were used to improve the solubility of curcumin, and curcumin-loaded lipid-PLGA nanobubbles (Cur-NBs) were fabricated through encapsulating the curcumin into the cavity of lipid-PLGA nanobubbles. The bubble size, zeta potentials, ultrasound imaging capability and drug encapsulation efficiency of the Cur-NBs were characterized by a series of analytical methods. Low-intensity focused ultrasound (LIFU) combined with Cur-NB was used to open the BBB to facilitate curcumin delivery into the deep brain of PD mice, followed by behavioral evaluation for the treatment efficacy. Results The solubility of curcumin was improved by melt-crystallization methods, with 2627-fold higher than pure curcumin. The resulting Cur-NBs have a nanoscale size about 400 nm and show excellent contrast imaging performance. Curcumin drugs encapsulated into Cur-NBs could be effectively released when Cur-NBs were irradiated by LIFU at the optimized acoustic pressure, achieving 30% cumulative release rate within 6 h. Importantly, Cur-NBs combined with LIFU can open the BBB and locally deliver the curcumin into the deep-seated brain nuclei, significantly enhancing efficacy of curcumin in the Parkinson C57BL/6J mice model in comparison with only Cur-NBs and LIFU groups. Conclusion In this work, we greatly improved the solubility of curcumin and developed Cur-NBs for brain delivery of curcumin against PD through combining with LIFU-mediating BBB. Cur-NBs provide a platform for these potential drugs which are difficult to cross the BBB to treat PD disease or other central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Yiran Yan
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Yan Chen
- Department of Ultrasonic Diagnosis, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhongxun Liu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Wanting Niu
- VA Boston Healthcare System, Boston, MA, 02130, USA.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Liming Song
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Haifeng Liang
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Zhiwen Su
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People's Republic of China
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, People's Republic of China
| |
Collapse
|
19
|
Rezvantalab S, Maleki R, Drude NI, Khedri M, Jans A, Keshavarz Moraveji M, Darguzyte M, Ghasemy E, Tayebi L, Kiessling F. Experimental and Computational Study on the Microfluidic Control of Micellar Nanocarrier Properties. ACS OMEGA 2021; 6:23117-23128. [PMID: 34549113 PMCID: PMC8444197 DOI: 10.1021/acsomega.1c02651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Microfluidic-based synthesis is a powerful technique to prepare well-defined homogenous nanoparticles (NPs). However, the mechanisms defining NP properties, especially size evolution in a microchannel, are not fully understood. Herein, microfluidic and bulk syntheses of riboflavin (RF)-targeted poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG-RF) micelles were evaluated experimentally and computationally. Using molecular dynamics (MD), a conventional "random" model for bulk self-assembly of PLGA-PEG-RF was simulated and a conceptual "interface" mechanism was proposed for the microfluidic self-assembly at an atomic scale. The simulation results were in agreement with the observed experimental outcomes. NPs produced by microfluidics were smaller than those prepared by the bulk method. The computational approach suggested that the size-determining factor in microfluidics is the boundary of solvents in the entrance region of the microchannel, explaining the size difference between the two experimental methods. Therefore, this computational approach can be a powerful tool to gain a deeper understanding and optimize NP synthesis.
