1
|
Bostancı F, Şengelen A, Aksüt Y, Yıldırım E, Öğütcü İ, Yücel O, Emik S, Gürdağ G, Pekmez M. Indomethacin-encapsulated PLGA nanoparticles improve therapeutic efficacy by increasing apoptosis and reducing motility in glioblastoma cells. Pharm Dev Technol 2025; 30:25-36. [PMID: 39750021 DOI: 10.1080/10837450.2024.2448333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma, with a low survival rate, is an aggressive and difficult-to-treat lethal type of brain cancer. Indomethacin (IND), a non-steroidal anti-inflammatory drug, has antitumoral activity in many cancers, including gliomas. However, its poor aqueous solubility is a critical issue. Nanomaterials are crucial tools for overcoming solubility problems and facilitating drug delivery. Herein, a polymeric nanoparticle system, poly(lactic-co-glycolic acid) (PLGA) was used to encapsulate IND. Although PLGA is an FDA-approved copolymer for drug delivery, no trials with IND-loaded PLGA-NPs have been conducted to treat brain tumors. Encapsulation success was revealed by DLS, zeta potential, TEM, and FTIR analysis; IND/PLGA-NPs had nanoscale particle size (160.6 nm), narrow size distribution (0.230, PDI), and good stability (-23.9 mV). Fluorescence imaging showed that PLGA-NPs can penetrate U-87MG cells. Short-term/one-hour treatment with bound-IND increased the free-IND effect in gliomas by ⁓10 times/48h and 12.39 times/72h. Even against long-term exposure to IND, IND/PLGA-NP treatment revealed a highly marked result; the IC50 value of bound-IND (treatment-time:1h, analysis at 48h) was ∼200µM, IC50 value of free-IND (treatment-time:48h) was ∼390µM. Furthermore, IND/PLGA-NPs' anticancer activity (100 µM of IND/1h, analysis at 48h) was also supported by induced apoptosis and reduced migration/colony formation in glioma cells. All evidence suggests that IND/PLGA-NPs may be a potentially promising agent for treating gliomas.
Collapse
Affiliation(s)
- Ferhat Bostancı
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul, Turkiye
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
- Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Turkiye
| | - Eren Yıldırım
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - İrem Öğütcü
- Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye
| | - Oğuz Yücel
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Serkan Emik
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Gülten Gürdağ
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpaşa, Istanbul, Turkiye
| | - Murat Pekmez
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye
| |
Collapse
|
2
|
Singh AK, Singh J, Goode NA, Laezza F. Crosstalk among WEE1 Kinase, AKT, and GSK3 in Nav1.2 Channelosome Regulation. Int J Mol Sci 2024; 25:8069. [PMID: 39125637 PMCID: PMC11311446 DOI: 10.3390/ijms25158069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.
Collapse
Affiliation(s)
- Aditya K. Singh
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (J.S.); (N.A.G.); (F.L.)
| | | | | | | |
Collapse
|
3
|
Abu Lila AS, Amran M, Tantawy MA, Moglad EH, Gad S, Alotaibi HF, Obaidullah AJ, Khafagy ES. In Vitro Cytotoxicity and In Vivo Antitumor Activity of Lipid Nanocapsules Loaded with Novel Pyridine Derivatives. Pharmaceutics 2023; 15:1755. [PMID: 37376202 DOI: 10.3390/pharmaceutics15061755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study demonstrates high drug-loading of novel pyridine derivatives (S1-S4) in lipid- and polymer-based core-shell nanocapsules (LPNCs) for boosting the anticancer efficiency and alleviating toxicity of these novel pyridine derivatives. The nanocapsules were fabricated using a nanoprecipitation technique and characterized for particle size, surface morphology, and entrapment efficiency. The prepared nanocapsules exhibited a particle size ranging from 185.0 ± 17.4 to 223.0 ± 15.3 nm and a drug entrapment of >90%. The microscopic evaluation demonstrated spherical-shaped nanocapsules with distinct core-shell structures. The in vitro release study depicted a biphasic and sustained release pattern of test compounds from the nanocapsules. In addition, it was obvious from the cytotoxicity studies that the nanocapsules showed superior cytotoxicity against both MCF-7 and A549 cancer cell lines, as manifested by a significant decrease in the IC50 value compared to free test compounds. The in vivo antitumor efficacy of the optimized nanocapsule formulation (S4-loaded LPNCs) was investigated in an Ehrlich ascites carcinoma (EAC) solid tumor-bearing mice model. Interestingly, the entrapment of the test compound (S4) within LPNCs remarkably triggered superior tumor growth inhibition when compared with either free S4 or the standard anticancer drug 5-fluorouracil. Such enhanced in vivo antitumor activity was accompanied by a remarkable increase in animal life span. Furthermore, the S4-loaded LPNC formulation was tolerated well by treated animals, as evidenced by the absence of any signs of acute toxicity or alterations in biochemical markers of liver and kidney functions. Collectively, our findings clearly underscore the therapeutic potential of S4-loaded LPNCs over free S4 in conquering EAC solid tumors, presumably via granting efficient delivery of adequate concentrations of the entrapped drug to the target site.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohammed Amran
- Department of Pharmacy, Faculty of Health Sciences, Thamar University, Thamar 87246, Yemen
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan 62001, Iraq
| | - Mohamed A Tantawy
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza 12622, Egypt
- Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ehssan H Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Microbiology and Parasitology, Medicinal and Aromatic Plants Research Institute, National Center for Research, Khartoum 2404, Sudan
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Hadil Faris Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdul Rahman University, Riyadh 11671, Saudi Arabia
| | - Ahmad J Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
4
|
Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon 2021; 7:e07994. [PMID: 34632135 PMCID: PMC8488847 DOI: 10.1016/j.heliyon.2021.e07994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/02/2023] Open
Abstract
