1
|
Liao R, Sun ZC, Wang L, Xian C, Lin R, Zhuo G, Wang H, Fang Y, Liu Y, Yang R, Wu J, Zhang Z. Inhalable and bioactive lipid-nanomedicine based on bergapten for targeted acute lung injury therapy via orchestrating macrophage polarization. Bioact Mater 2025; 43:406-422. [PMID: 39411684 PMCID: PMC11474395 DOI: 10.1016/j.bioactmat.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Acute lung injury (ALI) or its more severe form, acute respiratory distress syndrome, is a life-threatening disease closely associated with an imbalance of M1/M2 macrophage polarization. However, current therapeutic strategies for ALI are controversial due to their side effects, restricted administration routes, or poor targeted delivery. The development of herbal medicine has uncovered numerous anti-inflammatory compounds potentially beneficial for ALI therapy. One such compound is the bergapten, a coumarin, which has been isolated from Ficus simplicissima Lour. However, it's been used as an anti-cancer drug and it's effects on ALI remain unexplored. The poor solubility and biodistribution of bergapten heavily limit its application. In this timely report, we developed a bioactive and lung-targeting lipid-nanomedicine by integrating bergapten and DPPC liposome, named as Ber-lipo. A comprehensive series of in vitro experiments confirmed the anti-inflammatory effects of Ber-lipo and its protective roles in maintaining the homeostasis of macrophage polarization and epithelial-endothelial integrity. In a lipopolysaccharide (LPS)-induced ALI mouse model, Ber-lipo can target inflamed lungs and significantly improve lung edema, tissue injury, and pulmonary function, relieve body weight loss, pulmonary permeability, and proinflammatory status, and especially maintain a balance of M1/M2 macrophage polarization. Furthermore, RNA sequencing analysis showed Ber-lipo's potential in effectively treating inflammatory lung diseases such as pneumonia, inhibiting proinflammatory signals, and altering the transcriptome of M1/M2 macrophages-associated genes in lung tissues. Molecular docking and Western blot analyses validated that Ber-lipo suppressed the activation of the TLR4/MyD88/NF-κB signaling axis responsible for ALI progression. In conclusion, this study demonstrates for the first time that new inhalable nanomedicine (Ber-lipo) can target inflamed lungs and ameliorates ALI by reprogramming macrophage polarization to an anti-inflammatory state via inactivating the TLR4/MyD88/NF-κB pathway, hence providing a promising strategy for enhanced ALI therapy in the clinic.
Collapse
Affiliation(s)
- Ran Liao
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Zhi-Chao Sun
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Liying Wang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Caihong Xian
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Ran Lin
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Guifeng Zhuo
- Department of The First Clinical College of Medicine, Guangxi University of Chinese Medicine, Nanning, 530000, China
| | - Haiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Yifei Fang
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuntao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Rongyuan Yang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| | - Jun Wu
- Bioscience and Biomedical Engineering Thrust, Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, 511400, Guangdong, China
- Division of Life Science, The Hong Kong University of Science and Technology, 999077, Hong Kong SAR, China
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, 55 N, Neihuanxi Road, Guangzhou, 510006, Guangdong, China
| |
Collapse
|
2
|
Zhu X, Yuan F, Zeng X, Qiao D, Liu B, Tao R, Huang J, Wang J, Wang Q, Huang Y, Sun Y, Yang M, Gong Q, Liu T, Zhang G. Insect Cuticle Protein Nanoassemblies without Nonspecific Immune Response for Acute Methicillin-Resistant Staphylococcus aureus Pneumonia Remission. ACS APPLIED BIO MATERIALS 2024; 7:6398-6404. [PMID: 39324862 DOI: 10.1021/acsabm.4c01084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The emergence and proliferation of methicillin-resistant Staphylococcus aureus (MRSA) pneumonia poses a significant global public health threat. Herein, the significant remission effect against acute MRSA pneumonia was realized through the insect cuticle protein (OfCPH-2) nanoassemblies without nonspecific immune response. The lung repair results could be attributed to the transforming of M1-type to M2-type macrophage polarization and the repression of Th17 cell differentiation in mice spleens through the intervention of OfCPH-2 nanoassemblies. These findings offer a valuable insight into the application of insect protein-based materials as effective antidrug resistant strain agents as well as a powerful strategy for acute MRSA pneumonia.
