1
|
Dhanapal V, Subhapriya P, Arangarajan K, Jeevanantham A, Sudhakar P, Kandavelu V, Nivedhitha K, Umarfarooq M, Banapurmath N, Badruddin IA, Bashir MN, Ali MM. A facile synthesis of silver nanoparticles using Woodfordia fruticosa flower extracts for certain bacteria inhibition applications. Heliyon 2025; 11:e42125. [PMID: 40040973 PMCID: PMC11876905 DOI: 10.1016/j.heliyon.2025.e42125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 03/06/2025] Open
Abstract
The present research focused on extraction of bioactive compounds from Woodfordia fruticosa flower (WF) using ethanol, methanol and ethyl acetate as solvents and the development of silver nanoparticles using these extracts for inhibition of Staphylococcus aureus (S. aureus), Klebsiella pneumoniae (K. pneumoniae), Escherichia coli (E. coli), and Bacillus cereus (B. cereus) bacteria. The functional groups of bioactive compounds present in the solvent extracts were characterized using Fourier transform infrared spectroscopy (FT-IR). The morphological features and formation of silver nanoparticles (10-30 nm, by the reduction of solvent extracts) were evaluated using scanning electron microscopy (SEM) and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The elemental compositions of the synthesized nanoparticles were analyzed using energy-dispersive X-ray spectroscopy (EDX). The inhibition efficiency of the alcoholic and ester extracts of WF and the synthesized silver nanoparticles were evaluated and compared to Moxifloxacin. The results revealed that the synthesized silver nanoparticles demonstrated enhanced bacterial inhibition efficiency compared to the unprocessed ethanol, methanol, and ethyl acetate extracts of WF, and Moxifloxacin.
Collapse
Affiliation(s)
- Venkatachalam Dhanapal
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - Pushparaju Subhapriya
- Department of Chemistry, Bannari Amman Institute of Technology, Sathyamangalam- 638 401 Erode Dt, Tamil Nadu, India
| | - Karpaganathan Arangarajan
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - Arumugam Jeevanantham
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - Perumal Sudhakar
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - Velappan Kandavelu
- PG and Research Department of Chemistry, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, 641 020, Tamil Nadu, India
| | - K.S. Nivedhitha
- Centre for Material Science, KLE Technological University, Hubballi, Karnataka-580031, India
| | - M.A. Umarfarooq
- Centre for Material Science, KLE Technological University, Hubballi, Karnataka-580031, India
- Centre for Research Impact and Outcome, Chitkara University, Punjab, 140401, India
| | - N.R. Banapurmath
- Centre for Material Science, KLE Technological University, Hubballi, Karnataka-580031, India
| | - Irfan Anjum Badruddin
- Mechanical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Nasir Bashir
- Multi-Scale Fluid Dynamics Lab, Department of Mechanical Engineering, Yonsei University, Seoul, 120-749, Republic of Korea
| | - Muhammad Mahmood Ali
- Department of Mechatronic Engineering, Atlantic Technological University Sligo, Ash Lane, F91 YW50, Sligo, Ireland
| |
Collapse
|
2
|
Abu-Tahon MA, Alshammari FA, Shahhat IM, Ghareib M, Abdallah WE. Eco-Friendly Synthesis, Characterization, and Biomedical Applications of Biosynthesized Bimetallic Silver-Gold Nanoparticles by Culture Supernatant of Aspergillus niger. Appl Biochem Biotechnol 2025; 197:137-158. [PMID: 39106026 DOI: 10.1007/s12010-024-05035-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/07/2024]
Abstract
Green synthesis of bimetallic nanoparticles of noble metals is highly desirable in nanomedicine because of their potential use as anticoagulant, thrombolytic and anticancer agents. In this study, it was discovered that the filamentous fungus Aspergillus niger proved effective in producing bimetallic Ag-Au nanoparticles. A. niger culture supernatant was able to produce Ag-AuNPs by reducing the solution of chloroauric acid/silver nitrate (1.0:1.0 mM) within 2 min at 100 °C and pH 8. Experimental Ag-AuNP detection was performed by visually observing the color change to reddish brown. The produced nanoparticles displayed maximal absorbance at 530 nm in UV-vis spectroscopy. According to transmission electron microscopy, most of the nanoparticles were spherical, with a mean diameter of 8-10 nm. The biosynthesis of Ag-AuNPs by A. niger was confirmed by Fourier transform infrared spectroscopy, X-ray diffraction and energy dispersive X-ray analytical techniques. Its zeta potential was discovered to be -34.01 mV. The biosynthesized Ag-AuNPs exhibited effective thrombolytic and antiplatelet aggregation actions by totally preventing and dissolving the blood clot which was verified by microscopic examination, amelioration of blood coagulation assays, and carrageenan-induced tail thrombosis model. The findings verified the effectiveness of biosynthesized Ag-AuNPs as a powerful antitumor agent against HepG2 and A549 cell lines with IC50 values of 15.57 and 27.07 μg/mL, respectively. Crystal violet assay validated the cytopathic effects of Ag-AuNPs on A549 and HepG2 cell lines. Therefore, the produced Ag-AuNPs from A. niger are a promising candidate in the management of thrombosis.
Collapse
Affiliation(s)
- Medhat Ahmed Abu-Tahon
- Department of Biology, Faculty of Science and Arts, Northern Border University, Rafha, Saudi Arabia.
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, P.C.11757, Egypt.
| | - Fahdah Ayed Alshammari
- Department of Biology, Faculty of Science, Northern Border University, Arar, Saudi Arabia
| | - Ismail Mahmoud Shahhat
- Department of Biology, Faculty of Science, Northern Border University, Arar, Saudi Arabia
- Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed Ghareib
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, P.C.11757, Egypt
| | - Wafaa E Abdallah
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University, Roxy, Heliopolis, Cairo, P.C.11757, Egypt
| |
Collapse
|
3
|
Sarkar S, Roy A, Mitra R, Kundu S, Banerjee P, Acharya Chowdhury A, Ghosh S. Escaping the ESKAPE pathogens: A review on antibiofilm potential of nanoparticles. Microb Pathog 2024; 194:106842. [PMID: 39117012 DOI: 10.1016/j.micpath.2024.106842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
ESKAPE pathogens, a notorious consortium comprising Enterococcusfaecium, Staphylococcusaureus, Klebsiellapneumoniae, Acinetobacterbaumannii, Pseudomonasaeruginosa, and Enterobacter species, pose formidable challenges in healthcare settings due to their multidrug-resistant nature. The increasing global cases of antimicrobial-resistant ESKAPE pathogens are closely related to their remarkable ability to form biofilms. Thus, understanding the unique mechanisms of antimicrobial resistance of ESKAPE pathogens and the innate resilience of biofilms against traditional antimicrobial agents is important for developing innovative strategies to establish effective control methods against them. This review offers a thorough analysis of biofilm dynamics, with a focus on the general mechanisms of biofilm formation, the significant contribution of persister cells in the resistance mechanisms, and the recurrence of biofilms in comparison to planktonic cells. Additionally, this review highlights the potential strategies of nanoparticles for managing biofilms in the ESKAPE group of pathogens. Nanoparticles, with their unique physicochemical properties, provide promising opportunities for disrupting biofilm structures and improving antimicrobial effectiveness. The review has explored interactions between nanoparticles and biofilms, covering a range of nanoparticle types such as metal, metal-oxide, surface-modified, and functionalized nanoparticles, along with organic nanoparticles and nanomaterials. The additional focus of this review also encompasses green synthesis techniques of nanoparticles that involve plant extract and supernatants from bacterial and fungal cultures as reducing agents. Furthermore, the use of nanocomposites and nano emulsions in biofilm management of ESKAPE is also discussed. To conclude, the review addresses the current obstacles and future outlooks in nanoparticle-based biofilm management, stressing the necessity for further research and development to fully exploit the potential of nanoparticles in addressing biofilm-related challenges.
Collapse
Affiliation(s)
| | - Ankita Roy
- Department of Biosciences, JIS University, Kolkata, India
| | - Rangan Mitra
- Department of Biosciences, JIS University, Kolkata, India
| | - Sweta Kundu
- Department of Biosciences, JIS University, Kolkata, India
| | | | | | - Suparna Ghosh
- Department of Biosciences, JIS University, Kolkata, India.
| |
Collapse
|
4
|
Yu J, Li C, Zhang W, Li Y, Miao W, Huang H. Photodynamic black phosphorus nanosheets functionalized with polymyxin B for targeted ablation of drug-resistant mixed-species biofilms. J Control Release 2024; 372:795-809. [PMID: 38960150 DOI: 10.1016/j.jconrel.2024.06.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Biofilms, particularly those formed by multiple bacterial species, pose significant economic and environmental challenges, especially in the context of medical implants. Addressing the urgent need for effective treatment strategies that do not exacerbate drug resistance, we developed a novel nanoformulation, Ce6&PMb@BPN, based on black phosphorus nanosheets (BPN) for targeted treatment of mixed-species biofilms formed by Acinetobacter baumannii (A. baumannii) and methicillin-resistant Staphylococcus aureus (MRSA).The formulation leverages polymyxin B (PMb) for bacterial targeting and chlorin e6 (Ce6) for photodynamic action. Upon near-infrared (NIR) irradiation, Ce6&PMb@BPN efficiently eliminates biofilms by combining chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), reducing biofilm biomass significantly within 30 min. In vivo studies on mice infected with mixed-species biofilm-coated catheters demonstrated the formulation's potent antibacterial and biofilm ablation effects. Moreover, comprehensive biosafety evaluations confirmed the excellent biocompatibility of Ce6&PMb@BPN. Taken together, this intelligently designed nanoformulation holds potential for effectively treating biofilm-associated infections, addressing the urgent need for strategies to combat antibiotic-resistant biofilms, particularly mixed-species biofilm, in medical settings.
Collapse
Affiliation(s)
- Jie Yu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Chenhui Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Weipeng Zhang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China
| | - Yuanyuan Li
- School of Pharmacy, Hainan Medical University, Haikou 571199, Hainan, China
| | - Wenjun Miao
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210009, PR China.
| |
Collapse
|
5
|
Heine N, Doll-Nikutta K, Stein F, Jakobi J, Ingendoh-Tsakmakidis A, Rehbock C, Winkel A, Barcikowski S, Stiesch M. Anti-biofilm properties of laser-synthesized, ultrapure silver-gold-alloy nanoparticles against Staphylococcus aureus. Sci Rep 2024; 14:3405. [PMID: 38336925 PMCID: PMC10858226 DOI: 10.1038/s41598-024-53782-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Staphylococcus aureus biofilm-associated infections are a common complication in modern medicine. Due to inherent resilience of biofilms to antibiotics and the rising number of antibiotic-resistant bacterial strains, new treatment options are required. For this purpose, ultrapure, spherical silver-gold-alloy nanoparticles with homogenous elemental distribution were synthesized by laser ablation in liquids and analyzed for their antibacterial activity on different stages of S. aureus biofilm formation as well as for different viability parameters. First, the effect of nanoparticles against planktonic bacteria was tested with metabolic activity measurements. Next, nanoparticles were incubated with differently matured S. aureus biofilms, which were then analyzed by metabolic activity measurements and three dimensional live/dead fluorescent staining to determine biofilm volume and membrane integrity. It could be shown that AgAu NPs exhibit antibacterial properties against planktonic bacteria but also against early-stage and even mature biofilms, with a complete diffusion through the biofilm matrix. Furthermore, AgAu NPs primarily targeted metabolic activity, to a smaller extend membrane integrity, but not the biofilm volume. Additional molecular analyses using qRT-PCR confirmed the influence on different metabolic pathways, like glycolysis, stress response and biofilm formation. As this shows clear similarities to the mechanism of pure silver ions, the results strengthen silver ions to be the major antibacterial agent of the synthesized nanoparticles. In summary, the results of this study provide initial evidence of promising anti-biofilm characteristics of silver-gold-alloy nanoparticles and support the importance of further translation-oriented analyses in the future.