Advancements in both material science and bionanotechnology are transforming the health care sector. To this end, nanoparticles are increasingly used to improve diagnosis, monitoring, and therapy. Huge research is being carried out to improve the design, efficiency, and performance of these nanoparticles. Nanoparticles are also considered as a major area of research and development to meet the essential requirements for use in nanomedicine where safety, compatibility, biodegradability, biodistribution, stability, and effectiveness are requirements towards the desired application. In this regard, lipids have been used in pharmaceuticals and medical formulations for a long time. The present work focuses on the use of lipid nanostructures to combat brain tumors. In addition, this review summarizes the literature pertaining to solid lipid nanoparticles (SLN) and nanostructured lipid carriers (LNC), methods of preparation and characterization, developments achieved to overcome blood brain barrier (BBB), and modifications used to increase their effectiveness.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Dima Khater
- Department of Chemistry, Faculty of Arts and Science, Applied Science Private University, Amman 11931, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Fedaa Al-Adaileh
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Suma Al-Taher
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| | - Areej M. Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman 11942, Jordan
| | - Abeer Al Bawab
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan
| | | |
Collapse
|
5
|
Clementino AR, Pellegrini G, Banella S, Colombo G, Cantù L, Sonvico F, Del Favero E. Structure and Fate of Nanoparticles Designed for the Nasal Delivery of Poorly Soluble Drugs. Mol Pharm 2021; 18:3132-3146. [PMID: 34259534 PMCID: PMC8335725 DOI: 10.1021/acs.molpharmaceut.1c00366] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nanoparticles are promising mediators to enable nasal systemic and brain delivery of active compounds. However, the possibility of reaching therapeutically relevant levels of exogenous molecules in the body is strongly reliant on the ability of the nanoparticles to overcome biological barriers. In this work, three paradigmatic nanoformulations vehiculating the poorly soluble model drug simvastatin were addressed: (i) hybrid lecithin/chitosan nanoparticles (LCNs), (ii) polymeric poly-ε-caprolactone nanocapsules stabilized with the nonionic surfactant polysorbate 80 (PCL_P80), and (iii) polymeric poly-ε-caprolactone nanocapsules stabilized with a polysaccharide-based surfactant, i.e., sodium caproyl hyaluronate (PCL_SCH). The three nanosystems were investigated for their physicochemical and structural properties and for their impact on the biopharmaceutical aspects critical for nasal and nose-to-brain delivery: biocompatibility, drug release, mucoadhesion, and permeation across the nasal mucosa. All three nanoformulations were highly reproducible, with small particle size (∼200 nm), narrow size distribution (polydispersity index (PI) < 0.2), and high drug encapsulation efficiency (>97%). Nanoparticle composition, surface charge, and internal structure (multilayered, core-shell or raspberry-like, as assessed by small-angle neutron scattering, SANS) were demonstrated to have an impact on both the drug-release profile and, strikingly, its behavior at the biological interface. The interaction with the mucus layer and the kinetics and extent of transport of the drug across the excised animal nasal epithelium were modulated by nanoparticle structure and surface. In fact, all of the produced nanoparticles improved simvastatin transport across the epithelial barrier of the nasal cavity as compared to a traditional formulation. Interestingly, however, the permeation enhancement was achieved via two distinct pathways: (a) enhanced mucoadhesion for hybrid LCN accompanied by fast mucosal permeation of the model drug, or (b) mucopenetration and an improved uptake and potential transport of whole PCL_P80 and PCL_SCH nanocapsules with delayed boost of permeation across the nasal mucosa. The correlation between nanoparticle structure and its biopharmaceutical properties appears to be a pivotal point for the development of novel platforms suitable for systemic and brain delivery of pharmaceutical compounds via intranasal administration.
Collapse
Affiliation(s)
- Adryana Rocha Clementino
- National Council for Scientific and Technological Development-CNPq, Brazilian Government, Brasília DF, 70311-000, Brazil.,Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Giulia Pellegrini
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Sabrina Banella
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Gaia Colombo
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy
| | - Laura Cantù
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| | - Fabio Sonvico
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy.,Biopharmanet-TEC, University of Parma, Parco Area delle Scienze 27/A, 20090 Parma, Italy
| | - Elena Del Favero
- Department of Medical Biotechnologies and Translational Medicine, LITA, University of Milan, Via Fratelli Cervi 93, Segrate, 20122 Milan, Italy
| |
Collapse
|
6
|
Chang CY, Li JR, Wu CC, Wang JD, Liao SL, Chen WY, Wang WY, Chen CJ. Endoplasmic Reticulum Stress Contributes to Indomethacin-Induced Glioma Apoptosis. Int J Mol Sci 2020; 21:ijms21020557. [PMID: 31952288 PMCID: PMC7013513 DOI: 10.3390/ijms21020557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/07/2020] [Accepted: 01/14/2020] [Indexed: 02/07/2023] Open
Abstract
The dormancy of cellular apoptotic machinery has been highlighted as a crucial factor in therapeutic resistance, recurrence, and poor prognosis in patients with malignancy, such as malignant glioma. Increasing evidence indicates that nonsteroidal anti-inflammatory drugs (NSAIDs) confer chemopreventive effects, and indomethacin has been shown to have a novel chemotherapeutic application targeting glioma cells. To extend these findings, herein, we studied the underlying mechanisms of apoptosis activation caused by indomethacin in human H4 and U87 glioma cells. We found that the glioma cell-killing effects of indomethacin involved both death receptor- and mitochondria-mediated apoptotic cascades. Indomethacin-induced glioma cell apoptosis was accompanied by a series of biochemical changes, including reactive oxygen species generation, endoplasmic reticulum (ER) stress, apoptosis signal-regulating kinase-1 (Ask1) activation, p38 hyperphosphorylation, protein phosphatase 2A (PP2A) activation, Akt dephosphorylation, Mcl-1 and FLICE-inhibiting protein (FLIP) downregulation, Bax mitochondrial distribution, and caspases 3/caspase 8/caspase 9 activation. Data on pharmacological inhibition related to oxidative stress, ER stress, free Ca2+, and p38 revealed that the axis of oxidative stress/ER stress/Ask1/p38/PP2A/Akt comprised an apoptotic cascade leading to Mcl-1/FLIP downregulation and glioma apoptosis. Since indomethacin is an emerging choice in chemotherapy and its antineoplastic effects have been demonstrated in glioma tumor-bearing models, the findings further strengthen the argument for turning on the aforementioned axis in order to activate the apoptotic machinery of glioma cells.
