1
|
Liang W, Zhou C, Jin S, Fu L, Zhang H, Huang X, Long H, Ming W, Zhao J. An update on the advances in the field of nanostructured drug delivery systems for a variety of orthopedic applications. Drug Deliv 2023; 30:2241667. [PMID: 38037335 PMCID: PMC10987052 DOI: 10.1080/10717544.2023.2241667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/09/2023] [Indexed: 12/02/2023] Open
Abstract
Nanotechnology has made significant progress in various fields, including medicine, in recent times. The application of nanotechnology in drug delivery has sparked a lot of research interest, especially due to its potential to revolutionize the field. Researchers have been working on developing nanomaterials with distinctive characteristics that can be utilized in the improvement of drug delivery systems (DDS) for the local, targeted, and sustained release of drugs. This approach has shown great potential in managing diseases more effectively with reduced toxicity. In the medical field of orthopedics, the use of nanotechnology is also being explored, and there is extensive research being conducted to determine its potential benefits in treatment, diagnostics, and research. Specifically, nanophase drug delivery is a promising technique that has demonstrated the capability of delivering medications on a nanoscale for various orthopedic applications. In this article, we will explore current advancements in the area of nanostructured DDS for orthopedic use.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Songtao Jin
- Department of Orthopedics, Shaoxing People’s Hospital, Shaoxing, China
| | - Lifeng Fu
- Department of Orthopedics, Shaoxing City Keqiao District Hospital of traditional Chinese Medicine, Shaoxing, China
| | - Hengjian Zhang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Xiaogang Huang
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Wenyi Ming
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
2
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
3
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Broad-Spectrum Theranostics and Biomedical Application of Functionalized Nanomaterials. Polymers (Basel) 2022; 14:polym14061221. [PMID: 35335551 PMCID: PMC8956086 DOI: 10.3390/polym14061221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is an important branch of science in therapies known as “nanomedicine” and is the junction of various fields such as material science, chemistry, biology, physics, and optics. Nanomaterials are in the range between 1 and 100 nm in size and provide a large surface area to volume ratio; thus, they can be used for various diseases, including cardiovascular diseases, cancer, bacterial infections, and diabetes. Nanoparticles play a crucial role in therapy as they can enhance the accumulation and release of pharmacological agents, improve targeted delivery and ultimately decrease the intensity of drug side effects. In this review, we discussthe types of nanomaterials that have various biomedical applications. Biomolecules that are often conjugated with nanoparticles are proteins, peptides, DNA, and lipids, which can enhance biocompatibility, stability, and solubility. In this review, we focus on bioconjugation and nanoparticles and also discuss different types of nanoparticles including micelles, liposomes, carbon nanotubes, nanospheres, dendrimers, quantum dots, and metallic nanoparticles and their crucial role in various diseases and clinical applications. Additionally, we review the use of nanomaterials for bio-imaging, drug delivery, biosensing tissue engineering, medical devices, and immunoassays. Understandingthe characteristics and properties of nanoparticles and their interactions with the biological system can help us to develop novel strategies for the treatment, prevention, and diagnosis of many diseases including cancer, pulmonary diseases, etc. In this present review, the importance of various kinds of nanoparticles and their biomedical applications are discussed in much detail.
Collapse
|
5
|
Bacakova L, Novotna K, Hadraba D, Musilkova J, Slepicka P, Beran M. Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation. Polymers (Basel) 2022; 14:polym14030602. [PMID: 35160591 PMCID: PMC8838484 DOI: 10.3390/polym14030602] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 12/21/2022] Open
Abstract
Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113–357 μm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds.
Collapse
Affiliation(s)
- Lucie Bacakova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
- Correspondence: ; Tel.: +420-2-9644-3743
| | - Katarina Novotna
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Daniel Hadraba
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Jana Musilkova
- Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (K.N.); (D.H.); (J.M.)