Collapse
Affiliation(s)
- Nils Heine
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| | - Katharina Doll-Nikutta
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Frederic Stein
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Jurij Jakobi
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Alexandra Ingendoh-Tsakmakidis
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Christoph Rehbock
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Andreas Winkel
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany
| | - Stephan Barcikowski
- Technical Chemistry I, University of Duisburg Essen, Universitaetsstr. 7, 45141, Essen, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
- Lower Saxony Centre of Biomedical Engineering, Implant Research and Development, Stadtfelddamm 34, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Aboelenin AM, El-Mowafy M, Saleh NM, Shaaban MI, Barwa R. Ciprofloxacin- and levofloxacin-loaded nanoparticles efficiently suppressed fluoroquinolone resistance and biofilm formation in Acinetobacter baumannii. Sci Rep 2024; 14:3125. [PMID: 38326515 PMCID: PMC10850473 DOI: 10.1038/s41598-024-53441-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/31/2024] [Indexed: 02/09/2024] Open
Abstract
The spread of fluoroquinolone (FQ) resistance in Acinetobacter baumannii represents a critical health threat. This study aims to overcome FQ resistance in A. baumannii via the formulation of polymeric nanoFQs. Herein, 80 A. baumannii isolates were obtained from diverse clinical sources. All A. baumannii isolates showed high resistance to most of the investigated antimicrobials, including ciprofloxacin (CIP) and levofloxacin (LEV) (97.5%). FQ resistance-determining regions of the gyrA and parC genes were the most predominant resistant mechanism, harbored by 69 (86.3%) and 75 (93.8%) of the isolates, respectively. Additionally, plasmid-mediated quinolone resistance genes aac(6')-Ib and qnrS were detected in 61 (76.3%) and 2 (2.5%) of the 80 isolates, respectively. The CIP- and LEV-loaded poly ε-caprolactone (PCL) nanoparticles, FCIP and FLEV, respectively, showed a 1.5-6- and 6-12-fold decrease in the MIC, respectively, against the tested isolates. Interestingly, the time kill assay demonstrated that MICs of FCIP and FLEV completely killed A. baumannii isolates after 5-6 h of treatment. Furthermore, FCIP and FLEV were found to be efficient in overcoming the FQ resistance mediated by the efflux pumps in A. baumannii isolates as revealed by decreasing the MIC four-fold lower than that of free CIP and LEV, respectively. Moreover, FCIP and FLEV at 1/2 and 1/4 MIC significantly decreased biofilm formation by 47-93% and 69-91%, respectively. These findings suggest that polymeric nanoparticles can restore the effectiveness of FQs and represent a paradigm shift in the fight against A. baumannii isolates.
Collapse
Affiliation(s)
- Alaa M Aboelenin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mohammed El-Mowafy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Noha M Saleh
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt
| | - Mona I Shaaban
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| | - Rasha Barwa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, PO Box 35516, Mansoura, Egypt.
| |
Collapse
|
7
|
Martínez-García K, Zertuche-Arias T, Bernáldez-Sarabia J, Iñiguez E, Kretzchmar T, Camacho-Villegas TA, Lugo-Fabres PH, Licea Navarro AF, Bravo-Madrigal J, Castro-Ceseña AB. Radical Scavenging, Hemocompatibility, and Antibacterial Activity against MDR Acinetobacter baumannii in Alginate-Based Aerogels Containing Lipoic Acid-Capped Silver Nanoparticles. ACS OMEGA 2024; 9:2350-2361. [PMID: 38250422 PMCID: PMC10795026 DOI: 10.1021/acsomega.3c06114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024]
Abstract
Retaining the hemocompatibility, supporting cell growth, and exhibiting anti-inflammatory and antioxidant properties, while having antimicrobial activity, particularly against multidrug-resistant bacteria (MDR), remain a challenge when designing aerogels for biomedical applications. Here, we report that our synthesized alginate-based aerogels containing either 7.5 or 11.25 μg of lipoic acid-capped silver nanoparticles (AgNPs) showed improved hemocompatibility properties while retaining their antimicrobial effect against MDR Acinetobacter baumannii and the reference strain Escherichia coli, relative to a commercial dressing and polymyxin B, used as a reference. The differences in terms of the microstructure and nature of the silver, used as the bioactive agent, between our synthesized aerogels and the commercial dressing used as a reference allowed us to improve several biological properties in our aerogels with respect to the reference commercial material. Our aerogels showed significantly higher antioxidant capacity, in terms of nmol of Trolox equivalent antioxidant capacity per mg of aerogel, than the commercial dressing. All our synthesized aerogels showed anti-inflammatory activity, expressed as nmol of indomethacin equivalent anti-inflammatory activity per mg of aerogel, while this property was not found in the commercial dressing material. Finally, our aerogels were highly hemocompatible (less than 1% hemolysis ratio); however, the commercial material showed a 20% hemolysis rate. Therefore, our alginate-based aerogels with lipoic acid-capped AgNPs hold promise for biomedical applications.
Collapse
Affiliation(s)
- Kevin
D. Martínez-García
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tonatzin Zertuche-Arias
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Johanna Bernáldez-Sarabia
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Enrique Iñiguez
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT—Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Thomas Kretzchmar
- Ciencias
de la Tierra, Centro de Investigación
Científica y de Educación Superior de Ensenada, Baja
California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Tanya Amanda Camacho-Villegas
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Pavel H. Lugo-Fabres
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
- CONAHCYT-Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño del Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Alexei F. Licea Navarro
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| | - Jorge Bravo-Madrigal
- Unidad
de Biotecnología Médica y Farmacéutica, Centro de Investigación Asistencia en Tecnología
y Diseño de Estado de Jalisco (CIATEJ), A.C. Av. Normalistas No. 800, Colinas de la Normal, C.P. 44270 Guadalajara, Jalisco, Mexico
| | - Ana B. Castro-Ceseña
- Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
- CONAHCYT-Departamento
de Innovación Biomédica, Centro
de Investigación Científica y de Educación Superior
de Ensenada, Baja California (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860 Ensenada, Baja California, Mexico
| |
Collapse
|
8
|
Tran THM, Wang R, Kim H, Kim YJ. The anti-inflammation and skin-moisturizing effects of Boehmeria tricuspis-mediated biosynthesized gold nanoparticles in human keratinocytes. Front Pharmacol 2023; 14:1258057. [PMID: 37869754 PMCID: PMC10588637 DOI: 10.3389/fphar.2023.1258057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction: Recently, nanotechnology has emerged as a potential technique for skin generation, which has several treatment advantages, such as decreased drug cytotoxicity and enhanced skin penetration. Boehmeria tricuspis (BT) belongs to the Urticaceae family and is rich in phenolic and flavonoid compounds. In this study, we biosynthesized gold nanoparticles (BT-AuNPs) using BT extract to explore their anti-inflammatory and skin-moisturizing properties in keratinocytes. Methods: Field-emission transmission electron microscopy, energydispersive X-ray spectrometry, dynamic light scattering, and Fourier-transforminfrared spectroscopy were used to examine the synthesized BT-AuNPs. qRT-PCR, western blot, and ELISA were applied for investigating the effect of BT-AuNPs on anti-inflammation and moisturizing activity in HaCaT cells. Results: At concentrations below 200 μg/mL, BT-AuNPs had no cytotoxic effect on keratinocytes. BT-AuNPs dramatically alleviated the expression and secretion of inflammatory chemokines/cytokine, such as IL-6, IL-8, TARC, CTACK, and RANTES in keratinocytes stimulated by tumor necrosis factor-α/interferon-γ (T + I). These anti-inflammatory properties of BT-AuNPs were regulated by inhibiting the NF-κB and MAPKs signaling pathways. Furthermore, BT-AuNPs greatly promoted hyaluronic acid (HA) production by enhancing the expression of hyaluronic acid synthase genes (HAS1, HAS2, and HAS3) and suppressing the expression of hyaluronidase genes (HYAL1 and HYAL2) in HaCaT cells. Discussion: These results suggest that BT-AuNPs can be used as a promising therapeutic alternative for treating skin inflammation. Our findings provide a potential platform for the use of BT-AuNPs as candidates for treating inflammatory skin diseases and promoting skin health.
Collapse
Affiliation(s)
- Thi Hoa My Tran
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Rongbo Wang
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| | - Hoon Kim
- Department of Food and Nutrition, Chung Ang University, Anseong, Republic of Korea
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and College of Life Science, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
9
|
Ruiz-Fresneda MA, Staicu LC, Lazuén-López G, Merroun ML. Allotropy of selenium nanoparticles: Colourful transition, synthesis, and biotechnological applications. Microb Biotechnol 2023; 16:877-892. [PMID: 36622050 PMCID: PMC10128136 DOI: 10.1111/1751-7915.14209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/28/2022] [Indexed: 01/10/2023] Open
Abstract
Elemental selenium (Se0 ) nanomaterials undergo allotropic transition from thermodynamically-unstable to more stable phases. This process is significantly different when Se0 nanoparticles (NPs) are produced via physico-chemical and biological pathways. While the allotropic transition of physico-chemically synthesized Se0 is fast (minutes to hours), the biogenic Se0 takes months to complete. The biopolymer layer covering biogenic Se0 NPs might be the main factor controlling this retardation, but this still remains an open question. Phylogenetically-diverse bacteria reduce selenium oxyanions to red amorphous Se0 allotrope, which has low market value. Then, red Se0 undergoes allotropic transition to trigonal (metallic grey) allotrope, the end product having important industrial applications (e.g. semiconductors, alloys). Is it not yet clear whether biogenic Se0 presents any biological function, or it is mainly a detoxification and respiratory by-product. The better understanding of this transition would benefit the recovery of Se0 NPs from secondary resources and its targeted utilization with respect to each allotropic stage. This review article presents and critically discusses the main physico-chemical methods and biosynthetic pathways of Se0 (bio)mineralization. In addition, the article proposes a conceptual model for the resource recovery potential of trigonal selenium nanomaterials in the context of circular economy.
Collapse
Affiliation(s)
| | - Lucian C Staicu
- Institute of Bacterial Genetics, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Mohamed L Merroun
- Department of Microbiology, Faculty of Sciences, University of Granada, Granada, Spain
| |
Collapse
|
10
|
Amutha E, Rajaduraipandian S, Sivakavinesan M, Annadurai G. Hydrothermal synthesis and characterization of the antimony-tin oxide nanomaterial and its application as a high-performance asymmetric supercapacitor, photocatalyst, and antibacterial agent. NANOSCALE ADVANCES 2022; 5:255-267. [PMID: 36605811 PMCID: PMC9765471 DOI: 10.1039/d2na00666a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
We have synthesized antimony-tin oxide (ATO) nanoparticles chemically for use in antibacterial, photocatalytic, and supercapacitor applications. The XRD pattern reveals the hexagonal structure, while the FTIR spectra validate the functional groups. The agglomerated nanostructures, which are 40-50 nm thick and 100 nm long, are shown in the SEM images as having spherical, cube, square, and rod form morphologies. In a DLS test, ATO has a zeta potential of 28.93/-28.00 mV, demonstrating strong colloidal stability in the suspension. With minimum inhibitory concentrations (MIC) ranging from 25 to 100 g mL-1, ATO is also tested for its antibacterial activity against a variety of Gram-positive and Gram-negative bacteria. Additionally, rhodamine dye was broken down by ATO nanoparticles in 240 minutes with a degradation efficiency of 88 percent. The specific capacitance (C s) and energy density (E) values of ATO nanoparticles further demonstrated their suitability for use in supercapacitors.