Collapse
Affiliation(s)
- Sima Rezvantalab
- Department
of Chemical Engineering, Urmia University
of Technology, 57166-93188 Urmia, Iran
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
| | - Natascha Ingrid Drude
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
- Department
of Experimental Neurology, Charité
−Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Mohammad Khedri
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535 Iran
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alexander Jans
- DWI-Leibniz
Institute for Interactive Materials, Forckenbeckstr. 50, 52074 Aachen, Germany
| | - Mostafa Keshavarz Moraveji
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milita Darguzyte
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| | - Ebrahim Ghasemy
- Centre
Énergie Matériaux Télécommunications, Institut national de la recherché, 1650 Boul. Lionel-Boulet, Varennes, Quebec J3X 1S2, Canada
| | - Lobat Tayebi
- School
of Dentistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Fabian Kiessling
- Institute
for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, 52074 Aachen, Germany
| |
Collapse
|
20
|
Alimohammadi E, Nikzad A, Khedri M, Shafiee S, Miri Jahromi A, Maleki R, Rezaei N. Molecular Tuning of the Nano–Bio Interface: Alpha-Synuclein’s Surface Targeting with Doped Carbon Nanostructures. ACS APPLIED BIO MATERIALS 2021; 4:6073-6083. [DOI: 10.1021/acsabm.1c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ehsan Alimohammadi
- Department of Neurosurgery, Kermanshah University of Medical Sciences, Imam Reza Hospital, 67158-47141 Kermanshah, Iran
| | - Arash Nikzad
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied
Science Lane, Vancouver, British Columbia V6T1Z4, Canada
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepehr Shafiee
- School of Medicine, Shahid Beheshti University of Medical Sciences, 19839-63113 Tehran, Iran
| | - Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, 14167-53955 Tehran, Iran
- Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733141, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, 14167-53955 Tehran, Iran
| |
Collapse
|
21
|
Maleki R, Khedri M, Rezvantalab S, Afsharchi F, Musaie K, Shafiee S, Shahbazi M. β-Amyloid Targeting with Two-Dimensional Covalent Organic Frameworks: Multi-Scale In-Silico Dissection of Nano-Biointerface. Chembiochem 2021; 22:2306-2318. [PMID: 33884725 PMCID: PMC8359851 DOI: 10.1002/cbic.202100075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Indexed: 12/19/2022]
Abstract
Cytotoxic aggregation of misfolded β-amyloid (Aβ) proteins is the main culprit suspected to be behind the development of Alzheimer's disease (AD). In this study, Aβ interactions with the novel two-dimensional (2D) covalent organic frameworks (COFs) as therapeutic options for avoiding β-amyloid aggregation have been investigated. The results from multi-scale atomistic simulations suggest that amine-functionalized COFs with a large surface area (more than 1000 m2 /gr) have the potential to prevent Aβ aggregation. Gibb's free energy analysis confirmed that COFs could prevent protofibril self-assembly in addition to inhibiting β-amyloid aggregation. Additionally, it was observed that the amine functional group and high contact area could improve the inhibitory effect of COFs on Aβ aggregation and enhance the diffusivity of COFs through the blood-brain barrier (BBB). In addition, microsecond coarse-grained (CG) simulations with three hundred amyloids reveal that the presence of COFs creates instability in the structure of amyloids and consequently prevents the fibrillation. These results suggest promising applications of engineered COFs in the treatment of AD and provide a new perspective on future experimental research.
Collapse
Affiliation(s)
- Reza Maleki
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG)Universal Scientific Education and Research Network (USERN)19839-63113TehranIran
| | - Sima Rezvantalab
- Renewable Energies DepartmentFaculty of Chemical EngineeringUrmia University of Technology57166-419UrmiaIran
| | - Fatemeh Afsharchi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Kiyan Musaie
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
| | - Sepehr Shafiee
- School of MedicineShahid Beheshti University of Medical Sciences19839-63113TehranIran
| | - Mohammad‐Ali Shahbazi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)Zanjan University of Medical Sciences45139-56184ZanjanIran
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of Helsinki00014HelsinkiFinland
| |
Collapse
|
22
|
Miri Jahromi A, Zandi P, Khedri M, Ghasemy E, Maleki R, Tayebi L. Molecular insight into optimizing the N- and P-doped fullerenes for urea removal in wearable artificial kidneys. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:49. [PMID: 33891249 PMCID: PMC8065003 DOI: 10.1007/s10856-021-06525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Urea is the result of the breakdown of proteins in the liver, the excess of which circulates in the blood and is adsorbed by the kidneys. However, in the case of kidney diseases, some products, specifically urea, cannot be removed from the blood by the kidneys and causes serious health problems. The end-stage renal disease (ESRD) patients are not able to purify their blood, which endangers their life. ESRD patients require dialysis, a costly and difficult method of urea removal from the blood. Wearable artificial kidneys (WAKs) are consequently designed to remove the waste from blood. Regarding the great amount of daily urea production in the body, WAKs should contain strong and selective urea adsorbents. Fullerenes-which possess fascinating chemical properties-have been considered herein to develop novel urea removal adsorbents. Molecular dynamics (MD) has enabled researchers to study the interaction of different materials and can pave the way toward facilitating the development of wearable devices. In this study, urea adsorption by N-doped fullerenes and P-doped fullerenes were assessed through MD simulations. The urea adsorption was simulated by five samples of fullerenes, with phosphorous and different nitrogen dopant contents. For comparing the urea adsorption capacity in the performed simulations, detailed characteristics-including the energy analysis, radius of gyration, radial distribution function (RDF), root-mean-square fluctuation (RMSD), and H-bond analyses were investigated. It had been determined that the fullerene containing 8% nitrogen-with the highest reduction in the radius of gyration, the maximum RDF, a high adsorption energy, and a high number of hydrogen bonds-adsorbs urea more efficiently.