Collapse
Affiliation(s)
- Cheng-Yi Chang
- Department of Surgery, Feng Yuan Hospital, Taichung City 420, Taiwan;
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Financial Engineering, Providence University, Taichung City 433, Taiwan
- Department of Data Science and Big Data Analytics, Providence University, Taichung City 433, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung City 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan;
| | - Wen-Yi Wang
- Department of Nursing, HungKuang University, Taichung City 433, Taiwan;
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan;
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Correspondence: ; Tel.: +886-4-23592525 (ext. 4022)
| |
Collapse
|
7
|
Mirshahidi S, de Necochea-Campion R, Moretta A, Williams NL, Reeves ME, Otoukesh S, Mirshahidi HR, Khosrowpour S, Duerksen-Hughes P, Zuckerman LM. Inhibitory Effects of Indomethacin in Human MNNG/HOS Osteosarcoma Cell Line In Vitro. Cancer Invest 2019; 38:23-36. [DOI: 10.1080/07357907.2019.1698592] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Rosalia de Necochea-Campion
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Annie Moretta
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nadine L. Williams
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Mark E. Reeves
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- Division of Surgical Oncology, Department of Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Salman Otoukesh
- Division of Hematology and Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Hamid R. Mirshahidi
- Division of Hematology and Oncology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Shahrzad Khosrowpour
- Leatherby Libraries/Collection Management Division, Chapman University, Orange, CA, USA
| | | | - Lee M. Zuckerman
- Department of Orthopaedic Surgery, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
8
|
Arshad MS, Shahzad A, Abbas N, AlAsiri A, Hussain A, Kucuk I, Chang MW, Bukhari NI, Ahmad Z. Preparation and characterization of indomethacin loaded films by piezoelectric inkjet printing: a personalized medication approach. Pharm Dev Technol 2019; 25:197-205. [DOI: 10.1080/10837450.2019.1684520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Sohail Arshad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Aqeel Shahzad
- Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Nasir Abbas
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Ali AlAsiri
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| | - Amjad Hussain
- College of Pharmacy, University of the Punjab, Lahore, Pakistan
| | - Israfil Kucuk
- Institute of Nanotechnology, Gebze Technical University, Gebze, Turkey
| | - M.-W. Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Newtownabbey, Northern Ireland, UK
| | | | - Zeeshan Ahmad
- Leicester School of Pharmacy, De Montfort University, Leicester, UK
| |
Collapse
|
9
|
Tatar AS, Jurj A, Tomuleasa C, Florea A, Berindan-Neagoe I, Cialla-May D, Popp J, Astilean S, Boca S. CD19-targeted, Raman tagged gold nanourchins as theranostic agents against acute lymphoblastic leukemia. Colloids Surf B Biointerfaces 2019; 184:110478. [PMID: 31541890 DOI: 10.1016/j.colsurfb.2019.110478] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/15/2019] [Accepted: 08/29/2019] [Indexed: 10/26/2022]
Abstract
The incidence of Acute Lymphoblastic Leukemia (ALL) is increasing globally, and it is being clinically addressed by chemotherapy, followed by immunotherapy and stem cell transplantation, all with potential life-threatening toxicities. In the need for more effective therapeutics, newly developed disease-targeted nanocompounds can thus hold real potential. In this paper, we propose a novel nanoparticle-based immunotherapeutic agent against ALL, consisting of antiCD19 antibody-conjugated, polyethylene glycol (PEG)-biocompatibilized, and Nile Blue (NB) Raman reporter-tagged gold nanoparticles of urchin-like shape (GNUs), that have a plasmonic response in the Near Infrared (NIR) spectral range. Transmission electron microscopy (TEM) images of particle-incubated CD19-positive (CD19(+)) CCRF-SB cells show that the antiCD19-PEG-NB-GNU nanocomplex is able to recognize the CD19 B-cell-specific antigen, which is a prerequisite for targeted therapy. The therapeutic effect of the particles is confirmed by cell counting, combined with cell cycle analysis by flow cytometry and MTS assay, which additionally offer insights into their mechanisms of action. Specifically, antiCD19-PEG-NB-GNUs proved superior cytotoxic effect against CCRF-SB cells when compared with the free antibody, by reducing the overall viability below 18% after 7 days treatment at a particle-bound antibody concentration of 0.17 ng/μl. Moreover, by combining their remarkable plasmonic properties with the possibility of Raman tagging, the proposed nanoparticles can also serve as spectroscopic imaging agents inside living cells, which validates their theranostic potential in the field of hematological oncology.
Collapse
Affiliation(s)
- Andra-Sorina Tatar
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Ancuta Jurj
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Marinescu Street 23, 400337 Cluj-Napoca, Romania; Department of Hematology, Oncologic Institute Prof. Dr. Ion Chiricuta, Republicii Street 34-36, 400015 Cluj-Napoca, Romania
| | - Adrian Florea
- Department of Cell and Molecular Biology, Iuliu Hatieganu University of Medicine and Pharmacy, Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Marinescu Street 23, 400337 Cluj-Napoca, Romania
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Jena (a member of Leibniz Health Technologies), Albert-Einstein-Str 9, 07745 Jena, Germany
| | - Juergen Popp
- Leibniz Institute of Photonic Technology, Jena (a member of Leibniz Health Technologies), Albert-Einstein-Str 9, 07745 Jena, Germany; Friedrich-Schiller-University, Institute of Physical Chemistry and Abbe Center of Photonics, Helmholtzweg 4, 07743 Jena, Germany
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, Kogalniceanu 1, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania.
| |
Collapse
|
10
|
Bruhns RP, James WS, Torabi M, Borgstrom M, Roussas A, Lemole M. Survival as a Function of Nonsteroidal Anti-inflammatory Drug Use in Patients with Glioblastoma. Cureus 2018; 10:e3277. [PMID: 30443448 PMCID: PMC6235638 DOI: 10.7759/cureus.3277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Findings of both case control and in vitro investigations suggest that non-steroidal anti-inflammatory drugs (NSAIDs) may play a beneficial role in the occurrence, growth, and subsistence of glioblastoma multiforme (GBM) brain tumor in humans. Objective In the present retrospective cohort study, we assessed the impact of NSAID use on survival in patients diagnosed with and treated for GBM brain tumors. Methods The impact of NSAID use and six other potential prognostic indicators of survival were assessed in 71 patients treated for GBM brain tumors from February 2011 to June 2016. Survival analysis and cross-tabulation analyses were performed to examine the potential relationship between NSAID use and occurrence of intracranial hemorrhage over the course of treatment for GBM. Results Kaplan-Meier analysis revealed no significant difference in survival between patients with and without NSAID use (p = 0.75; 95% CI: 10.12, 18.13). Multiple Cox regression analysis identified only treatment with chemotherapy as imposing any statistically significant effect on survival (Hazard Ratio (HR) = 3.31; p < 0.001; 95% CI: 1.80, 6.07). Cross-tabulation revealed no significant effect of NSAID use on occurrence of hemorrhage during treatment, X2 (2, N = 71) = 0.65, p2-Sided = 0.42, (Fisher's Exact Test: p2-sided = 0.56, p1-sided = 0.31). Conclusion These results suggest that history of NSAID use is not a determinant of survival in GBM patients. More rigorous, prospective investigations of the effect of NSAID use on tumor progression are necessary before the utility of this family of drugs in the treatment of GBM can be adequately appraised.
Collapse
Affiliation(s)
- Ryan P Bruhns
- Surgery, Banner University Medical Center, Tucson, USA
| | - Whitney S James
- Neurological Surgery, Banner University Medical Center, Tucson, USA
| | | | - Mark Borgstrom
- Research and Computing, University of Arizona, Tucson, USA
| | | | | |
Collapse
|
11
|
Vallée A, Lecarpentier Y, Guillevin R, Vallée JN. Opposite Interplay Between the Canonical WNT/β-Catenin Pathway and PPAR Gamma: A Potential Therapeutic Target in Gliomas. Neurosci Bull 2018; 34:573-588. [PMID: 29582250 PMCID: PMC5960455 DOI: 10.1007/s12264-018-0219-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 01/18/2018] [Indexed: 12/19/2022] Open
Abstract
In gliomas, the canonical Wingless/Int (WNT)/β-catenin pathway is increased while peroxisome proliferator-activated receptor gamma (PPAR-γ) is downregulated. The two systems act in an opposite manner. This review focuses on the interplay between WNT/β-catenin signaling and PPAR-γ and their metabolic implications as potential therapeutic target in gliomas. Activation of the WNT/β-catenin pathway stimulates the transcription of genes involved in proliferation, invasion, nucleotide synthesis, tumor growth, and angiogenesis. Activation of PPAR-γ agonists inhibits various signaling pathways such as the JAK/STAT, WNT/β-catenin, and PI3K/Akt pathways, which reduces tumor growth, cell proliferation, cell invasiveness, and angiogenesis. Nonsteroidal anti-inflammatory drugs, curcumin, antipsychotic drugs, adiponectin, and sulforaphane downregulate the WNT/β-catenin pathway through the upregulation of PPAR-γ and thus appear to provide an interesting therapeutic approach for gliomas. Temozolomide (TMZ) is an antiangiogenic agent. The downstream action of this opposite interplay may explain the TMZ-resistance often reported in gliomas.