Collapse
Affiliation(s)
- Eswaran Amutha
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | | | - Minnalkodi Sivakavinesan
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| | - Gurusamy Annadurai
- Sri Paramakalyani Centre of Excellence in Environmental Sciences, Manonmaniam Sundaranar University Alwarkurichi - 627412 India
| |
Collapse
|
11
|
Sabzi N, Moniri R, Sehat M, Fathizadeh H, Nazari-Alam A. Antimicrobial effect of silver and gold nanoparticles in combination with linezolid on Enterococcus biofilm. IRANIAN JOURNAL OF MICROBIOLOGY 2022; 14:863-873. [PMID: 36721451 PMCID: PMC9867620 DOI: 10.18502/ijm.v14i6.11261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background and Objectives In the past few years, application of new antimicrobial e.g. nanoparticles (NPs) to treat infection caused by drug-resistant bacteria has increased. This study aimed to determine antimicrobial property of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) in combination with linezolid on Enterococcus biofilm. Materials and Methods A total of forty-eight isolates of Enterococcus spp. were collected and confirmed by PCR method. The synthesis of biocompatible AgNPs was performed, then analyzed by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy. We carried out minimum inhibitory concentration (MIC) and biofilm forming capacity of AgNPs and AuNPs with linezolid. Results Twenty-two E. faecium isolates and twentysix E. faecalis investigated in this study. Strong biofilm formation was seen in 12 (25%) of isolates, and others isolates (75%) formed moderate biofilm. AgNPs and Au-NPs size were 26 nm and 20 nm respectively. The MIC of AgNPs was 23.2 μg/ml, and AuNPs were 92.1 μg/ml and the lowest MIC was obtained 2 μg/ml in linezolid. Biofilm formation inhibitory activity by AuNPs + Linezolide and AgNPs + Linezolide 70 to 80 percent increased in average. Conclusion The antibiofilm activity of AgNPs and AuNPs increased when both agents were used in combination with linezolid in comparison with each agent alone.
Collapse
Affiliation(s)
- Niloofar Sabzi
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Rezvan Moniri
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Sehat
- Trauma Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hadis Fathizadeh
- Student Research Committee, Sirjan School of Medical Sciences, Sirjan, Iran,Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Ali Nazari-Alam
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran,Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran,Corresponding author: Ali Nazari-Alam, Ph.D, Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran. Tel: +98-3155540021-25 Fax: +98-3155541112
| |
Collapse
|
12
|
Bloch K, Mohammed SM, Karmakar S, Shukla S, Asok A, Banerjee K, Patil-Sawant R, Mohd Kaus NH, Thongmee S, Ghosh S. Catalytic dye degradation by novel phytofabricated silver/zinc oxide composites. Front Chem 2022; 10:1013077. [DOI: 10.3389/fchem.2022.1013077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phytofabrication of the nanoparticles with exotic shape and size is an attractive area where nanostructures with noteworthy physicochemical and optoelectronic properties that can be significantly employed for photocatalytic dye degradation. In this study a medicinal plant, Plumbago auriculata leaf extract (PALE) was used to synthesize zinc oxide particles (ZnOPs) and silver mixed zinc oxide particles (ZnOAg1Ps, ZnOAg10Ps, ZnO10Ag1Ps) by varying the concentration of the metal precursor salts, i.e. zinc acetate and silver nitrate. The PALE showed significantly high concentrations of polyphenols, flavonoids, reducing sugar, starch, citric acid and plumbagin up to 314.3 ± 0.33, 960.0 ± 2.88, 121.3 ± 4.60, 150.3 ± 3.17, 109.4 ± 2.36, and 260.4 ± 8.90 μg/ml, respectively which might play an important role for green synthesis and capping of the phytogenic nanoparticles. The resulting particles were polydispersed which were mostly irregular, spherical, hexagonal and rod like in shape. The pristine ZnOPs exhibited a UV absorption band at 352 nm which shifted around 370 in the Ag mixed ZnOPs with concomitant appearance of peaks at 560 and 635 nm in ZnO10Ag1Ps and ZnOAg1Ps, respectively. The majority of the ZnOPs, ZnOAg1Ps, ZnOAg10Ps, and ZnO10Ag1Ps were 407, 98, 231, and 90 nm in size, respectively. Energy dispersive spectra confirmed the elemental composition of the particles while Fourier transform infrared spectra showed the involvement of the peptide and methyl functional groups in the synthesis and capping of the particles. The composites exhibited superior photocatalytic degradation of methylene blue dye, maximum being 95.7% by the ZnOAg10Ps with a rate constant of 0.0463 s−1 following a first order kinetic model. The present result clearly highlights that Ag mixed ZnOPs synthesized using Plumbago auriculata leaf extract (PALE) can play a critical role in removal of hazardous dyes from effluents of textile and dye industries. Further expanding the application of these phytofabricated composites will promote a significant complementary and alternative strategy for treating refractory pollutants from wastewater.
Collapse
|
13
|
Biogenic Selenium Nanoparticles and Their Anticancer Effects Pertaining to Probiotic Bacteria—A Review. Antioxidants (Basel) 2022; 11:antiox11101916. [PMID: 36290639 PMCID: PMC9598137 DOI: 10.3390/antiox11101916] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Selenium nanoparticles (SeNPs) can be produced by biogenic, physical, and chemical processes. The physical and chemical processes have hazardous effects. However, biogenic synthesis (by microorganisms) is an eco-friendly and economical technique that is non-toxic to human and animal health. The mechanism for biogenic SeNPs from microorganisms is still not well understood. Over the past two decades, extensive research has been conducted on the nutritional and therapeutic applications of biogenic SeNPs. The research revealed that biogenic SeNPs are considered novel competitors in the pharmaceutical and food industries, as they have been shown to be virtually non-toxic when used in medical practice and as dietary supplements and release only trace amounts of Se ions when ingested. Various pathogenic and probiotic/nonpathogenic bacteria are used for the biogenic synthesis of SeNPs. However, in the case of biosynthesis by pathogenic bacteria, extraction and purification techniques are required for further useful applications of these biogenic SeNPs. This review focuses on the applications of SeNPs (derived from probiotic/nonpathogenic organisms) as promising anticancer agents. This review describes that SeNPs derived from probiotic/nonpathogenic organisms are considered safe for human consumption. These biogenic SeNPs reduce oxidative stress in the human body and have also been shown to be effective against breast, prostate, lung, liver, and colon cancers. This review provides helpful information on the safe use of biogenic SeNPs and their economic importance for dietary and therapeutic purposes, especially as anticancer agents.
Collapse
|
14
|
Abbas HA, Shaker GH, Mosallam FM, Gomaa SE. Novel silver metformin nano-structure to impede virulence of Staphylococcus aureus. AMB Express 2022; 12:84. [PMID: 35771288 PMCID: PMC9247137 DOI: 10.1186/s13568-022-01426-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Staphylococcus aureus is a prevalent etiological agent of health care associated and community acquired infections. Antibiotic abuse resulted in developing multidrug resistance in S. aureus that complicates treatment of infections. Targeting bacterial virulence using FDA approved medication offers an alternative to the antibiotics with no stress on bacterial viability. Using nanomaterials as anti-virulence agent against S. aureus virulence factors is a valuable approach. This study aims to investigate the impact of metformin (MET), metformin nano (MET-Nano), silver metformin nano structure (Ag-MET-Ns) and silver nanoparticles (AgNPs) on S. aureus virulence and pathogenicity. The in vitro results showed a higher inhibitory activity against S. aureus virulence factors with both MET-Nano and Ag-MET-Ns treatment. However, genotypically, it was found that except for agrA and icaR genes that are upregulated, the tested agents significantly downregulated the expression of crtM, sigB, sarA and fnbA genes, with Ag-MET-Ns being the most efficient one. MET-Nano exhibited the highest protection against S. aureus infection in mice. These data indicate the promising anti-virulence activity of nanoformulations especially Ag-MET-Ns against multidrug resistant S. aureus by inhibiting quorum sensing signaling system. A new formation of silver metformin nanostructure. The in vitro inhibition of S. aureus virulence factors. Nano structure form improves the activity of anti-virulence agents.
Collapse
Affiliation(s)
- Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| | - Ghada H Shaker
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| | - Farag M Mosallam
- Drug Microbiology Lab., Drug Radiation Research Department, Biotechnology Division, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Salwa E Gomaa
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University,, Zagazig, Egypt
| |
Collapse
|
15
|
Effect of Biosynthesized Silver Nanoparticles on Bacterial Biofilm Changes in S. aureus and E. coli. NANOMATERIALS 2022; 12:nano12132183. [PMID: 35808019 PMCID: PMC9268453 DOI: 10.3390/nano12132183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
One approach for solving the problem of antibiotic resistance and bacterial persistence in biofilms is treatment with metals, including silver in the form of silver nanoparticles (AgNPs). Green synthesis is an environmentally friendly method to synthesize nanoparticles with a broad spectrum of unique properties that depend on the plant extracts used. AgNPs with antibacterial and antibiofilm effects were obtained using green synthesis from plant extracts of Lagerstroemia indica (AgNPs_LI), Alstonia scholaris (AgNPs_AS), and Aglaonema multifolium (AgNPs_AM). Nanoparticles were characterized by transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy (EDX) analysis. The ability to quench free radicals and total phenolic content in solution were also evaluated. The antibacterial activity of AgNPs was studied by growth curves as well as using a diffusion test on agar medium plates to determine minimal inhibitory concentrations (MICs). The effect of AgNPs on bacterial biofilms was evaluated by crystal violet (CV) staining. Average minimum inhibitory concentrations of AgNPs_LI, AgNPs_AS, AgNPs_AM were 15 ± 5, 20 + 5, 20 + 5 μg/mL and 20 ± 5, 15 + 5, 15 + 5 μg/mL against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, respectively. The E. coli strain formed biofilms in the presence of AgNPs, a less dense biofilm than the S. aureus strain. The highest inhibitory and destructive effect on biofilms was exhibited by AgNPs prepared using an extract from L. indica.
Collapse
|
16
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
17
|
Mohanta YK, Chakrabartty I, Mishra AK, Chopra H, Mahanta S, Avula SK, Patowary K, Ahmed R, Mishra B, Mohanta TK, Saravanan M, Sharma N. Nanotechnology in combating biofilm: A smart and promising therapeutic strategy. Front Microbiol 2022; 13:1028086. [PMID: 36938129 PMCID: PMC10020670 DOI: 10.3389/fmicb.2022.1028086] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 03/06/2023] Open
Abstract
Since the birth of civilization, people have recognized that infectious microbes cause serious and often fatal diseases in humans. One of the most dangerous characteristics of microorganisms is their propensity to form biofilms. It is linked to the development of long-lasting infections and more severe illness. An obstacle to eliminating such intricate structures is their resistance to the drugs now utilized in clinical practice (biofilms). Finding new compounds with anti-biofilm effect is, thus, essential. Infections caused by bacterial biofilms are something that nanotechnology has lately shown promise in treating. More and more studies are being conducted to determine whether nanoparticles (NPs) are useful in the fight against bacterial infections. While there have been a small number of clinical trials, there have been several in vitro outcomes examining the effects of antimicrobial NPs. Nanotechnology provides secure delivery platforms for targeted treatments to combat the wide range of microbial infections caused by biofilms. The increase in pharmaceuticals' bioactive potential is one of the many ways in which nanotechnology has been applied to drug delivery. The current research details the utilization of several nanoparticles in the targeted medication delivery strategy for managing microbial biofilms, including metal and metal oxide nanoparticles, liposomes, micro-, and nanoemulsions, solid lipid nanoparticles, and polymeric nanoparticles. Our understanding of how these nanosystems aid in the fight against biofilms has been expanded through their use.