Collapse
Affiliation(s)
- Xingzhuo Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fenghou Yuan
- MOE Key Laboratory of Bio-intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaoyan Zeng
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Deqian Qiao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Runyi Tao
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jiaqi Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Jizhao Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Qian Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ye Sun
- Department of Anesthesia and Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Mei Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Tian Liu
- MOE Key Laboratory of Bio-intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
- Key Laboratory of Enhanced Recovery After Surgery of Intergrated Chinese and Western Medicine, Administration of Traditional Chinese Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| |
Collapse
|
3
|
Li X, Chen RY, Shi JJ, Li CY, Liu YJ, Gao C, Gao MR, Zhang S, Lu JF, Cao JF, Yang GJ, Chen J. Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases. J Pharm Anal 2024; 14:100978. [PMID: 39315124 PMCID: PMC11417268 DOI: 10.1016/j.jpha.2024.100978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 09/25/2024] Open
Abstract
Jumonji domain-containing protein D3 (JMJD3) is a 2-oxoglutarate-dependent dioxygenase that specifically removes transcriptional repression marks di- and tri-methylated groups from lysine 27 on histone 3 (H3K27me2/3). The erasure of these marks leads to the activation of some associated genes, thereby influencing various biological processes, such as development, differentiation, and immune response. However, comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking. Here, we provide a comprehensive overview of JMJD3, including its structure, functions, and involvement in inflammatory pathways. In addition, we summarize the evidence supporting JMJD3's role in several inflammatory diseases, as well as the potential therapeutic applications of JMJD3 inhibitors. Additionally, we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Chang Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Ming-Rong Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, Zhejiang, 315211, China
- China Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jia-Feng Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang, 315211, China
| |
Collapse
|
4
|
Xu M, Zhang D, Yan J. Targeting ferroptosis using Chinese herbal compounds to treat respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155738. [PMID: 38824825 DOI: 10.1016/j.phymed.2024.155738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/14/2024] [Indexed: 06/04/2024]
Abstract
BACKGROUND Respiratory diseases pose a grave threat to human life. Therefore, understanding their pathogenesis and therapeutic strategy is important. Ferroptosis is a novel type of iron-dependent programmed cell death, distinct from apoptosis, necroptosis, and autophagy, characterised by iron, reactive oxygen species, and lipid peroxide accumulation, as well as glutathione (GSH) depletion and GSH peroxidase 4 (GPX4) inactivation. A close association between ferroptosis and the onset and progression of respiratory diseases, including chronic obstructive pulmonary disease, acute lung injury, bronchial asthma, pulmonary fibrosis, and lung cancer, has been reported. Recent studies have shown that traditional Chinese medicine (TCM) compounds exhibit unique advantages in the treatment of respiratory diseases owing to their natural properties and potential efficacy. These compounds can effectively regulate ferroptosis by modulating several key signalling pathways such as system Xc- -GSH-GPX4, NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1, thus playing a positive role in improving respiratory diseases. PURPOSE This comprehensive review systematically outlines the regulatory role of ferroptosis in the onset and progression of respiratory diseases and provides evidence for treating respiratory diseases by targeting ferroptosis with TCM compounds. These insights aim to offer potential remedies for the clinical prevention and treatment of respiratory diseases. STUDY DESIGN AND METHODS We searched scientific databases PubMed, Web of Science, Scopus, and CNKI using keywords such as "ferroptosis","respiratory diseases","chronic obstructive pulmonary disease","bronchial asthma","acute lung injury","pulmonary fibrosis","lung cancer","traditional Chinese medicine","traditional Chinese medicine compound","monomer", and "natural product" to retrieve studies on the therapeutic potential of TCM compounds in ameliorating respiratory diseases by targeting ferroptosis. The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS TCM compounds possess unique advantages in treating respiratory diseases, stemming from their natural origins and proven clinical effectiveness. TCM compounds can exert therapeutic effects on respiratory diseases by regulating ferroptosis, which mainly involves modulation of pathways such as system Xc- -GSH-GPX4,NCOA4-mediated ferritinophagy, Nrf2-GPX4, and Nrf2/HO-1. CONCLUSION TCM compounds have demonstrated promising potential in improving respiratory diseases through the regulation of ferroptosis. The identification of specific TCM-related inducers and inhibitors of ferroptosis holds great significance in developing more effective strategies. However, current research remains confined to animal and cellular studies, emphasizing the imperative for further verifications through high-quality clinical data.
Collapse
Affiliation(s)
- Mengjiao Xu
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Di Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yan
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
5
|
Zhang Y, Han H, Li D, Fan Y, Liu M, Ren H, Liu L. Botanical characterization, phytochemistry, biosynthesis, pharmacology clinical application, and breeding techniques of the Chinese herbal medicine Fritillaria unibracteata. Front Pharmacol 2024; 15:1428037. [PMID: 39135808 PMCID: PMC11317884 DOI: 10.3389/fphar.2024.1428037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/17/2024] [Indexed: 08/15/2024] Open
Abstract
Fritillaria unibracteata (FRU) belongs to the genus Fritillaria of the Liliaceae family. It is one of the original plants of the Chinese medicinal material "Chuanbeimu" and also a biological resource featured in the Tibetan Plateau of China. The dried bulbs of FRU are used in traditional Chinese medicine. The chemical constituents of FRU that have been isolated and identified include alkaloids, sterols, organic acids and their esters, nucleosides and volatile oils. FRU has antitussive, expectorant, anti-asthmatic, anti-inflammatory, antibacterial, acute lung injury-reducing, antifibrosis, antitumor, and other pharmacological effects. This valuable plant has an extremely high market demand, and over the years, due to over-exploitation, FRU has now been listed as a key species that is endangered and scarcely cultivated in China as a traditional Chinese medicinal herb. However, research on FRU is rare, and its effective components, resource control, and mechanisms of action need further study. This review systematically discusses the herbal characteristics, resource distribution, chemical composition, biosynthesis, pharmacological effects, clinical application, and breeding techniques of FRU, hoping to provide a reference for further research and the use of FRU.