Collapse
Affiliation(s)
- Ahmad Miri Jahromi
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Pegah Zandi
- School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Khedri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ebrahim Ghasemy
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI, 53233, USA.
| |
Collapse
|
23
|
Zandi P, Ghasemy E, Khedri M, Rashidi A, Maleki R, Miri Jahromi A. Shedding Light on Miniaturized Dialysis Using MXene 2D Materials: A Computational Chemistry Approach. ACS OMEGA 2021; 6:6312-6325. [PMID: 33718722 PMCID: PMC7948252 DOI: 10.1021/acsomega.0c06118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 05/09/2023]
Abstract
Materials science can pave the way toward developing novel devices at the service of human life. In recent years, computational materials engineering has been promising in predicting material performance prior to the experiments. Herein, this capability has been carefully employed to tackle severe problems associated with kidney diseases through proposing novel nanolayers to adsorb urea and accordingly causing the wearable artificial kidney (WAK) to be viable. The two-dimensional metal carbide and nitride (MXene) nanosheets can leverage the performance of various devices since they are highly tunable along with fascinating surface chemistry properties. In this study, molecular dynamics (MD) simulations were exploited to investigate the interactions between urea and different MXene nanosheets. To this end, detailed analyses were performed that clarify the suitability of these nanostructures in urea adsorption. The atomistic simulations were carried out on Mn2C, Cd2C, Cu2C, Ti2C, W2C, Ta2C, and urea to determine the most appropriate urea-removing adsorbent. It was found that Cd2C was more efficient followed by Mn2C, which can be effectively exploited in WAK devices at the service of human health.
Collapse
Affiliation(s)
- Pegah Zandi
- School
of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran 1417466191, Iran
| | - Ebrahim Ghasemy
- Nanotechnology
Department, School of New Technologies, Iran University of Science and Technology, Tehran 1684613114, Iran
| | - Mohammad Khedri
- Department
of Chemical Engineering, Amirkabir University
of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Alimorad Rashidi
- Nanotechnology
Research Center, Research Institute of Petroleum
Industry (RIPI), Tehran 1485733111, Iran
| | - Reza Maleki
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535, Iran
| | - Ahmad Miri Jahromi
- Computational
Biology and Chemistry Group (CBCG), Universal
Scientific Education and Research Network (USERN), Tehran 1449614535, Iran
| |
Collapse
|
24
|
Alimohammadi E, Maleki R, Akbarialiabad H, Dahri M. Novel pH-responsive nanohybrid for simultaneous delivery of doxorubicin and paclitaxel: an in-silico insight. BMC Chem 2021; 15:11. [PMID: 33573669 PMCID: PMC7879683 DOI: 10.1186/s13065-021-00735-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/16/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The distribution of drugs could not be controlled in the conventional delivery systems. This has led to the developing of a specific nanoparticle-based delivery system, called smart drug delivery systems. In cancer therapy, innovative biocompatible nanocarriers have received much attention for various ranges of anti-cancer drugs. In this work, the effect of an interesting and novel copolymer named "dimethyl acrylamide-trimethyl chitosan" was investigated on delivery of paclitaxel and doxorubicin applying carboxylated fullerene nanohybrid. The current study was run via molecular dynamics simulation and quantum calculations based on the acidic pH differences between cancerous microenvironment and normal tissues. Furthermore, hydrogen bonds, radius of gyration, and nanoparticle interaction energies were studied here. Stimulatingly, a simultaneous pH and temperature-responsive system were proposed for paclitaxel and doxorubicin for a co-polymer. A pH-responsive and thermal responsive copolymer were utilized based on trimethyl chitosan and dimethyl acrylamide, respectively. In such a dualistic approach, co-polymer makes an excellent system to possess two simultaneous properties in one bio-polymer. RESULTS The simulation results proposed dramatic and indisputable effects of the copolymer in the release of drugs in cancerous tissues, as well as increased biocompatibility and drug uptake in healthy tissues. Repeated simulations of a similar article performed for the validation test. The results are very close to those of the reference paper. CONCLUSIONS Overall, conjugated modified fullerene and dimethyl acrylamide-trimethyl chitosan (DMAA-TMC) as nanohybrid can be an appropriate proposition for drug loading, drug delivery, and drug release on dual responsive smart drug delivery system.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