| | - Petr Slepicka
- Department of Solid State Engineering, Faculty of Chemical Technology, University of Chemistry and Technology, Technicka 5, 166 28 Prague 6, Czech Republic;
| | - Milos Beran
- Food Research Institute Prague, Radiova 7, 102 31 Prague 10, Czech Republic;
| |
Collapse
|
6
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
7
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
8
|
Electrospun Nanofibers/Nanofibrous Scaffolds Loaded with Silver Nanoparticles as Effective Antibacterial Wound Dressing Materials. Pharmaceutics 2021; 13:pharmaceutics13070964. [PMID: 34206857 PMCID: PMC8308981 DOI: 10.3390/pharmaceutics13070964] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 01/21/2023] Open
Abstract
The treatment of wounds is expensive and challenging. Most of the available wound dressings are not effective and suffer from limitations such as poor antimicrobial activity, toxicity, inability to provide suitable moisture to the wound and poor mechanical performance. The use of inappropriate wound dressings can result in a delayed wound healing process. Nanosize range scaffolds have triggered great attention because of their attractive properties, which include their capability to deliver bioactive agents, high surface area, improved mechanical properties, mimic the extracellular matrix (ECM), and high porosity. Nanofibrous materials can be further encapsulated/loaded with metal-based nanoparticles to enhance their therapeutic outcomes in wound healing applications. The widely studied metal-based nanoparticles, silver nanoparticles exhibit good properties such as outstanding antibacterial activity, display antioxidant, and anti-inflammatory properties, support cell growth, making it an essential bioactive agent in wound dressings. This review article reports the biological (in vivo and in vitro) and mechanical outcomes of nanofibrous scaffolds loaded with silver nanoparticles on wound healing.
Collapse
|
9
|
Nanotechnology-based drug delivery systems in orthopedics. Jt Dis Relat Surg 2021; 32:267-273. [PMID: 33463450 PMCID: PMC8073448 DOI: 10.5606/ehc.2021.80360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/03/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, nanotechnology has led to significant scientific and technological advances in diverse fields, specifically within the field of medicine. Owing to the revolutionary implications in drug delivery, nanotechnology-based drug delivery systems have gained an increasing research interest in the current medical field. A variety of nanomaterials with unique physical, chemical and biological properties have been engineered to develop new drug delivery systems for the local, sustained and targeted delivery of drugs with improved therapeutic efficiency and less or no toxicity, representing a very promising approach for the effective management of diseases. The utility of nanotechnology, particularly in the field of orthopedics, is a topic of extensive research. Nanotechnology has a great potential to revolutionize treatment, diagnostics, and research in the field of orthopedics. Nanophase drug delivery has shown great promise in their ability to deliver drugs at nanoscale for a variety of orthopedic applications. In this review, we discuss recent advances in the field of nanostructured drug delivery systems for orthopedic applications.
Collapse
|
10
|
Lopez de Armentia S, del Real JC, Paz E, Dunne N. Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration. MATERIALS 2020; 13:ma13225083. [PMID: 33187218 PMCID: PMC7697295 DOI: 10.3390/ma13225083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 01/09/2023]
Abstract
Bone possesses an inherent capacity to fix itself. However, when a defect larger than a critical size appears, external solutions must be applied. Traditionally, an autograft has been the most used solution in these situations. However, it presents some issues such as donor-site morbidity. In this context, porous biodegradable scaffolds have emerged as an interesting solution. They act as external support for cell growth and degrade when the defect is repaired. For an adequate performance, these scaffolds must meet specific requirements: biocompatibility, interconnected porosity, mechanical properties and biodegradability. To obtain the required porosity, many methods have conventionally been used (e.g., electrospinning, freeze-drying and salt-leaching). However, from the development of additive manufacturing methods a promising solution for this application has been proposed since such methods allow the complete customisation and control of scaffold geometry and porosity. Furthermore, carbon-based nanomaterials present the potential to impart osteoconductivity and antimicrobial properties and reinforce the matrix from a mechanical perspective. These properties make them ideal for use as nanomaterials to improve the properties and performance of scaffolds for bone tissue engineering. This work explores the potential research opportunities and challenges of 3D printed biodegradable composite-based scaffolds containing carbon-based nanomaterials for bone tissue engineering applications.
Collapse
Affiliation(s)
- Sara Lopez de Armentia
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
| | - Juan Carlos del Real
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
| | - Eva Paz
- Institute for Research in Technology/Mechanical Engineering Dept., Universidad Pontificia Comillas, Alberto Aguilera 25, 28015 Madrid, Spain; (S.L.d.A.); (J.C.d.R.)