Collapse
Affiliation(s)
- Yamei Zhang
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Hongping Han
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
- Academy of Plateau Science and Sustainability, People’s Government of Qinghai Province, Xining, China
| | - Dingai Li
- Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibetan Plateau in Qinghai Province, Xining, China
| | - Yanan Fan
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Meng Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Huimin Ren
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Lu Liu
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| |
Collapse
|
6
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
7
|
Kutumova EO, Akberdin IR, Egorova VS, Kolesova EP, Parodi A, Pokrovsky VS, Zamyatnin, Jr AA, Kolpakov FA. Physiologically based pharmacokinetic model for predicting the biodistribution of albumin nanoparticles after induction and recovery from acute lung injury. Heliyon 2024; 10:e30962. [PMID: 38803942 PMCID: PMC11128879 DOI: 10.1016/j.heliyon.2024.e30962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024] Open
Abstract
The application of nanomedicine in the treatment of acute lung injury (ALI) has great potential for the development of new therapeutic strategies. To gain insight into the kinetics of nanocarrier distribution upon time-dependent changes in tissue permeability after ALI induction in mice, we developed a physiologically based pharmacokinetic model for albumin nanoparticles (ANP). The model was calibrated using data from mice treated with intraperitoneal LPS (6 mg/kg), followed by intravenous ANP (0.5 mg/mouse or about 20.8 mg/kg) at 0.5, 6, and 24 h. The simulation results reproduced the experimental observations and indicated that the accumulation of ANP in the lungs increased, reaching a peak 6 h after LPS injury, whereas it decreased in the liver, kidney, and spleen. The model predicted that LPS caused an immediate (within the first 30 min) dramatic increase in lung and kidney tissue permeability, whereas splenic tissue permeability gradually increased over 24 h after LPS injection. This information can be used to design new therapies targeting specific organs affected by bacterial infections and potentially by other inflammatory insults.
Collapse
Affiliation(s)
- Elena O. Kutumova
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| | - Ilya R. Akberdin
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Vera S. Egorova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Ekaterina P. Kolesova
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Alessandro Parodi
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
| | - Vadim S. Pokrovsky
- N.N. Blokhin Medical Research Center of Oncology, 115522, Moscow, Russia
- Patrice Lumumba People's Friendship University, 117198, Moscow, Russia
| | - Andrey A. Zamyatnin, Jr
- Scientific Center for Translational Medicine, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Faculty of Bioengineering and Bioinformatics and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Fedor A. Kolpakov
- Department of Computational Biology, Sirius University of Science and Technology, 354340, Sirius, Krasnodar Region, Russia
- Laboratory of Bioinformatics, Federal Research Center for Information and Computational Technologies, 630090, Novosibirsk, Russia
- Biosoft.Ru, Ltd., 630058, Novosibirsk, Russia
| |
Collapse
|
8
|
Chen X, Tang Z. Novel application of nanomedicine for the treatment of acute lung injury: a literature review. Ther Adv Respir Dis 2024; 18:17534666241244974. [PMID: 38616385 PMCID: PMC11017818 DOI: 10.1177/17534666241244974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/18/2024] [Indexed: 04/16/2024] Open
Abstract
Nanoparticles have attracted extensive attention due to their high degree of cell targeting, biocompatibility, controllable biological activity, and outstanding pharmacokinetics. Changing the size, morphology, and surface chemical groups of nanoparticles can increase the biological distribution of agents to achieve precise tissue targeting and optimize therapeutic effects. Examples of their use include nanoparticles designed for increasing antigen-specific immune responses, developing vaccines, and treating inflammatory diseases. Nanoparticles show the potential to become a new generation of therapeutic agents for regulating inflammation. Recently, many nanomaterials with targeted properties have been developed to treat acute lung injury/acute respiratory distress syndrome (ALI/ARDS). In this review, we provide a brief explanation of the pathological mechanism underlying ALI/ARDS and a systematic overview of the latest technology and research progress in nanomedicine treatments of ALI, including improved nanocarriers, nanozymes, and nanovaccines for the targeted treatment of lung injury. Ultimately, these nanomedicines will be used for the clinical treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Xianfeng Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhanhong Tang
- Department of Intensive Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6 Shuangyong Road, Nanning 530021, China
| |
Collapse
|
9
|
Su Y, Huang T, Sun H, Lin R, Zheng X, Bian Q, Zhang J, Chen S, Wu H, Xu D, Zhang T, Gao J. High Targeting Specificity toward Pulmonary Inflammation Using Mesenchymal Stem Cell-Hybrid Nanovehicle for an Efficient Inflammation Intervention. Adv Healthc Mater 2023; 12:e2300376. [PMID: 37161587 DOI: 10.1002/adhm.202300376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/05/2023] [Indexed: 05/11/2023]
Abstract
Pulmonary inflammation is one of the most reported tissue inflammations in clinic. Successful suppression of inflammation is vital to prevent further inevitably fatal lung degeneration. Glucocorticoid hormone, such as methylprednisolone (MP), is the most applied strategy to control the inflammatory progression yet faces the challenge of systemic side effects caused by the requirement of large-dosage and frequent administration. Highly efficient delivery of MP specifically targeted to inflammatory lung sites may overcome this challenge. Therefore, the present study develops an inflammation-targeted biomimetic nanovehicle, which hybridizes the cell membrane of mesenchymal stem cell with liposome, named as MSCsome. This hybrid nanovehicle shows the ability of high targeting specificity toward inflamed lung cells, due to both the good lung endothelium penetration and the high uptake by inflamed lung cells. Consequently, a single-dose administration of this MP-loaded hybrid nanovehicle achieves a prominent treatment of lipopolysaccharide-induced lung inflammation, and negligible treatment-induced side effects are observed. The present study provides a powerful inflammation-targeted nanovehicle using biomimetic strategy to solve the current challenges of targeted inflammation intervention.