| | - Hossein Akbarialiabad
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Dahri
- Computational Biology and Chemistry Group (CBCG), Universal Scientific and Education and Research Network (USERN), Tehran, Iran
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
25
|
Alimohammadi E, Nikzad A, Khedri M, Rezaian M, Jahromi AM, Rezaei N, Maleki R. Potential treatment of Parkinson's disease using new-generation carbon nanotubes: a biomolecular in silico study. Nanomedicine (Lond) 2021; 16:189-204. [PMID: 33502255 DOI: 10.2217/nnm-2020-0372] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: One of the underlying mechanisms of Parkinson's disease is the aggregation of α-synuclein proteins, including amyloids and Lewy bodies in the brain. Aim: To study the inhibitory effect of doped carbon nanotubes (CNTs) on amyloid aggregation. Materials & methods: Molecular dynamics tools were utilized to simulate the influence of CNTs doped with phosphorus, nitrogen and bromine and nitrogen on the formation of α-synuclein amyloid. Results: The CNTs exhibited strong interactions with α-synuclein, with phosphorus-doped CNTs having the most substantial interactions. Conclusion: Doped-CNTs, especially phosphorus-doped carbon nanotube could effectively prevent α-synuclein amyloid formation, thus, it could be considered as a potential treatment for Parkinson's disease. However, further in vitro and clinical investigations are required.
Collapse
Affiliation(s)
- Ehsan Alimohammadi
- Neurosurgery Department, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arash Nikzad
- Department of Mechanical Engineering, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC V6T1Z4, Canada
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Milad Rezaian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839 63113, Iran
| | - Ahmad Miri Jahromi
- Department of Petroleum Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran 1591634311, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Maleki
- Computational Biology & Chemistry Group (CBCG), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Sohrabi S, Khedri M, Maleki R, Keshavarz Moraveji M. Molecular engineering of the last-generation CNTs in smart cancer therapy by grafting PEG-PLGA-riboflavin. RSC Adv 2020; 10:40637-40648. [PMID: 35519185 PMCID: PMC9057702 DOI: 10.1039/d0ra07500k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
In this work, the effect of environment and additives on the self-assembly and delivery of doxorubicin (DOX) have been studied. A microfluidic system with better control over molecular interactions and high surface to volume ratio has superior performance in comparison to the bulk system. Moreover, carbon nanotube (CNT) and CNT-doped structures have a high surface area to incorporate the DOX molecules into a polymer and the presence of functional groups can influence the polymer-drug interactions. In this work, the interactions of DOX with both the polymeric complex and the nanotube structure have been investigated. For quantification of the interactions, H-bonding, gyration radius, root-mean-square deviation (RMSD), Gibbs free energy, radial distribution function (RDF), energy, and Solvent Accessible Surface Area (SASA) analyses have been performed. The most stable micelle-DOX interaction is attributed to the presence of BCN in the microfluidic system according to the gyration radius and RMSD. Meanwhile, for DOX-doped CNT interaction the phosphorus-doped CNT in the microfluidic system is more stable. The highest electrostatic interaction can be seen between polymeric micelles and DOX in the presence of BCN. For nanotube-drug interaction, phosphorus-doped carbon nanotubes in the microfluidic system have the largest electrostatic interaction with the DOX. RDF results show that in the microfluidic system, nanotube-DOX affinity is larger than that of nanotube-micelle.
Collapse
Affiliation(s)
- Somayeh Sohrabi
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Mohammad Khedri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| | - Reza Maleki
- Computational Biology and Chemistry Group (CBCG), Universal Scientific Education and Research Network (USERN) Tehran Iran
| | - Mostafa Keshavarz Moraveji
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic) 424 Hafez Avenue Tehran 1591634311 Iran
| |
Collapse
|