Collapse
Affiliation(s)
- Alexandre Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France.
- Délégation à la Recherche Clinique et à l'Innovation (DRCI), Hôpital Foch, Suresnes, France.
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| | - Rémy Guillevin
- DACTIM, UMR CNRS 7348, University of Poitiers et CHU de Poitiers, Poitiers, France
| | - Jean-Noël Vallée
- Laboratory of Mathematics and Applications, Unités Mixtes de Recherche (UMR), Centre National de la Recherche Scientifique (CNRS) 7348, University of Poitiers, Poitiers, France
- CHU Amiens Picardie, University of Picardie Jules Verne, Amiens, France
| |
Collapse
|
12
|
Chang CY, Li JR, Wu CC, Wang JD, Yang CP, Chen WY, Wang WY, Chen CJ. Indomethacin induced glioma apoptosis involving ceramide signals. Exp Cell Res 2018; 365:66-77. [PMID: 29470962 DOI: 10.1016/j.yexcr.2018.02.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 01/31/2023]
|
13
|
Tapeinos C, Battaglini M, Ciofani G. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. J Control Release 2017; 264:306-332. [PMID: 28844756 PMCID: PMC6701993 DOI: 10.1016/j.jconrel.2017.08.033] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) comprise a category of versatile drug delivery systems that have been used in the biomedical field for >25years. SLNs and NLCs have been used for the treatment of various diseases including cardiovascular and cerebrovascular, and are considered a standard treatment for the latter, due to their inherent ability to cross the blood brain barrier (BBB). In this review, a presentation of the most important brain diseases (brain cancer, ischemic stroke, Alzheimer's disease, Parkinson's disease and multiple sclerosis) is approached, followed by the basic fabrication techniques of SLNs and NLCs. A detailed description of the reported studies of the last seven years, of active and passive targeting SLNs and NLCs for the treatment of glioblastoma multiforme and of other brain cancers, as well as for the treatment of neurodegenerative diseases is also carried out. Finally, a brief description of the advantages, the disadvantages, and the future perspectives in the use of these nanocarriers is reported, aiming at giving an insight of the limitations that have to be overcome in order to result in a delivery system with high therapeutic efficacy and without the limitations of the existing nano-systems.
Collapse
Affiliation(s)
- Christos Tapeinos
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy.
| | - Matteo Battaglini
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy
| | - Gianni Ciofani
- Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, 56025 Pontedera, PI, Italy; Politecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
14
|
Játiva P, Ceña V. Use of nanoparticles for glioblastoma treatment: a new approach. Nanomedicine (Lond) 2017; 12:2533-2554. [DOI: 10.2217/nnm-2017-0223] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is a very aggressive CNS tumor with poor prognosis. Current treatment lacks efficacy indicating that new therapeutic approaches are needed. One of these new approaches is based on the use of nanoparticles (NPs) to deliver different cargos (antitumoral drugs or genetic materials) to tumoral cells. This review covers the signaling pathways altered in GBM cells to understand the rationale behind choosing new therapeutic targets and recent advances in the use of different NPs to deliver to GBM cells, both in vitro and in vivo, different therapeutic molecules. A special focus is placed on the effect of NPs on orthotopic brain tumors since this animal model represents the optimal model for translational purposes.
Collapse
Affiliation(s)
- Pablo Játiva
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad de Castilla-La Mancha, Albacete, Spain
- CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
15
|
Yang Y, Ren M, Song C, Li D, Soomro SH, Xiong Y, Zhang H, Fu H. LINC00461, a long non-coding RNA, is important for the proliferation and migration of glioma cells. Oncotarget 2017; 8:84123-84139. [PMID: 29137410 PMCID: PMC5663582 DOI: 10.18632/oncotarget.20340] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/25/2017] [Indexed: 12/31/2022] Open
Abstract
An increasing number of reports have revealed that long non-coding RNAs are important players in tumorigenesis. Here we showed that long non-coding RNA LINC00461 is highly expressed in glioma tissues compared to non-neoplastic brain tissues. The knockdown of LINC00461 suppressed cyclinD1/A/E expression which led to G0/G1 cell cycle arrest and inhibited cell proliferation in glioma cells. LINC00461 suppression also inhibited glioma cell migration and invasion. The function of LINC00461 in glioma cells is partially mediated by MAPK/ERK and PI3K/AKT signaling pathways as down-regulation of LINC00461 expression suppressed ERK1/2 and AKT activities. Moreover, LINC00461 knockdown decreased expression levels of microRNA miR-9 and flanking genes MEF2C and TMEM161B. Taken together, our results demonstrate that LINC00461 is important for glioma progression affecting cell proliferation, migration and invasion via MAPK/ERK, PI3K/AKT, and possibly other signaling pathways.
Collapse
Affiliation(s)
- Yali Yang
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingxin Ren
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Chao Song
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Dan Li
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Shahid Hussain Soomro
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Yajie Xiong
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hongfeng Zhang
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Hui Fu
- Department of Anatomy and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
16
|
Hu B, Wu Y, Tong F, Liu J, Shen X, Shen R, Xu G. Apocynin Alleviates Renal Ischemia/Reperfusion Injury Through Regulating the Level of Zinc and Metallothionen. Biol Trace Elem Res 2017; 178:71-78. [PMID: 27909865 DOI: 10.1007/s12011-016-0904-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
The purpose of this research was to evaluate the protective effects of apocynin on renal ischemia/reperfusion (I/R) injury (RI/RI) in rats. Rats preconditioned with apocynin were subjected to renal I/R. Zinc levels in serum and renal tissues, blood urea nitrogen (BUN), and serum creatinine (Scr) were detected. We further measured the activity of superoxide dismutase (SOD); the content of malondialdehyde (MDA), IL-4, IL-6, IL-10, and TNF-α; and the expression of metallothionein (MT) in the renal tissues. Results indicated that the levels of MDA, IL-4, IL-6, IL-10, TNF-α, and MT in the kidney tissue and serum BUN and Scr levels in RI/RI group were significantly higher than those in sham-operated group, while the levels of serum Zn and kidney Zn and SOD were reduced in RI/RI group. Apocynin treatment further decreased the levels of MDA, IL-6, TNF-α, and serum BUN and Scr, whereas it significantly increased the levels of Zn, SOD, IL-4, IL-10, and MT in the kidney tissue and serum Zn. These findings suggest that apocynin might play a protective role against RI/RI in rats through regulating zinc level and MT expression involving in oxidative stress.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Yuhong Wu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Fei Tong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Jie Liu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Xiaohua Shen
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Ruilin Shen
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Guangtao Xu
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, 314001, Jiaxing, Zhejiang Province, People's Republic of China.