Collapse
Affiliation(s)
- Yuanqin Su
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Ting Huang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Sun
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xixi Zheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Qiong Bian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shihan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Donghang Xu
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321002, China
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Zhuang C, Kang M, Lee M. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. J Control Release 2023; 360:1-14. [PMID: 37330013 DOI: 10.1016/j.jconrel.2023.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/10/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Acute lung injury (ALI)/ acute respiratory distress syndrome (ARDS) is a devastating inflammatory lung disease with a high mortality rate. ALI/ARDS is induced by various causes, including sepsis, infections, thoracic trauma, and inhalation of toxic reagents. Corona virus infection disease-19 (COVID-19) is also a major cause of ALI/ARDS. ALI/ARDS is characterized by inflammatory injury and increased vascular permeability, resulting in lung edema and hypoxemia. Currently available treatments for ALI/ARDS are limited, but do include mechanical ventilation for gas exchange and treatments supportive of reduction of severe symptoms. Anti-inflammatory drugs such as corticosteroids have been suggested, but their clinical effects are controversial with possible side-effects. Therefore, novel treatment modalities have been developed for ALI/ARDS, including therapeutic nucleic acids. Two classes of therapeutic nucleic acids are in use. The first constitutes knock-in genes for encoding therapeutic proteins such as heme oxygenase-1 (HO-1) and adiponectin (APN) at the site of disease. The other is oligonucleotides such as small interfering RNAs and antisense oligonucleotides for knock-down expression of target genes. Carriers have been developed for efficient delivery for therapeutic nucleic acids into the lungs based on the characteristics of the nucleic acids, administration routes, and targeting cells. In this review, ALI/ARDS gene therapy is discussed mainly in terms of delivery systems. The pathophysiology of ALI/ARDS, therapeutic genes, and their delivery strategies are presented for development of ALI/ARDS gene therapy. The current progress suggests that selected and appropriate delivery systems of therapeutic nucleic acids into the lungs may be useful for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Chuanyu Zhuang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Wangsimni-ro 222, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
11
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
12
|
Ma Y, Xu H, Chen G, Liu W, Ma C, Meng J, Yuan L, Hua X, Ge G, Lei M. Uncovering the active constituents and mechanisms of Rujin Jiedu powder for ameliorating LPS-induced acute lung injury using network pharmacology and experimental investigations. Front Pharmacol 2023; 14:1186699. [PMID: 37251341 PMCID: PMC10210165 DOI: 10.3389/fphar.2023.1186699] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background: Acute lung injury (ALI) is a common clinical disease with high mortality. Rujin Jiedu powder (RJJD) has been clinically utilized for the treatment of ALI in China, but the active constituents in RJJD and its protective mechanisms against ALI are still unclear. Methodology: ALI mice were established by intraperitoneal injection of LPS to test the effectiveness of RJJD in treating ALI. Histopathologic analysis was used to assess the extent of lung injury. An MPO (myeloperoxidase) activity assay was used to evaluate neutrophil infiltration. Network pharmacology was used to explore the potential targets of RJJD against ALI. Immunohistochemistry and TUNEL staining were performed to detect apoptotic cells in lung tissues. RAW264.7 and BEAS-2B cells were used to explore the protective mechanisms of RJJD and its components on ALI in vitro. The inflammatory factors (TNF-α, IL-6, IL-1β and IL-18) in serum, BALF and cell supernatant were assayed using ELISA. Western blotting was performed to detect apoptosis-related markers in lung tissues and BEAS-2B cells. Results: RJJD ameliorated pathological injury and neutrophil infiltration in the lungs of ALI mice and decreased the levels of inflammatory factors in serum and BALF. Network pharmacology investigations suggested that RJJD treated ALI via regulating apoptotic signaling pathways, with AKT1 and CASP3 as crucial targets and PI3K-AKT signaling as the main pathway. Meanwhile, baicalein, daidzein, quercetin and luteolin were identified as key constituents in RJJD targeting on the above crucial targets. Experimental investigations showed that RJJD significantly upregulated the expression of p-PI3K, p-Akt and Bcl-2, downregulated the expression of Bax, caspase-3 and caspase-9 in ALI mice, and attenuated lung tissue apoptosis. Four active constituents in RJJD (baicalein, daidzein, quercetin and luteolin) inhibited the secretion of TNF-α and IL-6 in LPS-induced RAW264.7 cells. Among these components, daidzein and luteolin activated the PI3K-AKT pathway and downregulated the expression of apoptosis-related markers induced by LPS in BEAS-2B cells. Conclusion: RJJD alleviates the inflammatory storm and prevents apoptosis in the lungs of ALI mice. The mechanism of RJJD in treating ALI is related to the activation of PI3K-AKT signaling pathway. This study provides a scientific basis for the clinical application of RJJD.
Collapse
Affiliation(s)
- Yuhui Ma
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Gang Chen
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Department of Pharmacy, The SATCM Third Grade Laboratory of Traditional Chinese Medicine Preparations, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chao Ma
- Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialei Meng
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Yuan
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Hua
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ming Lei
- Department of Critical Care Medicine, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
13
|
He L, Shang M, Chen Z, Yang Z. Metal-Organic Frameworks Nanocarriers for Functional Nucleic Acid Delivery in Biomedical Applications. CHEM REC 2023:e202300018. [PMID: 36912736 DOI: 10.1002/tcr.202300018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Indexed: 03/14/2023]
Abstract
Metal-organic frameworks (MOFs), a distinctive funtionalmaterials which is constructed by various metal ions and organic molecules, have gradually attracted researchers' attention from they were founded. In the last decade, MOFs emerge as a biomedical material with potential applications due to their unique properties. However, the MOFs performed as nanocarriers for functional nucleic acid delivery in biomedical applications rarely summarized. In this review, we introduce recent developments of MOFs for nucleic acid delivery in various biologically relevant applications, with special emphasis on cancer therapy (including siRNA, ASO, DNAzyme, miRNA and CpG oligodeoxynucleotides), bioimaging, biosensors and separation of biomolecules. We expect the accomplishment of this review could benefit certain researchers in biomedical field to develop novel sophisticated nanocarriers for functional nucleic acid delivery based on the promising material of MOFs.