- Correspondence: (E.P.); (N.D.)
| | - Nicholas Dunne
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- School of Pharmacy, Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Correspondence: (E.P.); (N.D.)
| |
Collapse
|
11
|
Phan NV, Wright T, Rahman MM, Xu J, Coburn JM. In Vitro Biocompatibility of Decellularized Cultured Plant Cell-Derived Matrices. ACS Biomater Sci Eng 2020; 6:822-832. [PMID: 33464854 DOI: 10.1021/acsbiomaterials.9b00870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There has been a recent increase in exploring the use of decellularized plant tissue as a novel "green" material for biomedical applications. As part of this effort, we have developed a technique to decellularize cultured plant cells (tobacco BY-2 cells and rice cells) and tissue (tobacco hairy roots) that uses deoxyribonuclease I (DNase I)). As a proof of concept, all cultured plant cells and tissue were transformed to express recombinant enhanced green fluorescent protein (EGFP) to show that the proteins of interest could be retained within the matrices. Decellularization of lyophilized tobacco BY-2 cells with DNase for 30 min depleted the DNA content from 1503 ± 459 to 31 ± 5 ng/sample. The decellularization procedure resulted in approximately 36% total protein retention (154 ± 60 vs 424 ± 70 μg/sample) and 33% EGFP retention. Similar results for DNA removal and protein retention were observed with the rice cells and tobacco hairy root matrices. When exposed to decellularized BY-2 cell-derived matrices, monolayer cultures of human foreskin fibroblasts (hFFs) maintained or increased metabolic activity, which is an indicator of cell viability. Furthermore, hFFs were able to attach, spread, and proliferate when cultured with the decellularized BY-2 cell-derived matrices in an aggregate model. Overall, these studies demonstrate that cultured plant cells and tissue can be effectively decellularized with DNase I with substantial protein retention. The resulting material has a positive impact on hFF metabolic activity and could be employed to create a three-dimensional environment for cell growth. These results thus show the promise of using naturally derived cellulose matrices from cultured plant cells and tissues for biomedical applications.
Collapse
Affiliation(s)
- Nhi V Phan
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Tristen Wright
- Department of Biological Science, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - M Masrur Rahman
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas 72401, United States.,College of Agriculture, Arkansas State University, Jonesboro, Arkansas 72401, United States
| | - Jeannine M Coburn
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609-2280, United States
| |
Collapse
|
12
|
Accelerated Osteogenic Differentiation of MC3T3-E1 Cells by Lactoferrin-Conjugated Nanodiamonds through Enhanced Anti-Oxidant and Anti-Inflammatory Effects. NANOMATERIALS 2019; 10:nano10010050. [PMID: 31878270 PMCID: PMC7022293 DOI: 10.3390/nano10010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/16/2023]
Abstract
The purpose of this study was to investigate the effects of lactoferrin (LF)-conjugated nanodiamonds (NDs) in vitro on both anti-oxidant and anti-inflammation activity as well as osteogenic promotion. The application of LF-NDs resulted in sustained release of LF for up to 7 days. In vitro anti-oxidant analyses performed using Dichlorofluorescin diacetate (DCF-DA) assay and cell proliferation studies showed that LF (50 μg)-NDs effectively scavenged the reactive oxygen species (ROS) in MC3T3-E1 cells (osteoblast-like cells) after H2O2 treatment and increased proliferation of cells after H2O2 treatment. Treatment of lipopolysaccharide (LPS)-induced MC3T3-E1 cells with LF-NDs suppressed levels of pro-inflammatory cytokines, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). In addition, LF-NDs were associated with outstanding enhancement of osteogenic activity of MC3T3-E1 cells due to increased alkaline phosphatase (ALP) and calcium deposition. Our findings suggest that LF-NDs are an important substrate for alleviating ROS effects and inflammation, as well as promoting osteogenic differentiation of cells.