| |
Collapse
|
17
|
Colquhoun A. Cell biology-metabolic crosstalk in glioma. Int J Biochem Cell Biol 2017; 89:171-181. [PMID: 28549626 DOI: 10.1016/j.biocel.2017.05.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
The renewed interest in cancer metabolism in recent years has been fuelled by the identification of the involvement of key oncogenes and tumour suppressor genes in the control of metabolic pathways. Many of these alterations lead to dramatic changes in bioenergetics, biosynthesis and redox balance within tumour cells. The complex relationship between tumour cell metabolism and the tumour microenvironment has turned this field of biochemistry and cell biology into a challenging and exciting area for study. In the case of gliomas the involvement of altered metabolic pathways including glycolysis, oxidative phosphorylation and glutaminolysis are pointing the way to new possibilities for treatment. The tumour-promoting effects of inflammation are an emerging hallmark of cancer and the role of the eicosanoids in gliomas is an area of active research to elucidate the importance of individual eicosanoids in glioma cell proliferation, migration and immune escape. In this review, the different aspects of metabolic reprogramming which occur in gliomas are highlighted and their relationship to glioma cell biology and the wider tumour microenvironment is described.
Collapse
Affiliation(s)
- Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
18
|
Omrani I, Babanejad N, Shendi HK, Nabid MR. Preparation and evaluation of a novel sunflower oil-based waterborne polyurethane nanoparticles for sustained delivery of hydrophobic drug. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ismail Omrani
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Niloofar Babanejad
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Hasan Kashef Shendi
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| | - Mohammad Reza Nabid
- Faculty of Chemistry, Department of Polymer; Shahid Beheshti University; Tehran Iran
| |
Collapse
|
19
|
Antonow MB, Asbahr ACC, Raddatz P, Beckenkamp A, Buffon A, Guterres SS, Pohlmann AR. Liquid formulation containing doxorubicin-loaded lipid-core nanocapsules: Cytotoxicity in human breast cancer cell line and in vitro uptake mechanism. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:374-382. [PMID: 28482541 DOI: 10.1016/j.msec.2017.03.099] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/12/2017] [Indexed: 11/27/2022]
Abstract
Cancer is a major public health problem in the world, being breast cancer the most frequent cancer affecting women. Despite advances in detection and treatment, mortality rates remain high. Therefore, new approaches for breast cancer treatments are necessary. In this study, our objective was to develop a liquid formulation containing doxorubicin-loaded lipid-core nanocapsules (DOX-LNC), to evaluate the in vitro antiproliferative activity and to determine the nanocapsules uptake by MCF-7 cells. Lipid-core nanocapsules (LNC), blank formulation, and DOX-LNC, proposed treatment, were prepared by self-assembling using the solvent displacement method. Hydrodynamic mean diameters (z-average) were respectively 191±31nm and 230±23nm presenting narrow size distributions. Drug content was 0.102±0.029mgmL-1 with an encapsulation efficiency higher than 90%. Formulations were applied to semiconfluent MCF-7 cells. After 24h, LNC showed no cytotoxicity, while DOX-LNC showed an IC50 of 4.49 micromolar. After 72h of incubation, DOX-LNC showed an IC50 of 1.60 micromolar demonstrating a sustained effect. The nanocapsules were internalized by endocytosis mediated by caveolin and by fluid phase endocytosis, which are active transport mechanisms. In conclusion, the liquid formulation containing DOX-LNC showed to be a promising product for the breast cancer treatment opening new avenues for further in vivo studies.
Collapse
Affiliation(s)
- Michelli B Antonow
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Ana Carolina C Asbahr
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Paula Raddatz
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Aline Beckenkamp
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Andréia Buffon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Sílvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Nanotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, Porto Alegre 90610-000, RS, Brazil.
| |
Collapse
|
20
|
Xu G, Gu H, Hu B, Tong F, Liu D, Yu X, Zheng Y, Gu J. PEG- b-(PELG- g-PLL) nanoparticles as TNF-α nanocarriers: potential cerebral ischemia/reperfusion injury therapeutic applications. Int J Nanomedicine 2017; 12:2243-2254. [PMID: 28356740 PMCID: PMC5367577 DOI: 10.2147/ijn.s130842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Brain ischemia/reperfusion (I/R) injury (BI/RI) is a leading cause of death and disability worldwide. However, the outcome of pharmacotherapy for BI/RI remains unsatisfactory. Innovative approaches for enhancing drug sensitivity and recovering neuronal activity in BI/RI treatment are urgently needed. The purpose of this study was to evaluate the protective effects of tumor necrosis factor (TNF)-α-loaded poly(ethylene glycol)-b-(poly(ethylenediamine L-glutamate)-g-poly(L-lysine)) (TNF-α/PEG-b-(PELG-g-PLL)) nanoparticles on BI/RI. The particle size of PEG-b-(PELG-g-PLL) and the loading and release rates of TNF-α were determined. The nanoparticle cytotoxicity was evaluated in vitro using rat cortical neurons. Sprague Dawley rats were preconditioned with free TNF-α or TNF-α/PEG-b-(PELG-g-PLL) polyplexes and then subjected to 2 hours ischemia and 22 hours reperfusion. Brain edema was assessed using the brain edema ratio, and the antioxidative activity was assessed by measuring the superoxide dismutase (SOD) activity and the malondialdehyde (MDA) content in the brain tissue. We further estimated the inflammatory activity and apoptosis level by determining the levels of interleukin-4 (IL-4), IL-6, IL-8, IL-10, and nitric oxide (NO), as well as the expression of glial fibrillary acidic protein (GFAP), intercellular adhesion molecule-1 (ICAM-1), and cysteine aspartase-3 (caspase-3), in the brain tissue. We provide evidence that TNF-α preconditioning attenuated the oxidative stress injury, the inflammatory activity, and the apoptosis level in I/R-induced cerebral injury, while the application of block copolymer PEG-b-(PELG-g-PLL) as a potential TNF-α nanocarrier with sustained release significantly enhanced the bioavailability of TNF-α. We propose that the block copolymer PEG-b-(PELG-g-PLL) may function as a potent nanocarrier for augmenting BI/RI pharmacotherapy, with unprecedented clinical benefits. Further studies are needed to better clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Guangtao Xu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Huan Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Physics, University of Maryland, College Park, Annapolis, MD, USA
| | - Bo Hu
- Department of Chemical Pathology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Jiaxing, Zhejiang, People’s Republic of China
| | - Fei Tong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Daojun Liu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Xiaojun Yu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
| | - Yongxia Zheng
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang, People’s Republic of China
| | - Jiang Gu
- Department of Pathology and Chemistry, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Collaborative and Creative Center, Molecular Diagnosis and Personalized Medicine, Shantou University Medical College, Shantou, Guangdong
- Correspondence: Jiang Gu, Department of Pathology, Provincial Key Laboratory of Infectious Diseases and Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou, Guangdong 515041, People’s Republic of China, Tel +86 754 8895 0207, Email
| |
Collapse
|
21
|
Pantovic A, Bosnjak M, Arsikin K, Kosic M, Mandic M, Ristic B, Tosic J, Grujicic D, Isakovic A, Micic N, Trajkovic V, Harhaji-Trajkovic L. In vitro antiglioma action of indomethacin is mediated via AMP-activated protein kinase/mTOR complex 1 signalling pathway. Int J Biochem Cell Biol 2016; 83:84-96. [PMID: 27988363 DOI: 10.1016/j.biocel.2016.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/31/2016] [Accepted: 12/12/2016] [Indexed: 01/21/2023]