Collapse
Affiliation(s)
- Li He
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Mengdi Shang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhongkai Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
14
|
Albanawany NM, Samy DM, Zahran N, El-Moslemany RM, Elsawy SM, Abou Nazel MW. Histopathological, physiological and biochemical assessment of resveratrol nanocapsules efficacy in bleomycin-induced acute and chronic lung injury in rats. Drug Deliv 2022; 29:2592-2608. [PMID: 35945895 PMCID: PMC9373765 DOI: 10.1080/10717544.2022.2105445] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Acute lung injury (ALI) is a life-threatening illness which may progress to chronic pulmonary fibrosis (CPF). Resveratrol (RSV), a natural polyphenol, is known to exert several pharmacological effects on lung injury. However, its physicochemical properties and pharmacokinetic profile limit its clinical applications. In this study, RSV was loaded into lipid nanocapsules (LNCs) aiming to overcome these limitations. RSV-LNCs were prepared by phase inversion method and showed small uniform particle size (∼55 nm, PdI 0.04) with high entrapment efficiency >99%. The efficacy of RSV-LNCs in the prophylaxis against ALI and treatment of CPF was investigated in bleomycin-induced lung injury. For assessment of ALI, rats were administered a single oral dose of RSV (10 mg/kg) either free or as RSV-LNCs 4 h before bleomycin and euthanized 3 days later. For CPF, treatments in the same dose were given daily from days 10–20 after bleomycin and rats were euthanized on day-21. Results showed enhanced beneficial role for RSV-LNCs, compared to RSV, in the prevention of ALI as demonstrated by preservation of pulmonary microscopic and ultrastructural architecture and improvement of pulmonary functions. Analysis of BALF revealed reduction in oxidative stress markers, IL-6 level, leukocytosis and neutrophilia. iNOS and c-caspase 3 immunohistochemical expression and CD68+ cells immunofluorescence were inhibited. However, RSV-LNCs failed to show any improvement in oxidative stress, chronic inflammation, apoptosis and collagen deposition in CPF. In conclusion, RSV-LNCs are promising nanoplatforms for mitigating ALI detrimental effects. Future research investigating higher doses and longer durations of treatment is recommended to evaluate RSV-LNCs anti-fibrotic potential in CPF.
Collapse
Affiliation(s)
- Neama M Albanawany
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Doaa M Samy
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Zahran
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Shefaa Mf Elsawy
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha W Abou Nazel
- Department of Histology and Cell Biology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
15
|
Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A Review of Non-Invasive Drug Delivery through Respiratory Routes. Pharmaceutics 2022; 14:1974. [PMID: 36145722 PMCID: PMC9506287 DOI: 10.3390/pharmaceutics14091974] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
With rapid and non-invasive characteristics, the respiratory route of administration has drawn significant attention compared with the limitations of conventional routes. Respiratory delivery can bypass the physiological barrier to achieve local and systemic disease treatment. A scientometric analysis and review were used to analyze how respiratory delivery can contribute to local and systemic therapy. The literature data obtained from the Web of Science Core Collection database showed an increasing worldwide tendency toward respiratory delivery from 1998 to 2020. Keywords analysis suggested that nasal and pulmonary drug delivery are the leading research topics in respiratory delivery. Based on the results of scientometric analysis, the research hotspots mainly included therapy for central nervous systems (CNS) disorders (Parkinson's disease, Alzheimer's disease, depression, glioblastoma, and epilepsy), tracheal and bronchial or lung diseases (chronic obstructive pulmonary disease, asthma, acute lung injury or respiratory distress syndrome, lung cancer, and idiopathic pulmonary fibrosis), and systemic diseases (diabetes and COVID-19). The study of advanced preparations contained nano drug delivery systems of the respiratory route, drug delivery barriers investigation (blood-brain barrier, BBB), and chitosan-based biomaterials for respiratory delivery. These results provided researchers with future research directions related to respiratory delivery.
Collapse
Affiliation(s)
- Yong-Bo Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Lu Bai
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yan-Ming Zhou
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
16
|
Weng C, Li G, Zhang D, Duan Z, Chen K, Zhang J, Li T, Wang J. Nanoscale Porphyrin Metal-Organic Frameworks Deliver siRNA for Alleviating Early Pulmonary Fibrosis in Acute Lung Injury. Front Bioeng Biotechnol 2022; 10:939312. [PMID: 35923570 PMCID: PMC9339993 DOI: 10.3389/fbioe.2022.939312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Acute lung injury (ALI) has high mortality and still lacks novel and efficient therapies. Zinc finger E-box binding homeobox 1 and 2 (ZEB1/2) are highly expressed in the early stage of ALI and are positively correlated with the progression of pulmonary fibrosis. Herein, we developed a nanoscale Zr(IV)-based porphyrin metal-organic (ZPM) framework to deliver small interfering ZEB1/2 (siZEB1/2) to alleviate early pulmonary fibrosis during ALI. This pH-responsive nano-ZPM system could effectively protect siRNAs during lung delivery until after internalization and rapidly trigger siRNA release under the mildly acidic environment of the endo/lysosome (pH 4.0–6.5) for transfection and gene silencing. Furthermore, the in vivo studies confirmed that this nano-ZPM system could anchor in inflamed lungs. Moreover, the ZEB1/2 silencing led to increased E-cadherin and decreased α-SMA levels. Overall, the nano-ZPM system was an excellent non-viral vector system to deliver siRNAs to alleviate early pulmonary fibrosis during ALI.