Collapse
Affiliation(s)
- Yugal Kishore Mohanta
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- *Correspondence: Yugal Kishore Mohanta,
| | - Ishani Chakrabartty
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Indegene Pvt. Ltd., Manyata Tech Park, Bangalore, India
| | | | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology (NIELIT), Guwahati Centre, Guwahati, Assam, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Kaustuvmani Patowary
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
| | - Ramzan Ahmed
- Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, Meghalaya, India
- Department of Physics, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Bibhudutta Mishra
- Department of Gastroenterology and HNU, All India Institute of Medical Sciences, New Delhi, India
| | - Tapan Kumar Mohanta
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- Tapan Kumar Mohanta,
| | - Muthupandian Saravanan
- AMR and Nanotherapeutics Laboratory, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
- Nanaocha Sharma,
| |
Collapse
|
18
|
Nudelman R, Gavriely S, Bychenko D, Barzilay M, Gulakhmedova T, Gazit E, Richter S. Bio-assisted synthesis of bimetallic nanoparticles featuring antibacterial and photothermal properties for the removal of biofilms. J Nanobiotechnology 2021; 19:452. [PMID: 34963478 PMCID: PMC8715638 DOI: 10.1186/s12951-021-01183-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/04/2021] [Indexed: 12/02/2022] Open
Abstract
Biofilms are responsible for about considerable amounts of cases of bacterial infections in humans. They are considered a major threat to transplant and chronic wounds patients due to their highly resistant nature against antibacterial materials and due to the limited types of techniques that can be applied to remove them. Here we demonstrate a successful in-situ bio-assisted synthesis of dual functionality nanoparticles composed of Silver and Gold. This is done using a jellyfish-based scaffold, an antibacterial material as the templating host in the synthesis. We further explore the scaffold’s antibacterial and photothermal properties against various gram-negative and positive model bacteria with and without photo-induced heating at the Near-IR regime. We show that when the scaffold is loaded with these bimetallic nanoparticles, it exhibits dual functionality: Its photothermal capabilities help to disrupt and remove bacterial colonies and mature biofilms, and its antibacterial properties prevent the regrowth of new biofilms. ![]()
Collapse
Affiliation(s)
- Roman Nudelman
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Shira Gavriely
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Darya Bychenko
- University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.,The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, The George S. Wise, Tel-Aviv, Israel
| | - Michal Barzilay
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Tamilla Gulakhmedova
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel.,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel
| | - Ehud Gazit
- University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.,The Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, The George S. Wise, Tel-Aviv, Israel
| | - Shachar Richter
- Department of Materials Science and Engineering, Faculty of Engineering, Tel Aviv University, 69978, Tel-Aviv, Israel. .,University Center for Nano Science and Nanotechnology, Tel-Aviv, Israel.
| |
Collapse
|
19
|
Gangaram S, Naidoo Y, Dewir YH, El-Hendawy S. Phytochemicals and Biological Activities of Barleria (Acanthaceae). PLANTS 2021; 11:plants11010082. [PMID: 35009086 PMCID: PMC8747396 DOI: 10.3390/plants11010082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 12/31/2022]
Abstract
Plant species belonging to the family Acanthaceae are globally known to possess various medicinal properties and have cultural and economic importance in both traditional medicine and horticulture. They are important to both animals and humans and are used as food or for ornamental purposes worldwide. Barleria is the third largest genus in the family Acanthaceae. A few of the highly important and reported species of Barleria include B. prionitis, B. cristata, B. grandiflora, and B. lupulina. The flowers, leaves, stems, roots, and seed extracts of plants belonging to this genus are rich in bioactive compounds and have exhibited significant medicinal potential for the treatment of various ailments and infections. Evidence derived from several studies has demonstrated the antioxidant, antibacterial, antifungal, anti-inflammatory, anticancer, antidiabetic, antiulcer, hepatoprotective, analgesic, antiamoebic, antihelminthic, antiarthritic, antihypertensive, antiviral properties and toxicity of extracts, in addition inhibition of acetylcholinesterase activity and biosynthesis of nanoparticles, of the plant and seed extracts of species belonging to Barleria. Studies have reported that bioactive compounds such as flavonoids, quinones, iridoids, phenylethanoid glycosides, the immunostimulant protein “Sankaranin”, and antibiotics isolated from Barleria species are resposnsible for the above biological activities. Traditionally, the genus Barleria has significant medicinal potential; however, there is a scarcity of information on various species that are yet to be evaluated. This review provides a comprehensive report on existing literature, concerning the phytochemistry and biological activities of the genus Barleria.
Collapse
Affiliation(s)
- Serisha Gangaram
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yougasphree Naidoo
- School of Life Sciences, Westville Campus, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (S.G.); (Y.N.)
| | - Yaser Hassan Dewir
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Horticulture, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
- Correspondence: author:
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
20
|
Melk MM, El-Hawary SS, Melek FR, Saleh DO, Ali OM, El Raey MA, Selim NM. Antiviral Activity of Zinc Oxide Nanoparticles Mediated by Plumbago indica L. Extract Against Herpes Simplex Virus Type 1 (HSV-1). Int J Nanomedicine 2021; 16:8221-8233. [PMID: 34955639 PMCID: PMC8694278 DOI: 10.2147/ijn.s339404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/05/2021] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Plumbago indica L. is considered a valuable source in the Plumbaginaceae family for various types of active compound such as alkaloids, phenolics and saponins. To promote the usage of P. indica in the bionanotechnology field, zinc oxide nanoparticles (ZnONPs) were biosynthesized by using its alcoholic extract. The inhibitory effects of ZnONPs and the plant extract were also evaluated against HSV-1. METHODS ZnONPs were described by the following techniques, UV-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), zeta potential, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction (XRD). The phenolic and flavonoid contents of P. indica extract, which are accountable for bioreduction, formation and stabilization of the nanoparticles, were analyzed by HPLC technique. The antiviral assessment was implemented on both agents by using Vero cell lines. RESULTS DLS revealed that the average size of ZnONPs was 32.58 ± 7.98 nm and the zeta potential was -20.8 mV. The observation of TEM analysis revealed that the particle size of ZnONPs varied from 2.56 to 8.83 nm. The XRD analysis verified the existence of pure crystals of hexagonal shapes of nanoparticles of ZnO with a main average size of 35.28 nm that is approximating to the values of particle size acquired by SEM analysis (19.64 and 23.21 nm). The HPLC analysis of P. indica ethanolic extract showed that gallic acid, chlorogenic acid and rutin were the major compounds, with concentrations equal to 8203.99, 2965.95 and 1144.99 µg/g, respectively. Regarding the antiviral assessment, the synthesized uncalcinated ZnONPs were found to exhibit a promising activity against HSV-1, with CC50 and IC50 values equal to 43.96 ± 1.39 and 23.17 ± 2.29 µg/mL, respectively. CONCLUSION The green synthesized ZnONPs are considered promising adjuvants to enhance the efficacy of HSV-1 drugs.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Seham S El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza, Egypt
| | | | - Omar M Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, Taif, 21944, Saudi Arabia
| | - Mohamed A El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, Dokki, Cairo, Egypt
| | - Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
21
|
Berta L, Coman NA, Rusu A, Tanase C. A Review on Plant-Mediated Synthesis of Bimetallic Nanoparticles, Characterisation and Their Biological Applications. MATERIALS 2021; 14:ma14247677. [PMID: 34947271 PMCID: PMC8705710 DOI: 10.3390/ma14247677] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
The study of bimetallic nanoparticles (BNPs) has constantly been expanding, especially in the last decade. The biosynthesis of BNPs mediated by natural extracts is simple, low-cost, and safe for the environment. Plant extracts contain phenolic compounds that act as reducing agents (flavonoids, terpenoids, tannins, and alkaloids) and stabilising ligands moieties (carbonyl, carboxyl, and amine groups), useful in the green synthesis of nanoparticles (NPs), and are free of toxic by-products. Noble bimetallic NPs (containing silver, gold, platinum, and palladium) have potential for biomedical applications due to their safety, stability in the biological environment, and low toxicity. They substantially impact human health (applications in medicine and pharmacy) due to the proven biological effects (catalytic, antioxidant, antibacterial, antidiabetic, antitumor, hepatoprotective, and regenerative activity). To the best of our knowledge, there are no review papers in the literature on the synthesis and characterisation of plant-mediated BNPs and their pharmacological potential. Thus, an effort has been made to provide a clear perspective on the synthesis of BNPs and the antioxidant, antibacterial, anticancer, antidiabetic, and size/shape-dependent applications of BNPs. Furthermore, we discussed the factors that influence BNPs biosyntheses such as pH, temperature, time, metal ion concentration, and plant extract.
Collapse
Affiliation(s)
- Lavinia Berta
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Năstaca-Alina Coman
- Medicine and Pharmacy Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| | - Aura Rusu
- Pharmaceutical and Therapeutical Chemistry Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Corneliu Tanase
- Pharmaceutical Botany Department, Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania;
| |
Collapse
|
22
|
Melk MM, El-Hawary SS, Melek FR, Saleh DO, Ali OM, El Raey MA, Selim NM. Nano Zinc Oxide Green-Synthesized from Plumbago auriculata Lam. Alcoholic Extract. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112447. [PMID: 34834809 PMCID: PMC8624397 DOI: 10.3390/plants10112447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 05/06/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) were synthesized by using an alcoholic extract of the flowering aerial parts of Plumbago auriculata Lam. Dynamic Light Scattering (DLS) revealed that the average size of synthesized ZnO NPs was 10.58 ± 3.350 nm and the zeta potential was -19.6 mV. Transmission electron microscopy (TEM) revealed that the particle size was in the range from 5.08 to 6.56 nm. X-ray diffraction (XRD) analysis verified the existence of pure hexagonal shaped crystals of ZnO nanoparticles with an average size of 35.34 nm in the sample, which is similar to the particle size analysis acquired by scanning electron microscopy (SEM) (38.29 ± 6.88 nm). HPLC analysis of the phenolic ingredients present in the plant extract showed that gallic acid, chlorogenic acid, and catechin were found as major compounds at concentrations of 1720.26, 1600.42, and 840.20 µg/g, respectively. Furthermore, the inhibitory effects of ZnO NPs and the plant extract against avian metapneumovirus (aMPV) subtype B were also investigated. This assessment revealed that the uncalcinated form of Nano-ZnO mediated by P. auriculata Lam. extract possessed a significant antiviral activity with 50% cytotoxic concentration (CC50) and 50% inhibition concentration (IC50) of 52.48 ± 1.57 and 42.67 ± 4.08 µg/mL, respectively, while the inhibition percentage (IP) was 99% and the selectivity index (SI) was 1.23.
Collapse
Affiliation(s)
- Mina Michael Melk
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
| | - Seham S. El-Hawary
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
| | - Farouk Rasmy Melek
- Chemistry of Natural Compounds Department, National Research Centre, Giza 12622, Egypt;
| | - Dalia Osama Saleh
- Pharmacology Department, National Research Centre, Giza 12622, Egypt;
| | - Omar M. Ali
- Department of chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (O.M.A.); (N.M.S.)
| | - Mohamed A. El Raey
- Department of Phytochemistry and Plant Systematics, Pharmaceutical Division, National Research Centre, 33 El Bohouth Street, P.O. Box 12622, Dokki, Cairo 12622, Egypt;
| | - Nabil Mohamed Selim
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Giza 12613, Egypt; (M.M.M.); (S.S.E.-H.)
- Correspondence: (O.M.A.); (N.M.S.)
| |
Collapse
|
23
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
24
|
Tran HA, Tran PA. In Situ Coatings of Silver Nanoparticles for Biofilm Treatment in Implant-Retention Surgeries: Antimicrobial Activities in Monoculture and Coculture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41435-41444. [PMID: 34448395 DOI: 10.1021/acsami.1c08239] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bacterial biofilms are indicated in most medical device-associated infections. Treating these biofilms is challenging yet critically important for applications such as in device-retention surgeries, which can have reinfection rates of up to 80%. This in vitro study centered around our new method of treating biofilm and preventing reinfection. Ionic silver (Ag, in the form of silver nitrate) combined with dopamine and a biofilm-lysing enzyme (α-amylase) were applied to model 4-day-old Staphylococcus aureus biofilms on titanium substrates to degrade the extracellular matrix of the biofilm and kill the biofilm bacteria. In this process, the oxidative self-polymerization of dopamine converted Ag ions into Ag nanoparticles that, together with the resultant self-adhering polydopamine (PDA), formed coatings that strongly bound to the treated substrates. Surprisingly, although these Ag/PDA coatings significantly reduced S. aureus growth in standard bacterial monoculture, they showed much lower antimicrobial activity in coculture of the bacteria and osteoblastic MC3T3-E1 cells in which the bacteria were also found attached to the osteoblasts. This S. aureus- osteoblast interaction was also linked to bacterial survival against gentamicin treatment observed in coculture. Our study thus provided clear evidence suggesting that bacteria's interactions with tissue cells surrounding implants may significantly contribute to their resistance to antimicrobial treatment.