Abstract
We investigated the role of the intracellular energy-sensing AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway in the in vitro antiglioma effect of the cyclooxygenase (COX) inhibitor indomethacin. Indomethacin was more potent than COX inhibitors diclofenac, naproxen, and ketoprofen in reducing the viability of U251 human glioma cells. Antiglioma effect of the drug was associated with p21 increase and G2M cell cycle arrest, as well as with oxidative stress, mitochondrial depolarization, caspase activation, and the induction of apoptosis. Indomethacin increased the phosphorylation of AMPK and its targets Raptor and acetyl-CoA carboxylase (ACC), and reduced the phosphorylation of mTOR and mTOR complex 1 (mTORC1) substrates p70S6 kinase and PRAS40 (Ser183). AMPK knockdown by RNA interference, as well as the treatment with the mTORC1 activator leucine, prevented indomethacin-mediated mTORC1 inhibition and cytotoxic action, while AMPK activators metformin and AICAR mimicked the effects of the drug. AMPK activation by indomethacin correlated with intracellular ATP depletion and increase in AMP/ATP ratio, and was apparently independent of COX inhibition or the increase in intracellular calcium. Finally, the toxicity of indomethacin towards primary human glioma cells was associated with the activation of AMPK/Raptor/ACC and subsequent suppression of mTORC1/S6K. By demonstrating the involvement of AMPK/mTORC1 pathway in the antiglioma action of indomethacin, our results support its further exploration in glioma therapy.
Collapse
Affiliation(s)
| | - Mihajlo Bosnjak
- Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Katarina Arsikin
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milica Kosic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Milos Mandic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Biljana Ristic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| | - Jelena Tosic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danica Grujicic
- Clinic of Neurosurgery, Department of Neurooncology, Clinical Centre of Serbia, Belgrade, Serbia
| | - Aleksandra Isakovic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nikola Micic
- Institute of Medical and Clinical Biochemistry, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia.
| | - Ljubica Harhaji-Trajkovic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade, Serbia.
| |
Collapse
|
22
|
Abstract
Glioblastoma (GBM) is the most aggressive of primary brain tumors. Despite the progress in understanding the biology of the pathogenesis of glioma made during the past decade, the clinical outcome of patients with GBM remains still poor. Deregulation of many signaling pathways involved in growth, survival, migration and resistance to treatment has been implicated in pathogenesis of GBM. One of these pathways is phosphatidylinositol-3 kinases (PI3K)/protein kinase B (AKT)/rapamycin-sensitive mTOR-complex (mTOR) pathway, intensively studied and widely described so far. Much less attention has been paid to the role of glycogen synthase kinase 3 β (GSK3β), a target of AKT. In this review we focus on the function of AKT/GSK3β signaling in GBM.
Collapse
|
23
|
Wang J, Wan X, Gao Y, Zhong M, Sha L, Liu B, Zhang W, Tian L, Ruan W, Cao S, Huang M. Latcripin-13 domain induces apoptosis and cell cycle arrest at the G1 phase in human lung carcinoma A549 cells. Oncol Rep 2016; 36:441-7. [PMID: 27221765 DOI: 10.3892/or.2016.4830] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/15/2016] [Indexed: 11/05/2022] Open
Abstract
Latcripin-13 domain, isolated from the transcriptome of Lentinula edodes C91-3, contains a regulator of chromosome condensation (RCC1) domain/β-lactamase-inhibitor protein II (BLIP-II) and a plant homeodomain (PHD). Latcripin-13 domain has been shown to have antitumor effects. However, the underlying molecular pharmacology is largely unknown. We report here that Latcripin-13 domain induced cell cycle arrest in the G1 phase and caused the apoptosis of human lung carcinoma A549 cells via the GSK3β-cyclin D1 and caspase-8/NF-κB signaling pathways. Western blot analysis showed that Latcripin-13 domain decreased cyclin D1 and cyclin-dependent kinase 4 (CDK4), while it increased the ratio of GSK3β/phosphorylated GSK3β. Importantly, Latcripin-13 domain induced nuclear fragmentation and chromatin condensation in the A549 cells. In addition, treatment of the A549 cells with Latcripin-13 domain resulted in the loss of mitochondrial membrane potential, accompanied by an increase in the Bax/Bcl-2 ratio and activation of caspase-3, -8, and -9. Intriguingly, western blot analysis revealed that NF-κB was significantly downregulated by Latcripin-13 domain. These results demonstrated that Latcripin-13 domain induced apoptosis and cell cycle arrest at G1 phase in the A549 cells, providing a mechanism for the antitumor effects of Latcripin-13 domain.
Collapse
Affiliation(s)
- Jia Wang
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Xianyao Wan
- Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116021, P.R. China
| | - Yifan Gao
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Mintao Zhong
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Sha
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Ben Liu
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wei Zhang
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Li Tian
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Wenjing Ruan
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Shuyun Cao
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Min Huang
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
24
|
Boechat AL, de Oliveira CP, Tarragô AM, da Costa AG, Malheiro A, Guterres SS, Pohlmann AR. Methotrexate-loaded lipid-core nanocapsules are highly effective in the control of inflammation in synovial cells and a chronic arthritis model. Int J Nanomedicine 2015; 10:6603-14. [PMID: 26543364 PMCID: PMC4622525 DOI: 10.2147/ijn.s85369] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is the most common autoimmune disease in the word, affecting 1% of the population. Long-term prognosis in RA was greatly improved following the introduction of highly effective medications such as methotrexate (MTX). Despite the importance of this drug in RA, 8%-16% of patients must discontinue the treatment because of adverse effects. Last decade, we developed a promising new nanocarrier as a drug-delivery system, lipid-core nanocapsules. OBJECTIVE The aim of the investigation reported here was to evaluate if methotrexate-loaded lipid-core nanocapsules (MTX-LNC) reduce proinflammatory and T-cell-derived cytokines in activated mononuclear cells derived from RA patients and even in functional MTX-resistant conditions. We also aimed to find out if MTX-LNC would reduce inflammation in experimentally inflammatory arthritis at lower doses than MTX solution. METHODS Formulations were prepared by self-assembling methodology. The adjuvant arthritis was induced in Lewis rats (AIA) and the effect on edema formation, TNF-α levels, and interleukin-1 beta levels after treatment was evaluated. Mononuclear cells obtained from the synovial fluid of RA patients during articular infiltration procedures were treated with MTX solution and MTX-LNC. For in vitro experiments, the same dose of MTX was used in comparing MTX and MTX-LNC, while the dose of MTX in the MTX-LNC was 75% lower than the drug in solution in in vivo experiments. RESULTS Formulations presented nanometric and unimodal size distribution profiles, with D[4.3] of 175±17 nm and span of 1.6±0.2. Experimental results showed that MTX-LNC had the same effect as MTX on arthritis inhibition on day 28 of the experiment (P<0.0001); however, this effect was achieved earlier, on day 21 (P<0.0001), by MTX-LNC, and this formulation had reduced both TNF-α (P=0.001) and IL-1α (P=0.0002) serum levels by the last day of the experiment. Further, the MTX-LNC were more effective at reducing the cytokine production from mononuclear synovial cells than MTX. CONCLUSION The MTX-LNC were better than the MTX solution at reducing proinflammatory cytokines and T-cell-derived cytokines such as interferon-gamma and interleukin-17A. This result, combined with the reduction in the dose required for therapy, shows that MTX-LNC are a very promising system for the treatment of RA.