Collapse
Affiliation(s)
- Changmei Weng
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guanhua Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongdong Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Kuijun Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jieyuan Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tao Li
- Center for Joint Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, Department of Preventive Medicine, Institute of Combined Injury, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| | - Jianmin Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Tao Li, ; Jianmin Wang,
| |
Collapse
|
17
|
Huang C, You Q, Xu J, Wu D, Chen H, Guo Y, Xu J, Hu M, Qian H. An mTOR siRNA-Loaded Spermidine/DNA Tetrahedron Nanoplatform with a Synergistic Anti-Inflammatory Effect on Acute Lung Injury. Adv Healthc Mater 2022; 11:e2200008. [PMID: 35167728 DOI: 10.1002/adhm.202200008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 12/17/2022]
Abstract
Acute lung injury (ALI) is characterized by severe inflammation and damage to the lung air-blood barrier, resulting in respiratory function damage and life-threatening outcomes. Macrophage polarization plays an essential role in the occurrence, development, and outcome of ALI. As drug carriers, self-assembled DNA nanostructures can potentially overcome the drawbacks and limitations of traditional anti-inflammatory agents owing to their nontoxicity, programmability, and excellent structural control at the nanoscale. A small interfering RNA (siRNA) and drug dual therapy nanoplatform are proposed and constructed here to combat ALI. The nanoplatform consists of a spermidine-assembled DNA tetrahedron and four mammalian target of rapamycin siRNAs. Spermidine serves as a mediator of drug delivery vehicle synthesis and a drug that alters macrophage polarization. Both spermidine and siRNA exert anti-inflammatory effects in vitro and in vivo by regulating the macrophage phenotype. More importantly, these factors exhibit a synergistic anti-inflammatory effect by promoting macrophage autophagy. For the first time, an anti-inflammatory dual therapy strategy that uses self-assembled DNA nanostructures as nontoxic, programmable delivery vehicles is proposed and demonstrated through this work. Future work on utilizing DNA nanostructures for the treatment of noncancerous diseases such as ALI is highly promising and desirable.
Collapse
Affiliation(s)
- Chaowang Huang
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Qianyi You
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Jing Xu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Di Wu
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Huaping Chen
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Yuhang Guo
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Jiancheng Xu
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Mingdong Hu
- Department of Geriatrics and Special Services Medicine Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| | - Hang Qian
- Institute of Respiratory Diseases Xinqiao Hospital Third Military Medical University Chongqing 400037 China
| |
Collapse
|
18
|
Liang J, Liu J, Tang Y, Peng Q, Zhang L, Ma X, Xu N, Wei J, Han H. Sophoridine inhibits endotoxin‐induced acute lung injury by enhancing autophagy of macrophage and reducing inflammation. J Leukoc Biol 2022; 112:115-125. [PMID: 35603481 DOI: 10.1002/jlb.3ma0322-428r] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/06/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jinping Liang
- Infectious disease department,HuaShan Hospital FuDan University Shanghai China
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
- Key Laboratory of Clinical Pathogenic Biology General Hospital of Ningxia Medical University Yinchuan China
| | - Juntong Liu
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Yezhen Tang
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Qian Peng
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Ling Zhang
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Xiaoxia Ma
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Nan Xu
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| | - Jun Wei
- Key Laboratory of Clinical Pathogenic Biology General Hospital of Ningxia Medical University Yinchuan China
| | - Huaiqin Han
- Department of Pathogen Biology and Immunology,School of Basic Medical Sciences Ningxia Medical University Yinchuan750004 China
| |
Collapse
|
19
|
Hippo signaling pathway and respiratory diseases. Cell Death Dis 2022; 8:213. [PMID: 35443749 PMCID: PMC9021242 DOI: 10.1038/s41420-022-01020-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022]
Abstract
The hippo signaling pathway is a highly conserved evolutionary signaling pathway that plays an important role in regulating cell proliferation, organ size, tissue development, and regeneration. Increasing evidences consider that the hippo signaling pathway is involved in the process of respiratory diseases. Hippo signaling pathway is mainly composed of mammalian STE20-like kinase 1/2 (MST1/2), large tumor suppressor 1/2 (LATS1/2), WW domain of the Sav family containing protein 1 (SAV1), MOB kinase activator 1 (MOB1), Yes-associated protein (YAP) or transcriptional coactivator with PDZ-binding motif (TAZ), and members of the TEA domain (TEAD) family. YAP is the cascade effector of the hippo signaling pathway. The activation of YAP promotes pulmonary arterial vascular smooth muscle cells (PAVSMCs) proliferation, which leads to pulmonary vascular remodeling; thereby the pulmonary arterial hypertension (PAH) is aggravated. While the loss of YAP leads to high expression of inflammatory genes and the accumulation of inflammatory cells, the pneumonia is consequently exacerbated. In addition, overexpressed YAP promotes the proliferation of lung fibroblasts and collagen deposition; thereby the idiopathic pulmonary fibrosis (IPF) is promoted. Moreover, YAP knockout reduces collagen deposition and the senescence of adult alveolar epithelial cells (AECs); hence the IPF is slowed. In addition, hippo signaling pathway may be involved in the repair of acute lung injury (ALI) by promoting the proliferation and differentiation of lung epithelial progenitor cells and intervening in the repair of pulmonary capillary endothelium. Moreover, the hippo signaling pathway is involved in asthma. In conclusion, the hippo signaling pathway is involved in respiratory diseases. More researches are needed to focus on the molecular mechanisms by which the hippo signaling pathway participates in respiratory diseases.