Collapse
Affiliation(s)
- Hien A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| | - Phong A Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, QUT, 2 George Street, Brisbane, Queensland 4000, Australia
| |
Collapse
|
25
|
Zhang M, Shao S, Yue H, Wang X, Zhang W, Chen F, Zheng L, Xing J, Qin Y. High Stability Au NPs: From Design to Application in Nanomedicine. Int J Nanomedicine 2021; 16:6067-6094. [PMID: 34511906 PMCID: PMC8418318 DOI: 10.2147/ijn.s322900] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/29/2021] [Indexed: 12/16/2022] Open
Abstract
In recent years, Au-based nanomaterials are widely used in nanomedicine and biosensors due to their excellent physical and chemical properties. However, these applications require Au NPs to have excellent stability in different environments, such as extreme pH, high temperature, high concentration ions, and various biomatrix. To meet the requirement of multiple applications, many synthetic substances and natural products are used to prepare highly stable Au NPs. Because of this, we aim at offering an update comprehensive summary of preparation high stability Au NPs. In addition, we discuss its application in nanomedicine. The contents of this review are based on a balanced combination of our studies and selected research studies done by worldwide academic groups. First, we address some critical methods for preparing highly stable Au NPs using polymers, including heterocyclic substances, polyethylene glycols, amines, and thiol, then pay attention to natural product progress Au NPs. Then, we sum up the stability of various Au NPs in different stored times, ions solution, pH, temperature, and biomatrix. Finally, the application of Au NPs in nanomedicine, such as drug delivery, bioimaging, photothermal therapy (PTT), clinical diagnosis, nanozyme, and radiotherapy (RT), was addressed concentratedly.
Collapse
Affiliation(s)
- Minwei Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Shuxuan Shao
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Haitao Yue
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Xin Wang
- The First Hospital of Jilin University, Changchun, 130061, People’s Republic of China
| | - Wenrui Zhang
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Fei Chen
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Li Zheng
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Jun Xing
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| | - Yanan Qin
- College of Life Science & Technology, Xinjiang University, Urumqi, 830046, People’s Republic of China
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, Urumqi, 830046, People’s Republic of China
| |
Collapse
|
26
|
McNeilly O, Mann R, Hamidian M, Gunawan C. Emerging Concern for Silver Nanoparticle Resistance in Acinetobacter baumannii and Other Bacteria. Front Microbiol 2021; 12:652863. [PMID: 33936010 PMCID: PMC8085274 DOI: 10.3389/fmicb.2021.652863] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The misuse of antibiotics combined with a lack of newly developed ones is the main contributors to the current antibiotic resistance crisis. There is a dire need for new and alternative antibacterial options and nanotechnology could be a solution. Metal-based nanoparticles, particularly silver nanoparticles (NAg), have garnered widespread popularity due to their unique physicochemical properties and broad-spectrum antibacterial activity. Consequently, NAg has seen extensive incorporation in many types of products across the healthcare and consumer market. Despite clear evidence of the strong antibacterial efficacy of NAg, studies have raised concerns over the development of silver-resistant bacteria. Resistance to cationic silver (Ag+) has been recognised for many years, but it has recently been found that bacterial resistance to NAg is also possible. It is also understood that exposure of bacteria to toxic heavy metals like silver can induce the emergence of antibiotic resistance through the process of co-selection. Acinetobacter baumannii is a Gram-negative coccobacillus and opportunistic nosocomial bacterial pathogen. It was recently listed as the "number one" critical level priority pathogen because of the significant rise of antibiotic resistance in this species. NAg has proven bactericidal activity towards A. baumannii, even against strains that display multi-drug resistance. However, despite ample evidence of heavy metal (including silver; Ag+) resistance in this bacterium, combined with reports of heavy metal-driven co-selection of antibiotic resistance, little research has been dedicated to assessing the potential for NAg resistance development in A. baumannii. This is worrisome, as the increasingly indiscriminate use of NAg could promote the development of silver resistance in this species, like what has occurred with antibiotics.
Collapse
Affiliation(s)
- Oliver McNeilly
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Riti Mann
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Mohammad Hamidian
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Cindy Gunawan
- iThree Institute, University of Technology Sydney, Ultimo, NSW, Australia
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
27
|
Sasireka KS, Lalitha P. Biogenic synthesis of bimetallic nanoparticles and their applications. REV INORG CHEM 2021. [DOI: 10.1515/revic-2020-0024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
The current advancements in nanotechnology suggest a sustainable development in the green synthesis of bimetallic nanoparticles (BMNPs) through green approaches. Though challenging, nano phyto technology has versatile methods to achieve desired unique properties like optic, electronic, magnetic, therapeutic, and catalytic efficiencies. Bio-inspired, facile synthesis of bifunctional BMNPs is possible using abundant, readily available natural plant sources, bio-mass wastes and microorganisms. Synergistic effects of two different metals on mixing, bring new insight for the vast applications, which is not achievable in using monometallic NPs. By adopting bio-inspired greener approaches for synthesizing NPs, the risk of environmental toxicity caused by conventional physicochemical methods become negligible. This article hopes to provide the significance of cost-effective, one-step, eco-friendly and facile synthesis of noble/transition bimetallic NPs. This review article endows an overview of the bio-mediated synthesis of bimetallic NPs, classifications of BMNPs, current characterization techniques, possible mechanistic aspects for reducing metal ions, and the stability of formed NPs and bio-medical/industrial applications of fabricated NPs. The review also highlights the prospective future direction to improve reliability, reproducibility of biosynthesis methods, its actual mechanism in research works and extensive application of biogenic bimetallic NPs.
Collapse
Affiliation(s)
- Krishnan Sundarrajan Sasireka
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| | - Pottail Lalitha
- Department of Chemistry , Avinashilingam Institute for Home Science and Higher Education for Women , Coimbatore , 641043 , India
| |
Collapse
|
28
|
Ranpariya B, Salunke G, Karmakar S, Babiya K, Sutar S, Kadoo N, Kumbhakar P, Ghosh S. Antimicrobial Synergy of Silver-Platinum Nanohybrids With Antibiotics. Front Microbiol 2021; 11:610968. [PMID: 33597929 PMCID: PMC7882503 DOI: 10.3389/fmicb.2020.610968] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 12/19/2022] Open
Abstract
Various bacterial pathogens are responsible for nosocomial infections resulting in critical pathophysiological conditions, mortality, and morbidity. Most of the bacterial infections are associated with biofilm formation, which is resistant to the available antimicrobial drugs. As a result, novel bactericidal agents need to be fabricated, which can effectively combat the biofilm-associated bacterial infections. Herein, for the first time we report the antimicrobial and antibiofilm properties of silver-platinum nanohybrids (AgPtNHs), silver nanoparticles (AgNPs), and platinum nanoparticles (PtNPs) against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. The AgPtNHs were synthesized by a green route using Dioscorea bulbifera tuber extract at 100°C for 5 h. The AgPtNHs ranged in size from 20 to 80 nm, with an average of ∼59 nm. AgNPs, PtNPs, and AgPtNHs showed a zeta potential of -14.46, -1.09, and -11.39 mV, respectively. High antimicrobial activity was observed against P. aeruginosa and S. aureus and AgPtNHs exhibited potent antimicrobial synergy in combination with antibiotics such as streptomycin, rifampicin, chloramphenicol, novobiocin, and ampicillin up to variable degrees. Interestingly, AgPtNHs could inhibit bacterial biofilm formation significantly. Hence, co-administration of AgPtNHs and antibiotics may serve as a powerful strategy to treat bacterial infections.
Collapse
Affiliation(s)
- Bansi Ranpariya
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Gayatri Salunke
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Srikanta Karmakar
- Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, Durgapur, India
| | - Kaushik Babiya
- Department of Microbiology, School of Science, RK University, Rajkot, India
| | - Santosh Sutar
- Yashwantrao Chavan School of Rural Development, Shivaji University, Kolhapur, India
| | - Narendra Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Pathik Kumbhakar
- Nanoscience Laboratory, Department of Physics, National Institute of Technology Durgapur, Durgapur, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Rajkot, India
| |
Collapse
|
29
|
Nayak V, Singh KRB, Singh AK, Singh RP. Potentialities of selenium nanoparticles in biomedical science. NEW J CHEM 2021. [DOI: 10.1039/d0nj05884j] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Selenium nanoparticles (SeNPs) have revolutionized biomedical domain and are still developing rapidly. Hence, this perspective elaborates SeNPs properties, synthesis, and biomedical applications, together with their potential for management of SARS-CoV-2.
Collapse
Affiliation(s)
- Vanya Nayak
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| | - Kshitij RB Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ajaya Kumar Singh
- Department of Chemistry
- Govt. V. Y. T. PG. Autonomous College
- Durg
- India
| | - Ravindra Pratap Singh
- Department of Biotechnology
- Faculty of Science
- Indira Gandhi National Tribal University
- Amarkantak
- India
| |
Collapse
|
30
|
Magnetic Nanoparticle-Based Drug Delivery Approaches for Preventing and Treating Biofilms in Cystic Fibrosis. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilm-associated infections pose a huge burden on healthcare systems worldwide, with recurrent lung infections occurring due to the persistence of biofilm bacteria populations. In cystic fibrosis (CF), thick viscous mucus acts not only as a physical barrier, but also serves as a nidus for infection. Increased antibiotic resistance in the recent years indicates that current therapeutic strategies aimed at biofilm-associated infections are “failing”, emphasizing the need to develop new and improved drug delivery systems with higher efficacy and efficiency. Magnetic nanoparticles (MNPs) have unique and favourable properties encompassing biocompatibility, biodegradability, magnetic and heat-mediated characteristics, making them suitable drug carriers. Additionally, an external magnetic force can be applied to enhance drug delivery to target sites, acting as “nano-knives”, cutting through the bacterial biofilm layer and characteristically thick mucus in CF. In this review, we explore the multidisciplinary approach of using current and novel MNPs as vehicles of drug delivery. Although many of these offer exciting prospects for future biofilm therapeutics, there are also major challenges of this emerging field that need to be addressed.
Collapse
|
31
|
Tran HM, Tran H, Booth MA, Fox KE, Nguyen TH, Tran N, Tran PA. Nanomaterials for Treating Bacterial Biofilms on Implantable Medical Devices. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2253. [PMID: 33203046 PMCID: PMC7696307 DOI: 10.3390/nano10112253] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/31/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Bacterial biofilms are involved in most device-associated infections and remain a challenge for modern medicine. One major approach to addressing this problem is to prevent the formation of biofilms using novel antimicrobial materials, device surface modification or local drug delivery; however, successful preventive measures are still extremely limited. The other approach is concerned with treating biofilms that have already formed on the devices; this approach is the focus of our manuscript. Treating biofilms associated with medical devices has unique challenges due to the biofilm's extracellular polymer substance (EPS) and the biofilm bacteria's resistance to most conventional antimicrobial agents. The treatment is further complicated by the fact that the treatment must be suitable for applying on devices surrounded by host tissue in many cases. Nanomaterials have been extensively investigated for preventing biofilm formation on medical devices, yet their applications in treating bacterial biofilm remains to be further investigated due to the fact that treating the biofilm bacteria and destroying the EPS are much more challenging than preventing adhesion of planktonic bacteria or inhibiting their surface colonization. In this highly focused review, we examined only studies that demonstrated successful EPS destruction and biofilm bacteria killing and provided in-depth description of the nanomaterials and the biofilm eradication efficacy, followed by discussion of key issues in this topic and suggestion for future development.
Collapse
Affiliation(s)
- Hoai My Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia; (H.M.T.); (H.T.)
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hien Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia; (H.M.T.); (H.T.)