Collapse
Affiliation(s)
- Antônio Luiz Boechat
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil ; Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Andrea Monteiro Tarragô
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Adriana Malheiro
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal do Amazonas, Manaus, Brazil ; Programa de Pós-Graduação e Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Adriana Raffin Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Porto Alegre, Brazil ; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
25
|
He W, Li Y, Tian J, Jiang N, Du B, Peng Y. Optimized mixture of As, Cd and Pb induce mitochondria-mediated apoptosis in C6-glioma via astroglial activation, inflammation and P38-MAPK. Am J Cancer Res 2015; 5:2396-2408. [PMID: 26396915 PMCID: PMC4568775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/19/2015] [Indexed: 06/05/2023] Open
Abstract
Arsenic (As), cadmium (Cd), and lead (Pb) in select combinations are proved to affect the viability of astrocyte. However, their role in glioma, an aggressive astroglial tumor, is unexplored. We analyzed the effect of As+Cd+Pb on C6-glioma cells derived from rat glioma. We determined the lethal concentration (LC) of individual metal, and then treated C6-glioma cells with As+Cd+Pb at LC-5 (As: 5 mM, Cd: 2.5 mM and Pb: 15 mM), and concentrations that were double or triple of LC5. As+Cd+Pb induced dose-dependent reduction in C6-glioma viability. Cell death was due to apoptotic DNA fragmentation, detected through terminal deoxynucleotidyl transferase-mediated dUTP-nick-end labeling. An enhanced cleavage of caspase-9 indicated the apoptosis to be mitochondria-mediated. An increase in pro-apoptotic Bcl-2-associated-X protein (Bax) and decrease in anti-apoptotic Bcl2 resulting in a Bax/Bcl2 ratio > 1.0 validated mitochondrial apoptosis. Exploring apoptotic regulatory mechanism revealed an alteration in glial cell morphology and augmentation of astroglial marker, glial fibrillary acidic protein (GFAP), that demonstrated co-localization with cleaved caspase-9. The glial activation was accompanied by inflammation, involving the up-regulation of interleukin-1 (IL-1) and IL-1-receptor. IL-1 also contributed to apoptosis, as evident from the attenuation of cleaved caspase-9 upon treatment with IL-1receptor antagonist. Investigating the involvement of Mitogen-activated protein kinases (MAPKs) revealed the activation of P38 as indicated by an increased phospho-p38 expression. p38-MAPK inhibitor, SB203580, prevented caspase-9 activation, which further suppoted the involvement of p38-MAPK in C6-glioma apoptosis. Overall our data demonstrate the toxic effect of As+Cd+Pb on C6-glioma, which is mediated by mitochondria-dependent apoptosis that requires astroglial activation, inflammation and p38-MAPK signaling. As+Cd+Pb combination treatment may have a potential therapeutic usage against glial tumors.
Collapse
Affiliation(s)
- Weiming He
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
- Department of Neurosurgery, Keerqin District First People’s HospitalTongliao 028000, Inner Mongolia, P. R. China
| | - Yingfu Li
- Department of Neurosurgery, First Hospital of Jiamusi UniversityJiamusi 154007, Heilongjiang, P. R. China
| | - Jingyan Tian
- Department of Urology, Second Division of The First Hospital of Jilin UniversityChangchun 130021, Jilin, P. R. China
| | - Ning Jiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Bo Du
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| | - Yuping Peng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical UniversityGuangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
26
|
Ferreira LM, Cervi VF, Gehrcke M, da Silveira EF, Azambuja JH, Braganhol E, Sari MH, Zborowski VA, Nogueira CW, Cruz L. Ketoprofen-loaded pomegranate seed oil nanoemulsion stabilized by pullulan: Selective antiglioma formulation for intravenous administration. Colloids Surf B Biointerfaces 2015; 130:272-7. [DOI: 10.1016/j.colsurfb.2015.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 12/11/2022]
|
27
|
Jaworski S, Sawosz E, Kutwin M, Wierzbicki M, Hinzmann M, Grodzik M, Winnicka A, Lipińska L, Włodyga K, Chwalibog A. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. Int J Nanomedicine 2015; 10:1585-96. [PMID: 25759581 PMCID: PMC4346365 DOI: 10.2147/ijn.s77591] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Graphene and its related counterparts are considered the future of advanced nanomaterials owing to their exemplary properties. However, information about their toxicity and biocompatibility is limited. The objective of this study is to evaluate the toxicity of graphene oxide (GO) and reduced graphene oxide (rGO) platelets, using U87 and U118 glioma cell lines for an in vitro model and U87 tumors cultured on chicken embryo chorioallantoic membrane for an in vivo model. The in vitro investigation consisted of structural analysis of GO and rGO platelets using transmission electron microscopy, evaluation of cell morphology and ultrastructure, assessment of cell viability by XTT assay, and investigation of cell proliferation by BrdU assay. Toxicity in U87 glioma tumors was evaluated by calculation of weight and volume of tumors and analyses of ultrastructure, histology, and protein expression. The in vitro results indicate that GO and rGO enter glioma cells and have different cytotoxicity. Both types of platelets reduced cell viability and proliferation with increasing doses, but rGO was more toxic than GO. The mass and volume of tumors were reduced in vivo after injection of GO and rGO. Moreover, the level of apoptotic markers increased in rGO-treated tumors. We show that rGO induces cell death mostly through apoptosis, indicating the potential applicability of graphene in cancer therapy.