Collapse
|
20
|
Sun L, Liu Y, Liu X, Wang R, Gong J, Saferali A, Gao W, Ma A, Ma H, Turvey SE, Fung S, Yang H. Nano-Enabled Reposition of Proton Pump Inhibitors for TLR Inhibition: Toward A New Targeted Nanotherapy for Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104051. [PMID: 34816630 PMCID: PMC8787384 DOI: 10.1002/advs.202104051] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/25/2021] [Indexed: 05/30/2023]
Abstract
Toll-like receptor (TLR) activation in macrophages plays a critical role in the pathogenesis of acute lung injury (ALI). While TLR inhibition is a promising strategy to control the overwhelming inflammation in ALI, there still lacks effective TLR inhibitors for clinical uses to date. A unique class of peptide-coated gold nanoparticles (GNPs) is previously discovered, which effectively inhibited TLR signaling and protected mice from lipopolysaccharide (LPS)-induced ALI. To fast translate such a discovery into potential clinical applicable nanotherapeutics, herein an elegant strategy of "nano-enabled drug repurposing" with "nano-targeting" is introduced to empower the existing drugs for new uses. Combining transcriptome sequencing with Connectivity Map analysis, it is identified that the proton pump inhibitors (PPIs) share similar mechanisms of action to the discovered GNP-based TLR inhibitor. It is confirmed that PPIs (including omeprazole) do inhibit endosomal TLR signaling and inflammatory responses in macrophages and human peripheral blood mononuclear cells, and exhibits anti-inflammatory activity in an LPS-induced ALI mouse model. The omeprazole is then formulated into a nanoform with liposomes to enhance its macrophage targeting ability and the therapeutic efficacy in vivo. This research provides a new translational strategy of nano-enabled drug repurposing to translate bioactive nanoparticles into clinically used drugs and targeted nano-therapeutics for ALI.
Collapse
Affiliation(s)
- Liya Sun
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Yuan Liu
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Xiali Liu
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineNo. 650 Xinsongjiang RoadShanghai201620China
| | - Rui Wang
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Jiameng Gong
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Aabida Saferali
- Channing Division of Network MedicineBrigham and Women's HospitalHarvard Medical School181 Longwood AvenueBostonMA02115USA
| | - Wei Gao
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineNo. 650 Xinsongjiang RoadShanghai201620China
| | - Aying Ma
- Department of Pulmonary and Critical Care MedicineShanghai General HospitalShanghai Jiao Tong University School of MedicineNo. 650 Xinsongjiang RoadShanghai201620China
| | - Huiqiang Ma
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Stuart E. Turvey
- BC Children's Research InstituteUniversity of British Columbia950 West 28th AvenueVancouverBC V5Z 4H4Canada
| | - Shan‐Yu Fung
- Department of ImmunologyKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)The Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsSchool of Basic Medical ScienceTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| | - Hong Yang
- School of Biomedical EngineeringThe Province and Ministry Co‐Sponsored Collaborative Innovation Center for Medical EpigeneticsIntensive Care Unit of the Second HospitalTianjin Medical UniversityNo. 22 Qixiangtai Road, Heping DistrictTianjin300070China
| |
Collapse
|
21
|
Su R, Zhang Y, Zhang J, Wang H, Luo Y, Chan HF, Tao Y, Chen Z, Li M. Nanomedicine to advance the treatment of bacteria-induced acute lung injury. J Mater Chem B 2021; 9:9100-9115. [PMID: 34672317 DOI: 10.1039/d1tb01770e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacteria-induced acute lung injury (ALI) is associated with a high mortality rate due to the lack of an effective treatment. Patients often rely on supportive care such as low tidal volume ventilation to alleviate the symptoms. Nanomedicine has recently received much attention owing to its premium benefits of delivering drugs in a sustainable and controllable manner while minimizing the potential side effects. It can effectively improve the prognosis of bacteria-induced ALI through targeted delivery of drugs, regulation of multiple inflammatory pathways, and combating antibiotic resistance. Hence, in this review, we first discuss the pathogenesis of ALI and its potential therapeutics. In particular, the state-of-the-art nanomedicines for the treatment of bacteria-induced ALI are highlighted, including their administration routes, in vivo distribution, and clearance. Furthermore, the available bacteria-induced ALI animal models are also summarized. In the end, future perspectives of nanomedicine for ALI treatment are proposed.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yu Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca 14853, USA
| | - Jiabin Zhang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. .,Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| |
Collapse
|
22
|
Muhammad W, Zhai Z, Wang S, Gao C. Inflammation-modulating nanoparticles for pneumonia therapy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1763. [PMID: 34713969 DOI: 10.1002/wnan.1763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
Pneumonia is a common but serious infectious disease, and is the sixth leading cause for death. The foreign pathogens such as viruses, fungi, and bacteria establish an inflammation response after interaction with lung, leading to the filling of bronchioles and alveoli with fluids. Although the pharmacotherapies have shown their great effectiveness to combat pathogens, advanced methods are under developing to treat complicated cases such as virus-infection and lung inflammation or acute lung injury (ALI). The inflammation modulation nanoparticles (NPs) can effectively suppress immune cells and inhibit inflammatory molecules in the lung site, and thereby alleviate pneumonia and ALI. In this review, the pathological inflammatory microenvironments in pneumonia, which are instructive for the design of biomaterials therapy, are summarized. The focus is then paid to the inflammation-modulating NPs that modulate the inflammatory cells, cytokines and chemokines, and microenvironments of pneumonia for better therapeutic effects. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Respiratory Disease.