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Marsilea A. Booth
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia; (M.A.B.); (K.E.F.)
| | - Kate E. Fox
- School of Engineering, RMIT University, Melbourne, VIC 3001, Australia; (M.A.B.); (K.E.F.)
- Center for Additive Manufacturing, RMIT University, PO Box 2476, Melbourne, VIC 3001, Australia
| | - Thi Hiep Nguyen
- School of Biomedical Engineering, International University, Vietnam National University, Ho Chi Minh City 71300, Vietnam;
| | - Nhiem Tran
- School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Phong A. Tran
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia; (H.M.T.); (H.T.)
- Interface Science and Materials Engineering Group, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
32
|
Green synthesis of silver nanoparticles using aqueous rhizome extract of Zingiber officinale and Curcuma longa: In-vitro anti-cancer potential on human colon carcinoma HT-29 cells. Saudi J Biol Sci 2020; 27:2980-2986. [PMID: 33100856 PMCID: PMC7569115 DOI: 10.1016/j.sjbs.2020.09.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
This study was aimed to analyze the anti-cancer activity of silver nanoparticles (AgNPs) synthesized using aqueous plant extracts from the rhizome of Curcuma longa and Zingiber officinale. Synergistic aqueous extract of rhizome of C. longa and Z. officinale was used to green synthesis of AgNPs. Characterization of AgNPs was performed using UV–visible spectroscopy, FTIR, X-ray diffraction, TEM, and SEM analyses. Anti-cancer activity of AgNPs against human colon carcinoma (HT-29) cells was tested using MTT assay. UV–Visible spectroscopy analysis indicated the surface plasmon resonance (SPR) sharp peak at 350–430 nm wavelength that corresponds to the production of AgNPs. FTIR analysis reveals that existence of carboxyl (—C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O) and amine (N—H) functional groups in the AgNPs. The X-ray diffraction analysis confirms four spectral peaks at 111, 200, 220, and 311. SEM analysis showed that AgNPs are in a spherical shape with a size of 42–61 nm and TEM analysis showed particle size are ranged between 20–51 nm. Anti-cancer study reveals that AgNPs had shown cytotoxicity against HT-29 cells at the concentrations ranged from 25 to 500 μg/mL and IC50 at 150.8 µg/mL. This study concludes that AgNPs synthesized using rhizome of Z. officinale and C. longa possesses potential anti-cancer activity.
Collapse
|
33
|
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2020; 43:622-641. [PMID: 31420962 PMCID: PMC8038934 DOI: 10.1093/femsre/fuz021] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
34
|
Alti D, Veeramohan Rao M, Rao DN, Maurya R, Kalangi SK. Gold-Silver Bimetallic Nanoparticles Reduced with Herbal Leaf Extracts Induce ROS-Mediated Death in Both Promastigote and Amastigote Stages of Leishmania donovani. ACS OMEGA 2020; 5:16238-16245. [PMID: 32656446 PMCID: PMC7346243 DOI: 10.1021/acsomega.0c02032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/09/2020] [Indexed: 05/13/2023]
Abstract
Resistance to antileishmanial drugs such as sodium stibogluconate (SSG), amphotericin B (Amp-B), and miltefosine is on the rise, and alternate strategies for effective treatment have gained importance in recent years. Although nanoparticle (NP)-based composite drugs that have emerged recently have been found to be effective, the associated toxicity limits their usage. Bimetallic NPs produced through reduction with medicinal plant extracts are proposed to overcome the toxicity of the NPs. In the present study, three types of gold-silver bimetallic nanoparticles (Au-Ag BNPs) were synthesized through a single-step reduction process using fenugreek, coriander, and soybean leaf extracts. All of the three types of BNPs exhibited high antileishmanial effects against promastigotes with half-inhibitory concentration (IC50) values in the range of 0.03-0.035 μg/mL. The IC50 values of the BNPs are much lower compared to those of miltefosine (IC50 = 10 μg/mL). The synthesized BNPs induced the reactive oxygen species (ROS)-mediated apoptosis-like death in the promastigotes and could potentiate the antileishmanial activity of macrophages. The intracellular amastigotes were reduced by 31-46% in macrophages. The biogenic BNPs synthesized in this study and their potent antileishmanial activity provide further impetus to the ongoing quest for novel drugs to effectively manage leishmaniasis.
Collapse
Affiliation(s)
- Dayakar Alti
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - M. Veeramohan Rao
- Department
of Physics, Pondicherry University, Puducherry 605014, India
| | - D. Narayana Rao
- School
of Physics, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Radheshyam Maurya
- Department
of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Suresh K. Kalangi
- Amity
Stem Cell Institute, Amity Medical School, Amity University Haryana, Amity Education Valley, Pachgaon, Manesar, Gurugram, HR 122413, India
| |
Collapse
|
35
|
Nadhe SB, Wadhwani SA, Singh R, Chopade BA. Green Synthesis of AuNPs by Acinetobacter sp. GWRVA25: Optimization, Characterization, and Its Antioxidant Activity. Front Chem 2020; 8:474. [PMID: 32626688 PMCID: PMC7314902 DOI: 10.3389/fchem.2020.00474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Bacteriogenic synthesis of metal nanoparticles is ecofriendly and greatly influenced by physico-chemical reaction parameters with respect to shape and size. Thus, present work aimed to synthesize and optimization of bacteriogenic gold nanoparticles (AuNPs) and study their antioxidant activity. Acinetobacter sp. cells were able to synthesize AuNPs, when challenged with tetra-chloroauric acid (HAuCl4). By physicochemical optimization, maximum synthesis was obtained with 72 h old culture using 2.1 × 109 CFU/ml cell density. Whereas, pH-7 is suitable for AuNPs synthesis. HAuCl4 concentration (0.5 mM) enhanced the formation of monodispersed and spherical nanoparticles (15 ± 10 nm). At 37°C temperature, Acinetobacter sp. released nanoparticles in supernatant. From characterization, AuNPs were found to be crystalline in nature with negative surface charge. AuNPs showed up to 86% different radical scavenging ability, exhibiting antioxidant activity. In conclusion, spherical AuNPs can be synthesized using Acinetobacter sp. through physicochemical optimization. This is the first report of antioxidant activity exhibited by monodispersed bacteriogenic AuNPs synthesized using Acinetobacter sp.
Collapse
Affiliation(s)
- Shradhda B Nadhe
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Sweety A Wadhwani
- Department of Microbiology, Savitribai Phule Pune University, Pune, India
| | - Richa Singh
- Department of Biotechnology, SIES College of Arts, Science and Commerce (Autonomous), Mumbai, India
| | - Balu A Chopade
- Department of Microbiology, Savitribai Phule Pune University, Pune, India.,Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
36
|
Buszewski B, Rogowska A, Railean-Plugaru V, Złoch M, Walczak-Skierska J, Pomastowski P. The Influence of Different Forms of Silver on Selected Pathogenic Bacteria. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2403. [PMID: 32456144 PMCID: PMC7287713 DOI: 10.3390/ma13102403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 01/24/2023]
Abstract
The application of silver nanoparticles as an antibacterial agent is becoming more common. Unfortunately, their effect on microorganisms is still not fully understood. Therefore, this paper attempts to investigate the influence of silver ions, biologically synthesized silver nanoparticles and nanoparticles functionalized with antibiotics on molecular bacteria profiles. The initial stage of research was aimed at the mechanism determination involved in antibiotics sorption onto nanoparticles' surface. For this purpose, the kinetics study was performed. Next, the functionalized formulations were characterized by Fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and a zeta potential study. The results reveal that functionalization is a complex process, but does not significantly affect the stability of biocolloids. Furthermore, the antimicrobial assays, in most cases, have shown no increases in antibacterial activity after nanoparticle functionalization, which suggests that the functionalization process does not always generate the improved antimicrobial effect. Finally, the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique was employed to characterize the changes in the molecular profile of bacteria treated with various antibacterial agents. The recorded spectra proved many differences in bacterial lipids and proteins profiles compared to untreated cells. In addition, the statistical analysis of recorded spectra revealed the strain-dependent nature of stress factors on the molecular profile of microorganisms.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Agnieszka Rogowska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
| | - Justyna Walczak-Skierska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland;
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, Wileńska 4, 87-100 Torun, Poland; (B.B.); (A.R.); (V.R.-P.); (M.Z.)
| |
Collapse
|
37
|
Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y. Functionalized Gold and Silver Bimetallic Nanoparticles Using Deinococcus radiodurans Protein Extract Mediate Degradation of Toxic Dye Malachite Green. Int J Nanomedicine 2020; 15:1823-1835. [PMID: 32214814 PMCID: PMC7083632 DOI: 10.2147/ijn.s236683] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Biodegradation of toxic organic dye using nanomaterial-based microbial biocatalyst is an ecofriendly and promising technique. Materials and Methods Here, we have investigated the novel properties of functionalized Au-Ag bimetallic nanoparticles using extremophilic Deinococcus radiodurans proteins (Drp-Au-AgNPs) and their degradation efficiency on the toxic triphenylmethane dye malachite green (MG). Results and Discussion The prepared Drp-Au-AgNPs with an average particle size of 149.8 nm were capped by proteins through groups including hydroxyl and amide. Drp-Au-AgNPs demonstrated greater degradation ability (83.68%) of MG than D. radiodurans cells and monometallic AuNPs. The major degradation product was identified as 4-(dimethylamino) benzophenone, which is less toxic than MG. The degradation of MG was mainly attributed to the capping proteins on Drp-Au-AgNPs. The bimetallic NPs could be reused and maintained MG degradation ability (>64%) after 2 cycles. Conclusion These results suggest that the easily prepared Drp-Au-AgNPs have potential applications as novel nanomedicine for MG detoxification, and nanomaterial for biotreatment of a toxic polyphenyl dye-containing wastewater.
Collapse
Affiliation(s)
- Yulan Weng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiulong Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Xingcheng Ding
- Zhejiang Runtu Chemical Research Institute, Shaoxing, People's Republic of China
| | - Binqiang Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Shang Dai
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Yulong Zhou
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Renjiang Pang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China.,Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, People's Republic of China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
38
|
Demirbas A, Kislakci E, Karaagac Z, Onal I, Ildiz N, Ocsoy I. Preparation of biocompatible and stable iron oxide nanoparticles using anthocyanin integrated hydrothermal method and their antimicrobial and antioxidant properties. MATERIALS RESEARCH EXPRESS 2019; 6:125011. [DOI: 10.1088/2053-1591/ab540c] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
|
39
|
Habibipour R, Moradi-Haghgou L, Farmany A. Green synthesis of AgNPs@PPE and its Pseudomonas aeruginosa biofilm formation activity compared to pomegranate peel extract. Int J Nanomedicine 2019; 14:6891-6899. [PMID: 31695365 PMCID: PMC6718057 DOI: 10.2147/ijn.s209912] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/27/2019] [Indexed: 12/12/2022] Open
Abstract
Background Bacteria are able to form biofilm on the biotic and abiotic surfaces which helps to protect themselves from deleterious conditions, predation, desiccation, and exposure to antibacterial substances. About 80% of bacterial infections are caused by those bacteria living in the biofilm. Pseudomonas aeruginosa, a gram-negative, non-fermentative bacillus, and the ubiquitous bacterium is an important opportunistic pathogen notorious for biofilm formation and is remarkably resistant against most antibiotics multiple front-line antibiotics, which significantly contributes to eradication failure. The aim of this paper was to evaluate the anti-biofilm formation activity of Ag@PPEs gainst P. aeruginosa bacteria. Methods An aqueous extract of black pomegranate peel was used for the synthesis of silver nanoparticles (AgNPs@PPE). The characteristics, anti-biofilm formation and cell toxicity of AgNPs@PPE were examined in vitro. Results Absorbance at λmax 372 nm which is related to the surface plasmon resonance, confirms the AgNPs@PPE formation. XRD pattern showed the face-centered qubic (fcc) crystalline structure of AgNPs. TEM images showed that spherical AgNPs size is ranged between 32 and 85 nm. The AgNPs@PPE showed inhibition effect against P. aeruginosa biofilm formation at 0.1 to 0.5 mg/ml concentrations. Cell toxicity assay showed that at 400 µg/ml, AgNPs@PPE were safe without a significant toxicity in L929 cell line. Conclusion These data indicate that co-treatment of PPE and AgNPs@PPE significantly decreased the biofilm formation rate. Furthermore, no significant toxicity of AgNPs@PPE was shown against L929 cell line at 400 µg/ml concentration.