Collapse
Affiliation(s)
- Sławomir Jaworski
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Ewa Sawosz
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Wierzbicki
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Mateusz Hinzmann
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Grodzik
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Karolina Włodyga
- Warsaw University of Life Science, Faculty of Animal Science, Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrè Chwalibog
- University of Copenhagen, Department of Veterinary Clinical and Animal Sciences, Copenhagen, Denmark
| |
Collapse
|
28
|
Fontana MC, Beckenkamp A, Buffon A, Beck RCR. Controlled release of raloxifene by nanoencapsulation: effect on in vitro antiproliferative activity of human breast cancer cells. Int J Nanomedicine 2014; 9:2979-91. [PMID: 24971009 PMCID: PMC4069136 DOI: 10.2147/ijn.s62857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Raloxifene hydrochloride (RH) is considered to be an antiproliferative agent of mammary tissue. The aim of this study was to investigate the effect of the encapsulation of RH in polymeric nanocapsules with anionic or cationic surface on its release profile and antiproliferative activity. They were prepared by interfacial deposition of preformed polymer, followed by wide physicochemical characterization. The in vitro RH release was assessed by the dialysis membrane method and the data analyzed by mathematical modeling. The antiproliferative effect on MCF-7 cell viability was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay as well as by counting viable cells. They had high encapsulation efficiency, low polydispersity, and nanometric mean size. Nanocapsules prepared with Eudragit® RS100 and Eudragit® S100 presented positive and negative zeta potentials, respectively. Drug release studies demonstrated controlled release of RH from anionic nanocapsules, which could be explained due to a stronger interaction of the drug to these nanocapsules and the larger amount of entrapped drug. On the other hand, this control was not observed from cationic nanocapsules due to the larger amount of drug adsorbed onto their surface. MCF-7 cell viability studies and cell counting showed that RH-loaded Eudragit® RS100 nanocapsules promote the best antiproliferative activity after 24 hours of treatment, whereas the best activity was observed for RH-loaded Eudragit® S100 nanocapsules after 72 hours. Furthermore, the combined treatment of these formulations improved the antiproliferative effect during the entire treatment.
Collapse
Affiliation(s)
- Márcia Camponogara Fontana
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Aline Beckenkamp
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Andréia Buffon
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Ruy Carlos Ruver Beck
- Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
29
|
Cupaioli FA, Zucca FA, Boraschi D, Zecca L. Engineered nanoparticles. How brain friendly is this new guest? Prog Neurobiol 2014; 119-120:20-38. [PMID: 24820405 DOI: 10.1016/j.pneurobio.2014.05.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 12/19/2022]
Abstract
In the last 30 years, the use of engineered nanoparticles (NPs) has progressively increased in many industrial and medical applications. In therapy, NPs may allow more effective cellular and subcellular targeting of drugs. In diagnostic applications, quantum dots are exploited for their optical characteristics, while superparamagnetic iron oxides NPs are used in magnetic resonance imaging. NPs are used in semiconductors, packaging, textiles, solar cells, batteries and plastic materials. Despite the great progress in nanotechnologies, comparatively little is known to date on the effects that exposure to NPs may have on the human body, in general and specifically on the brain. NPs can enter the human body through skin, digestive tract, airways and blood and they may cross the blood-brain barrier to reach the central nervous system. In addition to the paucity of studies describing NP effects on brain function, some of them also suffer of insufficient NPs characterization, inadequate standardization of conditions and lack of contaminant evaluation, so that results from different studies can hardly be compared. It has been shown in vitro and in vivo in rodents that NPs can impair dopaminergic and serotoninergic systems. Changes of neuronal morphology and neuronal death were reported in mice treated with NPs. NPs can also affect the respiratory chain of mitochondria and Bax protein levels, thereby causing apoptosis. Changes in expression of genes involved in redox pathways in mouse brain regions were described. NPs can induce autophagy, and accumulate in lysosomes impairing their degradation capacity. Cytoskeleton and vesicle trafficking may also be affected. NPs treated animals showed neuroinflammation with microglia activation, which could induce neurodegeneration. Considering the available data, it is important to design adequate models and experimental systems to evaluate in a reliable and controlled fashion the effects of NPs on the brain, and generate data representative of effects on the human brain, thereby useful for developing robust and valid nanosafety standards.
Collapse
Affiliation(s)
- Francesca A Cupaioli
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Fabio A Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| | - Diana Boraschi
- Institute of Biomedical Technologies, National Research Council of Italy, Unit of Pisa, Pisa, Italy
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy.
| |
Collapse
|
30
|
Yurgel VC, Oliveira CP, Begnini KR, Schultze E, Thurow HS, Leon PMM, Dellagostin OA, Campos VF, Beck RCR, Guterres SS, Collares T, Pohlmann AR, Seixas FK. Methotrexate diethyl ester-loaded lipid-core nanocapsules in aqueous solution increased antineoplastic effects in resistant breast cancer cell line. Int J Nanomedicine 2014; 9:1583-91. [PMID: 24741306 PMCID: PMC3970944 DOI: 10.2147/ijn.s56506] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Breast cancer is the most frequent cancer affecting women. Methotrexate (MTX) is an antimetabolic drug that remains important in the treatment of breast cancer. Its efficacy is compromised by resistance in cancer cells that occurs through a variety of mechanisms. This study evaluated apoptotic cell death and cell cycle arrest induced by an MTX derivative (MTX diethyl ester [MTX(OEt)2]) and MTX(OEt)2-loaded lipid-core nanocapsules in two MTX-resistant breast adenocarcinoma cell lines, MCF-7 and MDA-MB-231. The formulations prepared presented adequate granulometric profile. The treatment responses were evaluated through flow cytometry. Relying on the mechanism of resistance, we observed different responses between cell lines. For MCF-7 cells, MTX(OEt)2 solution and MTX(OEt)2-loaded lipid-core nanocapsules presented significantly higher apoptotic rates than untreated cells and cells incubated with unloaded lipid-core nanocapsules. For MDA-MB-231 cells, MTX(OEt)2-loaded lipid-core nanocapsules were significantly more efficient in inducing apoptosis than the solution of the free drug. S-phase cell cycle arrest was induced only by MTX(OEt)2 solution. The drug nanoencapsulation improved apoptosis induction for the cell line that presents MTX resistance by lack of transport receptors.
Collapse
Affiliation(s)
- Virginia C Yurgel
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Catiuscia P Oliveira
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karine R Begnini
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Eduarda Schultze
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Helena S Thurow
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Priscila M M Leon
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Odir A Dellagostin
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Vinicius F Campos
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ruy C R Beck
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia S Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Adriana R Pohlmann
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil ; Centro de Nanociência e Nanotecnologia, CNANO-UFRGS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiana K Seixas
- Programa de Pós-Graduação em Biotecnologia (PPGB), Grupo de Pesquisa em Oncologia Celular e Molecular, Laboratório de Genômica Funcional, Biotecnologia/Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
31
|
da Silveira EF, Chassot JM, Teixeira FC, Azambuja JH, Debom G, Beira FT, Del Pino FAB, Lourenço A, Horn AP, Cruz L, Spanevello RM, Braganhol E. Ketoprofen-loaded polymeric nanocapsules selectively inhibit cancer cell growth in vitro and in preclinical model of glioblastoma multiforme. Invest New Drugs 2013; 31:1424-35. [DOI: 10.1007/s10637-013-0016-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 08/23/2013] [Indexed: 12/21/2022]
|