Collapse
|
13
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
14
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
Pajorova J, Bacakova M, Musilkova J, Broz A, Hadraba D, Lopot F, Bacakova L. Morphology of a fibrin nanocoating influences dermal fibroblast behavior. Int J Nanomedicine 2018; 13:3367-3380. [PMID: 29922057 PMCID: PMC5997127 DOI: 10.2147/ijn.s162644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Our study focuses on the fabrication of appropriate scaffolds for skin wound healing. This research brings valuable insights into the molecular mechanisms of adhesion, proliferation, and control of cell behavior through the extracellular matrix represented by synthetic biodegradable nanofibrous membranes coated by biomolecules. METHODS Nanofibrous polylactic acid (PLA) membranes were prepared by a needle-less electrospinning technology. These membranes were coated with fibrin according to two preparation protocols, and additionally they were coated with fibronectin in order to increase the cell affinity for colonizing the PLA membranes. The adhesion, growth, and extracellular matrix protein production of neonatal human dermal fibroblasts were evaluated on the nanofibrous membranes. RESULTS Our results showed that fibrin-coated membranes improved the adhesion and proliferation of human dermal fibroblasts. The morphology of the fibrin nanocoating seems to be crucial for the adhesion of fibroblasts, and consequently for their phenotypic maturation. Fibrin either covered the individual fibers in the membrane (F1 nanocoating), or covered the individual fibers and also formed a fine homogeneous nanofibrous mesh on the surface of the membrane (F2 nanocoating), depending on the mode of fibrin preparation. The fibroblasts on the membranes with the F1 nanocoating remained in their typical spindle-like shape. However, the cells on the F2 nanocoating were spread mostly in a polygon-like shape, and their proliferation was significantly higher. Fibronectin formed an additional mesh attached to the surface of the fibrin mesh, and further enhanced the cell adhesion and growth. The relative gene expression and protein production of collagen I and fibronectin were higher on the F2 nanocoating than on the F1 nanocoating. CONCLUSION A PLA membrane coated with a homogeneous fibrin mesh seems to be promising for the construction of temporary full-thickness skin tissue substitutes.
Collapse
Affiliation(s)
- Julia Pajorova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Marketa Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Musilkova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Antonin Broz
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel Hadraba
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Frantisek Lopot
- Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| | - Lucie Bacakova
- Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
16
|
Nistor PA, May PW. Diamond thin films: giving biomedical applications a new shine. J R Soc Interface 2017; 14:20170382. [PMID: 28931637 PMCID: PMC5636274 DOI: 10.1098/rsif.2017.0382] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/29/2017] [Indexed: 01/10/2023] Open
Abstract
Progress made in the last two decades in chemical vapour deposition technology has enabled the production of inexpensive, high-quality coatings made from diamond to become a scientific and commercial reality. Two properties of diamond make it a highly desirable candidate material for biomedical applications: first, it is bioinert, meaning that there is minimal immune response when diamond is implanted into the body, and second, its electrical conductivity can be altered in a controlled manner, from insulating to near-metallic. In vitro, diamond can be used as a substrate upon which a range of biological cells can be cultured. In vivo, diamond thin films have been proposed as coatings for implants and prostheses. Here, we review a large body of data regarding the use of diamond substrates for in vitro cell culture. We also detail more recent work exploring diamond-coated implants with the main targets being bone and neural tissue. We conclude that diamond emerges as one of the major new biomaterials of the twenty-first century that could shape the way medical treatment will be performed, especially when invasive procedures are required.
Collapse
Affiliation(s)
- P A Nistor
- Regenerative Medicine Laboratory, University of Bristol, Bristol BS8 1TD, UK
| | - P W May
- School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
17
|
Wu Z, Li Q, Pan Y, Yao Y, Tang S, Su J, Shin JW, Wei J, Zhao J. Nanoporosity improved water absorption, in vitro degradability, mineralization, osteoblast responses and drug release of poly(butylene succinate)-based composite scaffolds containing nanoporous magnesium silicate compared with magnesium silicate. Int J Nanomedicine 2017; 12:3637-3651. [PMID: 28553104 PMCID: PMC5439988 DOI: 10.2147/ijn.s132778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bioactive composite macroporous scaffold containing nanoporosity was prepared by incorporation of nanoporous magnesium silicate (NMS) into poly(butylene succinate) (PBSu) using solvent casting-particulate leaching method. The results showed that the water absorption and in vitro degradability of NMS/PBSu composite (NMPC) scaffold significantly improved compared with magnesium silicate (MS)/PBSu composite (MPC) scaffold. In addition, the NMPC scaffold showed improved apatite mineralization ability, indicating better bioactivity, as the NMPC containing nanoporosity could induce more apatite and homogeneous apatite layer on the surfaces than MPC scaffold. The attachment and proliferation of MC3T3-E1 cells on NMPC scaffold increased significantly compared with MPC scaffold, and the alkaline phosphatase (ALP) activity of the cells on NMPC scaffold was expressed at considerably higher levels compared with MPC scaffold. Moreover, NMPC scaffold with nanoporosity not only had large drug loading (vancomycin) but also exhibited drug sustained release. The results suggested that the incorporation of NMS into PBSu could produce bioactive composite scaffold with nanoporosity, which could enhance water absorption, degradability, apatite mineralization and drug sustained release and promote cell responses.