Collapse
Affiliation(s)
- Reza Habibipour
- Department of Microbiology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Leila Moradi-Haghgou
- Department of Microbiology, Hamedan Branch, Islamic Azad University, Hamedan, Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
40
|
Kumar P, Shivam P, Mandal S, Prasanna P, Kumar S, Prasad SR, Kumar A, Das P, Ali V, Singh SK, Mandal D. Synthesis, characterization, and mechanistic studies of a gold nanoparticle-amphotericin B covalent conjugate with enhanced antileishmanial efficacy and reduced cytotoxicity. Int J Nanomedicine 2019; 14:6073-6101. [PMID: 31686803 PMCID: PMC6709383 DOI: 10.2147/ijn.s196421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/10/2019] [Indexed: 12/24/2022] Open
Abstract
Background Amphotericin B (AmB) as a liposomal formulation of AmBisome is the first line of treatment for the disease, visceral leishmaniasis, caused by the parasite Leishmania donovani. However, nephrotoxicity is very common due to poor water solubility and aggregation of AmB. This study aimed to develop a water-soluble covalent conjugate of gold nanoparticle (GNP) with AmB for improved antileishmanial efficacy and reduced cytotoxicity. Methods Citrate-reduced GNPs (~39 nm) were functionalized with lipoic acid (LA), and the product GNP-LA (GL ~46 nm) was covalently conjugated with AmB using carboxyl-to-amine coupling chemistry to produce GNP-LA-AmB (GL-AmB ~48 nm). The nanoparticles were characterized by dynamic light scattering, transmission electron microscopy (TEM), and spectroscopic (ultraviolet–visible and infrared) methods. Experiments on AmB uptake of macrophages, ergosterol depletion of drug-treated parasites, cytokine ELISA, fluorescence anisotropy, flow cytometry, and gene expression studies established efficacy of GL-AmB over standard AmB. Results Infrared spectroscopy confirmed the presence of a covalent amide bond in the conjugate. TEM images showed uniform size with smooth surfaces of GL-AmB nanoparticles. Efficiency of AmB conjugation was ~78%. Incubation in serum for 72 h showed <7% AmB release, indicating high stability of conjugate GL-AmB. GL-AmB with AmB equivalents showed ~5-fold enhanced antileishmanial activity compared with AmB against parasite-infected macrophages ex vivo. Macrophages treated with GL-AmB showed increased immunostimulatory Th1 (IL-12 and interferon-γ) response compared with standard AmB. In parallel, AmB uptake was ~5.5 and ~3.7-fold higher for GL-AmB-treated (P<0.001) macrophages within 1 and 2 h of treatment, respectively. The ergosterol content in GL-AmB-treated parasites was ~2-fold reduced compared with AmB-treated parasites. Moreover, GL-AmB was significantly less cytotoxic and hemolytic than AmB (P<0.01). Conclusion GNP-based delivery of AmB can be a better, cheaper, and safer alternative than available AmB formulations.
Collapse
Affiliation(s)
- Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Pushkar Shivam
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Pragya Prasanna
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Saurabh Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| | - Ashish Kumar
- Department of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, India
| | - Vahab Ali
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences, Patna, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) - Hajipur, Vaishali, India
| |
Collapse
|
41
|
Xu C, Qiao L, Ma L, Yan S, Guo Y, Dou X, Zhang B, Roman A. Biosynthesis of Polysaccharides-Capped Selenium Nanoparticles Using Lactococcus lactis NZ9000 and Their Antioxidant and Anti-inflammatory Activities. Front Microbiol 2019; 10:1632. [PMID: 31402902 PMCID: PMC6676592 DOI: 10.3389/fmicb.2019.01632] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/02/2019] [Indexed: 11/18/2022] Open
Abstract
Lactococcus lactis (L. lactis) NZ9000, which has been genetically modified, is the most commonly used host strain for nisin regulated gene expression. Selenium (Se) is an essential trace element in the diet of humans and animals important for the maintenance of health and growth. Biosynthesized Se nanoparticles (SeNPs) that use microorganisms as a vehicle are uniquely advantages in terms of low costs, low toxicity and high bioavailability. This study was aimed at preparing novel functionalized SeNPs by L. lactis NZ9000 through eco-friendly and economic biotechnology methods. Moreover, its physicochemical characteristics, antioxidant and anti-inflammatory activities were investigated. L. lactis NZ9000 synthesized elemental red SeNPs when co-cultivated with sodium selenite under anaerobic conditions. Biosynthesized SeNPs by L. lactis NZ9000 were mainly capped with polysaccharides and significantly alleviated the increase of malondialdehyde (MDA) concentration, the decrease of glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activity in porcine intestinal epithelial cells (IPEC-J2) challenged by hydrogen peroxide (H2O2). SeNPs also prevented the H2O2-caused reduction of transepithelial electrical resistance (TEER) and the increase of FITC-Dextran fluxes across IPEC-J2. Moreover, SeNPs attenuated the increase of reactive oxygen species (ROS), the reduction of adenosine triphosphate (ATP) and the mitochondrial membrane potential (MMP) and maintained intestinal epithelial permeability in IPEC-J2 cells exposed to H2O2. In addition, SeNPs pretreatment alleviated the cytotoxicity of Enterotoxigenic Escherichia coli (ETEC) K88 on IPEC-J2 cells and maintained the intestinal epithelial barrier integrity by up-regulating the expression of Occludin and Claudin-1 and modulating inflammatory cytokines. Biosynthesized SeNPs by L. lactis NZ9000 are a promising selenium supplement with antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Shuqi Yan
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xina Dou
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Baohua Zhang
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
42
|
Liu Y, Kim S, Kim YJ, Perumalsamy H, Lee S, Hwang E, Yi TH. Green synthesis of gold nanoparticles using Euphrasia officinalisleaf extract to inhibit lipopolysaccharide-induced inflammation through NF-κB and JAK/STAT pathways in RAW 264.7 macrophages. Int J Nanomedicine 2019; 14:2945-2959. [PMID: 31114201 PMCID: PMC6487898 DOI: 10.2147/ijn.s199781] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Gold nanoparticles (AuNPs) have potential applications in the treatment and diagnosis process, which are attributed to their biocompatibility and high efficiency of drug delivery. In the current study, we utilized an extract of Euphrasia officinalis, a traditional folk medicine, to synthesize gold nanoparticles (EO-AuNPs), and investigated their anti-inflammatory effects on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Materials and methods The AuNPs were synthesized from an ethanol extract of E. officinalis leaves and characterized using several analytical techniques. Anti-inflammatory activities of EO-AuNPs were detected by a model of LPS-induced upregulation of inflammatory mediators and cytokines including nitric oxide (NO), inducible nitric oxide synthase (iNOS), tumor necrosis factor-α (TNF-α), IL-1β, and IL-6 in RAW 264.7 cells. The activation of nuclear factor (NF)-κB and Janus kinase/signal transducer and activators of transcription (JAK/STAT) signaling pathways was investigated by Western blot. Results The results confirmed the successful synthesis of AuNPs by E. officinalis. Transmission electron microscopy images showed obvious uptake of EO-AuNPs and internalization into intracellular membrane–bound compartments, resembling endosomes and lysosomes by RAW 264.7 cells. Cell viability assays showed that EO-AuNPs exhibited little cytotoxicity in RAW 264.7 cells at 100 µg/mL concentration after 24 hours. EO-AuNPs significantly suppressed the LPS-induced release of NO, TNF-α, IL-1β, and IL-6 as well as the expression of the iNOS gene and protein in RAW 264.7 cells. Further experiments demonstrated that pretreatment with EO-AuNPs significantly reduced the phosphorylation and degradation of inhibitor kappa B-alpha and inhibited the nuclear translocation of NF-κB p65. In addition, EO-AuNPs suppressed LPS-stimulated inflammation by blocking the activation of JAK/STAT pathway. Conclusion The synthesized EO-AuNPs showed anti-inflammatory activity in LPS-induced RAW 264.7 cells, suggesting they may be potential candidates for treating inflammatory-mediated diseases.
Collapse
Affiliation(s)
- Ying Liu
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ;
| | - Senghyun Kim
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Yeon Ju Kim
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ; .,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Haribalan Perumalsamy
- Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| | - Seungah Lee
- Department of Applied Chemistry and Institute of Natural Sciences, College of Applied Science, Kyung Hee University, Yongin-si, Republic of Korea
| | - Eunson Hwang
- Snow White Factory Co., Ltd., Gangnamgu, Seoul, Republic of Korea
| | - Tae-Hoo Yi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do, Republic of Korea, ; .,Department of Oriental Medicinal Biotechnology, College of Life Sciences, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea, ;
| |
Collapse
|
43
|
Jamdade DA, Rajpali D, Joshi KA, Kitture R, Kulkarni AS, Shinde VS, Bellare J, Babiya KR, Ghosh S. Gnidia glauca- and Plumbago zeylanica-Mediated Synthesis of Novel Copper Nanoparticles as Promising Antidiabetic Agents. Adv Pharmacol Sci 2019; 2019:9080279. [PMID: 30886631 PMCID: PMC6388358 DOI: 10.1155/2019/9080279] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/11/2018] [Accepted: 01/10/2019] [Indexed: 01/17/2023] Open
Abstract
Rapid, eco-friendly, and cost-effective one-pot synthesis of copper nanoparticles is reported here using medicinal plants like Gnidia glauca and Plumbago zeylanica. Aqueous extracts of flower, leaf, and stem of G. glauca and leaves of P. zeylanica were prepared which could effectively reduce Cu2+ ions to CuNPs within 5 h at 100°C which were further characterized using UV-visible spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, dynamic light scattering, X-ray diffraction, and Fourier-transform infrared spectroscopy. Further, the CuNPs were checked for antidiabetic activity using porcine pancreatic α-amylase and α-glucosidase inhibition followed by evaluation of mechanism using circular dichroism spectroscopy. CuNPs were found to be predominantly spherical in nature with a diameter ranging from 1 to 5 nm. The phenolics and flavonoids in the extracts might play a critical role in the synthesis and stabilization process. Significant change in the peak at ∼1095 cm-1 corresponding to C-O-C bond in ether was observed. CuNPs could inhibit porcine pancreatic α-amylase up to 30% to 50%, while they exhibited a more significant inhibition of α-glucosidase from 70% to 88%. The mechanism of enzyme inhibition was attributed due to the conformational change owing to drastic alteration of secondary structure by CuNPs. This is the first study of its kind that provides a strong scientific rationale that phytogenic CuNPs synthesized using G. glauca and P. zeylanica can be considered to develop candidate antidiabetic nanomedicine.