Collapse
Affiliation(s)
- Wali Muhammad
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Zihe Zhai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Shuqin Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Peng J, Fan B, Bao C, Jing C. JMJD3 deficiency alleviates lipopolysaccharide‑induced acute lung injury by inhibiting alveolar epithelial ferroptosis in a Nrf2‑dependent manner. Mol Med Rep 2021; 24:807. [PMID: 34542160 DOI: 10.3892/mmr.2021.12447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/23/2021] [Indexed: 11/06/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a deadly illness which presents with severe hypoxemia as well as diffuse alveolar damage. Jumonji domain‑containing 3 (JMJD3), which belongs to the UTX/UTY JmjC‑domain protein subfamily, is involved in infection, development, aging and immune disorders. However, the role of JMJD3 in acute lung injury (ALI) is still unclear. The present study explored the roles and potential mechanisms of JMJD3 in ALI. Alveolar epithelial cell‑specific knockout of JMJD3 mice and A549 alveolar epithelial cells were used to investigate the function of JMJD3 in ALI. Lipopolysaccharide (LPS) was used to establish an in vivo and in vitro ALI model. The expression of JMJD3 in murine lung tissue and alveolar epithelial cells was detected. Pathological injury of lung tissue and alveolar epithelial cells was also investigated following inhibition of JMJD3. The results showed that JMJD3 expression was significantly increased in murine lung tissues and in A549 cells following LPS stimulation. JMJD3‑deficient mice in alveolar epithelial cells exhibited alleviated lung pathological injury and ferroptosis following h stimulation. Mechanistically, it was found that JMJD3 knockout could increase the expression of nuclear factor erythroid‑2‑related factor‑2 (Nrf2) in lung tissues challenged with h. However, Nrf2 overexpression by adenovirus could further enhance the anti‑ferroptotic effect from JMJD3 silence in h‑treated A549 cells. Taken together, the present study revealed that JMJD3 deficiency may relieve LPS‑induced ALI by blocking alveolar epithelial ferroptosis in a Nrf2‑dependent manner, which may serve as a novel therapeutic target against ALI.
Collapse
Affiliation(s)
- Junwei Peng
- Department of Cardiothoracic Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Bin Fan
- Department of Cardiothoracic Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Chuanming Bao
- Department of Cardiothoracic Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| | - Chen Jing
- Department of Cardiothoracic Surgery, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441300, P.R. China
| |
Collapse
|
24
|
Oxypaeoniflorin Prevents Acute Lung Injury Induced by Lipopolysaccharide through the PTEN/AKT Pathway in a Sirt1-Dependent Manner. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6878026. [PMID: 34394832 PMCID: PMC8357472 DOI: 10.1155/2021/6878026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/09/2021] [Indexed: 12/30/2022]
Abstract
Acute lung injury (ALI) is featured by pulmonary edema, alveolar barrier injury, inflammatory response, and oxidative stress. The activation of Sirt1 could relieve lipopolysaccharide- (LPS-) induced murine ALI by maintaining pulmonary epithelial barrier function. Oxypaeoniflorin (Oxy) serves as a major component of Paeonia lactiflora Pall., exerting cardioprotection by activating Sirt1. However, the role of Oxy in ALI induced by LPS remains unclear. The aim of the present study is to illustrate the modulatory effects and molecular mechanisms by which Oxy operates in ALI induced by LPS. The intraperitoneal injection of LPS was performed to establish the murine ALI model while LPS-treated alveolar epithelial cells were used to mimic the in vitro ALI model. Levels of lung injury, oxidative stress, and inflammatory response were detected to observe the potential effects of Oxy on ALI. Oxy treatment mitigated lung edema, inflammatory response, and oxidative stress in mouse response to LPS, apart from improving 7-day survival. Meanwhile, Oxy also increased the expression and activity of Sirt1. Intriguingly, Sirt1 deficiency or inhibition counteracted the protective effects of Oxy treatment in LPS-treated mice or LPS-treated alveolar epithelial cells by regulating the PTEN/AKT signaling pathway. These results demonstrated that Oxy could combat ALI in vivo and in vitro through inhibiting inflammatory response and oxidative stress in a Sirt1-dependent manner. Oxy owns the potential to be a promising candidate against ALI.
Collapse
|
25
|
Su R, Wang H, Xiao C, Tao Y, Li M, Chen Z. Venetoclax nanomedicine alleviates acute lung injury via increasing neutrophil apoptosis. Biomater Sci 2021; 9:4746-4754. [PMID: 34036969 DOI: 10.1039/d1bm00481f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Delayed neutrophil apoptosis has been proved to be closely associated with acute lung injury. A Bcl-2 inhibitor, venetoclax, can improve the clinical outcome of acute lung injury based on its pro-apoptotic effect. However, pulmonary delivery of free venetoclax is hindered by its water insolubility, which results in limited bioavailability and pharmacological effects. An amphipathic polymer-based nanodelivery system has been extensively used to improve the delivery of this insoluble drug and enhance its bioavailability. In this study, an amphiphilic poly(ethylene glycol) modified poly(α-lipoic acid) nanoparticle with an extended lung tissue-resident time was utilized to deliver venetoclax. Compared to free venetoclax, the nanoformulated venetoclax (Nf-venetoclax) presented better efficacy for acute lung injury through increasing neutrophil apoptosis in vivo. In addition, a stronger pro-apoptotic effect of Nf-venetoclax was also demonstrated in vitro. Our study provides encouraging evidence that Nf-venetoclax exhibits effective therapy for acute lung injury.
Collapse
Affiliation(s)
- Ruonan Su
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Haixia Wang
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yu Tao
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China and Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou 510630, China
| | - Zhuanggui Chen
- Center for Nanomedicine, Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|