Collapse
Affiliation(s)
- Zhaoying Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Quan Li
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Yongkang Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Yuan Yao
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Songchao Tang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Jiacan Su
- Department of Orthopaedics Trauma, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Gimhae, Republic of Korea
| | - Jie Wei
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology
| | - Jun Zhao
- Department of Orthodontics
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Scaffaro R, Maio A, Lopresti F, Botta L. Nanocarbons in Electrospun Polymeric Nanomats for Tissue Engineering: A Review. Polymers (Basel) 2017; 9:E76. [PMID: 30970753 PMCID: PMC6432463 DOI: 10.3390/polym9020076] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/17/2017] [Indexed: 01/01/2023] Open
Abstract
Electrospinning is a versatile process technology, exploited for the production of fibers with varying diameters, ranging from nano- to micro-scale, particularly useful for a wide range of applications. Among these, tissue engineering is particularly relevant to this technology since electrospun fibers offer topological structure features similar to the native extracellular matrix, thus providing an excellent environment for the growth of cells and tissues. Recently, nanocarbons have been emerging as promising fillers for biopolymeric nanofibrous scaffolds. In fact, they offer interesting physicochemical properties due to their small size, large surface area, high electrical conductivity and ability to interface/interact with the cells/tissues. Nevertheless, their biocompatibility is currently under debate and strictly correlated to their surface characteristics, in terms of chemical composition, hydrophilicity and roughness. Among the several nanofibrous scaffolds prepared by electrospinning, biopolymer/nanocarbons systems exhibit huge potential applications, since they combine the features of the matrix with those determined by the nanocarbons, such as conductivity and improved bioactivity. Furthermore, combining nanocarbons and electrospinning allows designing structures with engineered patterns at both nano- and microscale level. This article presents a comprehensive review of various types of electrospun polymer-nanocarbon currently used for tissue engineering applications. Furthermore, the differences among graphene, carbon nanotubes, nanodiamonds and fullerenes and their effect on the ultimate properties of the polymer-based nanofibrous scaffolds is elucidated and critically reviewed.
Collapse
Affiliation(s)
- Roberto Scaffaro
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Andrea Maio
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Francesco Lopresti
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| | - Luigi Botta
- Department of Civil, Environmental, Aerospace, Materials Engineering, RU INSTM, University of Palermo, Viale delle Scienze, Ed. 6, 90128 Palermo, Italy.
| |
Collapse
|
19
|
Kaplan O, Zárubová J, Mikulová B, Filová E, Bártová J, Bačáková L, Brynda E. Enhanced Mitogenic Activity of Recombinant Human Vascular Endothelial Growth Factor VEGF121 Expressed in E. coli Origami B (DE3) with Molecular Chaperones. PLoS One 2016; 11:e0163697. [PMID: 27716773 PMCID: PMC5055331 DOI: 10.1371/journal.pone.0163697] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022] Open
Abstract
We describe the production of a highly-active mutant VEGF variant, α2-PI1-8-VEGF121, which contains a substrate sequence for factor XIIIa at the aminoterminus designed for incorporation into a fibrin gel. The α2-PI1-8-VEGF121 gene was synthesized, cloned into a pET-32a(+) vector and expressed in Escherichia coli Origami B (DE3) host cells. To increase the protein folding and the solubility, the resulting thioredoxin-α2-PI1-8-VEGF121 fusion protein was co-expressed with recombinant molecular chaperones GroES/EL encoded by independent plasmid pGro7. The fusion protein was purified from the soluble fraction of cytoplasmic proteins using affinity chromatography. After cleavage of the thioredoxin fusion part with thrombin, the target protein was purified by a second round of affinity chromatography. The yield of purified α2-PI1-8-VEGF121 was 1.4 mg per liter of the cell culture. The α2-PI1-8-VEGF121 expressed in this work increased the proliferation of endothelial cells 3.9-8.7 times in comparison with commercially-available recombinant VEGF121. This very high mitogenic activity may be caused by co-expression of the growth factor with molecular chaperones not previously used in VEGF production. At the same time, α2-PI1-8-VEGF121 did not elicit considerable inflammatory activation of human endothelial HUVEC cells and human monocyte-like THP-1 cells.
Collapse
Affiliation(s)
- Ondřej Kaplan
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, CZ-162 06, Prague, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
- * E-mail:
| | - Jana Zárubová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Barbora Mikulová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, CZ-128 40, Prague, Czech Republic
| | - Elena Filová
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Jiřina Bártová
- School of Dental Medicine, General University Hospital in Prague, CZ-128 08, Prague, Czech Republic
| | - Lucie Bačáková
- Institute of Physiology, Czech Academy of Sciences, CZ-142 20, Prague, Czech Republic
| | - Eduard Brynda
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, CZ-162 06, Prague, Czech Republic
| |
Collapse
|
20
|
Vandrovcova M, Jirka I, Novotna K, Lisa V, Frank O, Kolska Z, Stary V, Bacakova L. Interaction of human osteoblast-like Saos-2 and MG-63 cells with thermally oxidized surfaces of a titanium-niobium alloy. PLoS One 2014; 9:e100475. [PMID: 24977704 PMCID: PMC4076233 DOI: 10.1371/journal.pone.0100475] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/26/2014] [Indexed: 11/19/2022] Open
Abstract
An investigation was made of the adhesion, growth and differentiation of osteoblast-like MG-63 and Saos-2 cells on titanium (Ti) and niobium (Nb) supports and on TiNb alloy with surfaces oxidized at 165°C under hydrothermal conditions and at 600°C in a stream of air. The oxidation mode and the chemical composition of the samples tuned the morphology, topography and distribution of the charge on their surfaces, which enabled us to evaluate the importance of these material characteristics in the interaction of the cells with the sample surface. Numbers of adhered MG-63 and Saos-2 cells correlated with the number of positively-charged (related with the Nb2O5 phase) and negatively-charged sites (related with the TiO2 phase) on the alloy surface. Proliferation of these cells is correlated with the presence of positively-charged (i.e. basic) sites of the Nb2O5 alloy phase, while cell differentiation is correlated with negatively-charged (acidic) sites of the TiO2 alloy phase. The number of charged sites and adhered cells was substantially higher on the alloy sample oxidized at 600°C than on the hydrothermally treated sample at 165°C. The expression values of osteoblast differentiation markers (collagen type I and osteocalcin) were higher for cells grown on the Ti samples than for those grown on the TiNb samples. This was more particularly apparent in the samples treated at 165°C. No considerable immune activation of murine macrophage-like RAW 264.7 cells on the tested samples was found. The secretion of TNF-α by these cells into the cell culture media was much lower than for either cells grown in the presence of bacterial lipopolysaccharide, or untreated control samples. Thus, oxidized Ti and TiNb are both promising materials for bone implantation; TiNb for applications where bone cell proliferation is desirable, and Ti for induction of osteogenic cell differentiation.
Collapse
Affiliation(s)
- Marta Vandrovcova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Ivan Jirka
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Katarina Novotna
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Vera Lisa
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Otakar Frank
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Zdenka Kolska
- Faculty of Science, J.E. Purkinje University, Usti nad Labem, Czech Republic
| | - Vladimir Stary
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Lucie Bacakova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
21
|
Wang Y, Guo G, Chen H, Gao X, Fan R, Zhang D, Zhou L. Preparation and characterization of polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) hybrid fibers for potential application in bone tissue engineering. Int J Nanomedicine 2014; 9:1991-2003. [PMID: 24790439 PMCID: PMC4000186 DOI: 10.2147/ijn.s55318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to develop a kind of osteogenic biodegradable composite graft consisting of human placenta-derived mesenchymal stem cell (hPMSC) material for site-specific repair of bone defects and attenuation of clinical symptoms. The novel nano- to micro-structured biodegradable hybrid fibers were prepared by electrospinning. The characteristics of the hybrid membranes were investigated by a range of methods, including Fourier transform infrared spectroscopy, X-ray diffraction, and differential scanning calorimetry. Morphological study with scanning electron microscopy showed that the average fiber diameter and the number of nanoscale pores on each individual fiber surface decreased with increasing concentration of poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC). The prepared polylactide (PLA)/PCEC fibrous membranes favored hPMSC attachment and proliferation by providing an interconnected, porous, three-dimensional mimicked extracellular environment. What is more, hPMSCs cultured on the electrospun hybrid PLA/PCEC fibrous scaffolds could be effectively differentiated into bone-associated cells by positive alizarin red staining. Given the good cellular response and excellent osteogenic potential in vitro, the electrospun PLA/PCEC fibrous scaffolds could be one of the most promising candidates for bone tissue engineering.
Collapse
Affiliation(s)
- YueLong Wang
- State Key Laboratory of Biotherapy and Cancer Center, Chengdu, People's Republic of China ; Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, Chengdu, People's Republic of China
| | - HaiFeng Chen
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Gao
- State Key Laboratory of Biotherapy and Cancer Center, Chengdu, People's Republic of China
| | - RangRang Fan
- State Key Laboratory of Biotherapy and Cancer Center, Chengdu, People's Republic of China
| | - DongMei Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Chengdu, People's Republic of China
| | - LiangXue Zhou
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
22
|
Abstract
Starch-based nanocomposite films were fabricated by the incorporation of different amounts of nanodiamond (ND) particles. These films were characterized by SEM, FT-IR, TGA, tensile testing and water vapor permeability measurement. It was observed that at low loadings, ND dispersed well in starch matrix. However, as the loading amount increased, aggregates as large as several micrometers appeared. The physical blending of ND with starch didnt change the thermal degradation mechanisms of starch films, only increased the char residues. As the ND loading increased, the tensile strength of composite films increased but the elongation at break decreased. However, the water vapor permeability increased as the loading of ND increased due to the increased microspores in films. With further modifications, ND may be considered as a novel of biocompatible nanofillers for reinforcement of biopolymers for food packaging applications.
Collapse
|
23
|
Félix Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:380-90. [PMID: 23350707 PMCID: PMC3690090 DOI: 10.1089/ten.teb.2012.0443] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements.
Collapse
Affiliation(s)
- Rosa P. Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anika M. Jonker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joop G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
24
|
Rajangam T, An SSA. Improved fibronectin-immobilized fibrinogen microthreads for the attachment and proliferation of fibroblasts. Int J Nanomedicine 2013; 8:1037-49. [PMID: 23515334 PMCID: PMC3598501 DOI: 10.2147/ijn.s37784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to fabricate fibrinogen (Fbg) microfibers with different structural characteristics for the development of 3-D tissue-engineering scaffolds. Fabricated Fbg microfibers were investigated for their biomolecule encapsulation, cell adhesion, and proliferations. Microfibers with three different concentrations of Fbg (5, 10, and 15 wt%) were prepared by a gel solvent-extraction method using a silicone rubber tube. Fbg microfibers were covalently modified with fibronectin (FN) by using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide as the cross-linking agent. Fbg microfibers were characterized by their FN cross-linking properties, structural morphology, and in vitro degradation. Furthermore, FN/Fbg microfibers were evaluated for cell attachment and proliferation. The bio-compatibility and cell proliferation of the microfibers were assessed by measuring adenosine triphosphate activity in C2C12 fibroblast cells. Cell attachment and proliferation on microfibers were further examined using fluorescence and scanning electron microscopic images. FN loading on the microfibers was confirmed by fluorescence and infrared spectroscopy. Surface morphology was characterized by scanning electron microscopy, and showed highly aligned nanostructures for fibers made with 15 wt% Fbg, a more porous structure for fibers made with 10 wt% Fbg, and a less porous structure for those made with 5 wt% Fbg. Controlled biodegradation of the fiber was observed for 8 weeks by using an in vitro proteolytic degradation assay. Fbg microfibers with highly aligned nanostructures (15 wt%) showed enhanced biomolecule encapsulation, as well as higher cell adhesion and proliferation than another two types of FN/Fbg fibers (5 and 10 wt%) and unmodified Fbg fibers. The promising results obtained from the present study reveal that optimal structure of Fbg microfibers could be used as a potential substratum for growth factors or drug release, especially in wound healing and vascular tissue engineering, in which fibers could be applied to promote and orient cell adhesion and proliferation.
Collapse
Affiliation(s)
- Thanavel Rajangam
- Department of Bionanotechnology, Gachon University, Seongnam, South Korea
| | | |
Collapse
|