Collapse
Affiliation(s)
- Dhiraj A. Jamdade
- Department of Microbiology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411016, India
| | - Dishantsingh Rajpali
- Department of Microbiology, Modern College of Arts, Science and Commerce, Ganeshkhind, Pune 411016, India
| | - Komal A. Joshi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| | - Rohini Kitture
- Department of Applied Physics, Defense Institute of Advanced Technology, Girinagar, Pune 411025, India
| | - Anuja S. Kulkarni
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Vaishali S. Shinde
- Department of Chemistry, Savitribai Phule Pune University, Pune-411007, India
| | - Jayesh Bellare
- Department of Chemical Engineering, Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Kaushik R. Babiya
- Department of Microbiology, School of Science, RK University, Kasturbadham, Rajkot 360020, India
| | - Sougata Ghosh
- Department of Microbiology, School of Science, RK University, Kasturbadham, Rajkot 360020, India
| |
Collapse
|
44
|
Qiao Y, Ping Y, Zhang H, Zhou B, Liu F, Yu Y, Xie T, Li W, Zhong D, Zhang Y, Yao K, Santos HA, Zhou M. Laser-Activatable CuS Nanodots to Treat Multidrug-Resistant Bacteria and Release Copper Ion to Accelerate Healing of Infected Chronic Nonhealing Wounds. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3809-3822. [PMID: 30605311 PMCID: PMC6727190 DOI: 10.1021/acsami.8b21766] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/03/2019] [Indexed: 05/15/2023]
Abstract
Chronic nonhealing wounds have imposed serious challenges in the clinical practice, especially for the patients infected with multidrug-resistant microbes. Herein, we developed an ultrasmall copper sulfide (covellite) nanodots (CuS NDs) based dual functional nanosystem to cure multidrug-resistant bacteria-infected chronic nonhealing wound. The nanosystem could eradicate multidrug-resistant bacteria and expedite wound healing simultaneously owing to the photothermal effect and remote control of copper-ion release. The antibacterial results indicated that the combination treatment of photothermal CuS NDs with photothermal effect initiated a strong antibacterial effect for drug-resistant pathogens including methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum β-lactamase Escherichia coli both in vitro and in vivo. Meanwhile, the released Cu2+ could promote fibroblast cell migration and endothelial cell angiogenesis, thus accelerating wound-healing effects. In MRSA-infected diabetic mice model, the nanosystem exhibited synergistic wound healing effect of infectious wounds in vivo and demonstrated negligible toxicity and nonspecific damage to major organs. The combination of ultrasmall CuS NDs with photothermal therapy displayed enhanced therapeutic efficacy for chronic nonhealing wound in multidrug-resistant bacterial infections, which may represent a promising class of antibacterial strategy for clinical translation.
Collapse
Affiliation(s)
- Yue Qiao
- Eye Center &
Department of Nuclear Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
| | - Yuan Ping
- College of Pharmaceutical Sciences and State Key Laboratory
of Modern Optical Instrumentations, Zhejiang
University, Hangzhou 310058, China
| | - Hongbo Zhang
- Department of Pharmaceutical
Science Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Bo Zhou
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
| | - Fengyong Liu
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing 100853, China
| | - Yinhui Yu
- Eye Center &
Department of Nuclear Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou 310009, China
| | - Tingting Xie
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
| | - Wanli Li
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
| | - Danni Zhong
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
| | - Yuezhou Zhang
- Department of Pharmaceutical
Science Laboratory, Åbo Akademi University, Turku 20520, Finland
| | - Ke Yao
- Eye Center &
Department of Nuclear Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou 310009, China
| | - Hélder A. Santos
- Drug Research Program, Division
of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy and Helsinki Institute
of Life Science, HiLIFE, University of Helsinki, Helsinki FI-00014, Finland
| | - Min Zhou
- Eye Center &
Department of Nuclear Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
- Institute of Translational Medicine and Key Laboratory
of Cancer Prevention and Intervention, National Ministry of Education, Zhejiang University, Hangzhou 310009, China
- College of Pharmaceutical Sciences and State Key Laboratory
of Modern Optical Instrumentations, Zhejiang
University, Hangzhou 310058, China
| |
Collapse
|
45
|
Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S. Biosynthesis of Metal Nanoparticles via Microbial Enzymes: A Mechanistic Approach. Int J Mol Sci 2018; 19:E4100. [PMID: 30567324 PMCID: PMC6321641 DOI: 10.3390/ijms19124100] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/08/2018] [Accepted: 12/17/2018] [Indexed: 02/08/2023] Open
Abstract
During the last decade, metal nanoparticles (MtNPs) have gained immense popularity due to their characteristic physicochemical properties, as well as containing antimicrobial, anti-cancer, catalyzing, optical, electronic and magnetic properties. Primarily, these MtNPs have been synthesized through different physical and chemical methods. However, these conventional methods have various drawbacks, such as high energy consumption, high cost and the involvement of toxic chemical substances. Microbial flora has provided an alternative platform for the biological synthesis of MtNPs in an eco-friendly and cost effective way. In this article we have focused on various microorganisms used for the synthesis of different MtNPs. We also have elaborated on the intracellular and extracellular mechanisms of MtNP synthesis in microorganisms, and have highlighted their advantages along with their challenges. Moreover, due to several advantages over chemically synthesized nanoparticles, the microbial MtNPs, with their exclusive and dynamic characteristics, can be used in different sectors like the agriculture, medicine, cosmetics and biotechnology industries in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ali Talha Khalil
- Department of Eastern Medicine and Surgery, Qarshi University, Lahore 54000, Pakistan.
| | - Muhammad Ayaz
- Department of Pharmacy, University of Malakand, Khyber Pakhtunkhwa (KPK), Chakdara 18000, Pakistan.
| | - Irshad Ahmad
- Department of Life sciences, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| | - Susheel Kumar Nethi
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. INT J POLYM SCI 2018. [DOI: 10.1155/2018/7045852] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial exopolysaccharides (EPSs) are biomolecules secreted in the extracellular space and have diverse biological functionalities, such as environmental protection, surface adherence, and cellular interactions. EPSs have been found to be biocompatible and eco-friendly, therefore making them suitable for applications in many areas of study and various industrial products. Recently, synthesis and stabilization of metal nanoparticles have been of interest because their usefulness for many biomedical applications, such as antimicrobials, anticancer drugs, antioxidants, drug delivery systems, chemical sensors, contrast agents, and as catalysts. In this context, bacterial EPSs have been explored as agents to aid in a greener production of a myriad of metal nanoparticles, since they have the ability to reduce metal ions to form nanoparticles and stabilize them acting as capping agents. In addition, by incorporating EPS to the metal nanoparticles, the EPS confers them biocompatibility. Thus, the present review describes the main bacterial EPS utilized in the synthesis and stabilization of metal nanoparticles, the mechanisms involved in this process, and the different applications of these nanoparticles, emphasizing in their biomedical applications.
Collapse
|
47
|
Dostert M, Belanger CR, Hancock REW. Design and Assessment of Anti-Biofilm Peptides: Steps Toward Clinical Application. J Innate Immun 2018; 11:193-204. [PMID: 30134244 PMCID: PMC6738209 DOI: 10.1159/000491497] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/23/2018] [Accepted: 06/23/2018] [Indexed: 12/13/2022] Open
Abstract
Highly antibiotic resistant, microbial communities, referred to as biofilms, cause various life-threatening infections in humans. At least two-thirds of all clinical infections are biofilm associated, and antibiotic therapy regularly fails to cure patients. Anti-biofilm peptides represent a promising approach to treat these infections by targeting biofilm-specific characteristics such as highly conserved regulatory mechanisms. They are being considered for clinical application and we discuss here key factors in discovery, design, and application, particularly the implementation of host-mimicking conditions, that are required to enable the successful advancement of potent anti-biofilm peptides from the bench to the clinic.
Collapse
Affiliation(s)
- Melanie Dostert
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Corrie R Belanger
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada,
| |
Collapse
|
48
|
Gloriosa superba Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer. Bioinorg Chem Appl 2018; 2018:4924186. [PMID: 30057593 PMCID: PMC6051271 DOI: 10.1155/2018/4924186] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/16/2018] [Accepted: 05/26/2018] [Indexed: 01/11/2023] Open
Abstract
Green chemistry approaches for designing therapeutically significant nanomedicine have gained considerable attention in the past decade. Herein, we report for the first time on anticancer potential of phytogenic platinum nanoparticles (PtNPs) and palladium nanoparticles (PdNPs) using a medicinal plant Gloriosa superba tuber extract (GSTE). The synthesis of the nanoparticles was completed within 5 hours at 100°C which was confirmed by development of dark brown and black colour for PtNPs and PdNPs, respectively, along with enhancement of the peak intensity in the UV-visible spectra. High-resolution transmission electron microscopy (HRTEM) showed that the monodispersed spherical nanoparticles were within a size range below 10 nm. Energy dispersive spectra (EDS) confirmed the elemental composition, while dynamic light scattering (DLS) helped to evaluate the hydrodynamic size of the particles. Anticancer activity against MCF-7 (human breast adenocarcinoma) cell lines was evaluated using MTT assay, flow cytometry, and confocal microscopy. PtNPs and PdNPs showed 49.65 ± 1.99% and 36.26 ± 0.91% of anticancer activity. Induction of apoptosis was most predominant in the underlying mechanism which was rationalized by externalization of phosphatidyl serine and membrane blebbing. These findings support the efficiency of phytogenic fabrication of nanoscale platinum and palladium drugs for management and therapy against breast cancer.
Collapse
|
49
|
M N, V N K, V DR, A P. Biosynthesis, characterization, and evaluation of bioactivities of leaf extract-mediated biocompatible gold nanoparticles from Alternanthera bettzickiana. ACTA ACUST UNITED AC 2018; 19:e00268. [PMID: 29992102 PMCID: PMC6036865 DOI: 10.1016/j.btre.2018.e00268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/12/2018] [Accepted: 06/18/2018] [Indexed: 11/23/2022]
Abstract
The gold nanoparticles (AuNPs) were synthesised using leaf extract of Alternanthera bettzickiana. The Au NPs were characterized using UV-vis, XRD, FTIR, SEM, TEM and Zeta potential. A simple, quick and reproducible method for the environmentally friendly synthesis of Au NPs without the need for expensive reducing agents. The cytotoxic effect of the green synthesized Au NPs against A549 human lung cancer cell lines provided a vigorous evidence of anticancer activity of Au NPs. The toxicity study of the green synthesized Au NPs on Danio rerio (Zebra fish) embryo was evaluated
The objective of the study was to synthesize gold nanoparticles (Au NPs) using leaf extract of Alternanthera bettzickiana (A. bettzickiana). The biosynthesized Au NPs were characterized using UV–vis spectroscopy, X-ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy dispersive X-ray analysis (EDX), Zeta potential and Transmission electron microscopy (TEM). Morphologically, the Au NPs showed spherical shaped structures. Size distribution of Au NPs calculated using Scherrer’s formula, showed an average size of 80–120 nm. Au NPs were studied for invitro anti-bacterial and cytotoxic activities. Au NPs exhibited significant anti-microbial activity against Bacillu subtilis, Staphylococcus aureus, Salmonella typhi, Pseudomonas aeroginosa, Micrococcus luteus, and Enterobacter aerogenes by agar well diffusion method. The cytotoxic effect of the biogenic synthesized Au NPs against A549 human lung cancer cell lines provided a vigorous evidence of anticancer activity of Au NPs. Further, the toxicity study of the green synthesized Au NPs on Danio rerio (Zebra fish) embryo was evaluated. This study reports that colloidal Au NPs can be synthesized by simple, non-hazardous methods and that bio-synthesized Au NPs have significant therapeutic properties.
Collapse
Affiliation(s)
- Nagalingam M
- Department of Zoology, Thiruvalluvar University, Serkadu, Vellore - 14, Tamil Nadu, India
| | - Kalpana V N
- Department of Biomedical sciences, School of Biosciences and Technology, VIT, Vellore - 14, Tamil Nadu, India
| | - Devi Rajeswari V
- Department of Biomedical sciences, School of Biosciences and Technology, VIT, Vellore - 14, Tamil Nadu, India
| | - Panneerselvam A
- Department of Zoology, Thiruvalluvar University, Serkadu, Vellore - 14, Tamil Nadu, India
| |
Collapse
|
50
|
Xu C, Guo Y, Qiao L, Ma L, Cheng Y, Roman A. Biogenic Synthesis of Novel Functionalized Selenium Nanoparticles by Lactobacillus casei ATCC 393 and Its Protective Effects on Intestinal Barrier Dysfunction Caused by Enterotoxigenic Escherichia coli K88. Front Microbiol 2018; 9:1129. [PMID: 29967593 PMCID: PMC6015882 DOI: 10.3389/fmicb.2018.01129] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Selenium (Se) is an essential element for human and animal health. Biogenic selenium nanoparticles (SeNPs) by microorganism possess unique physical and chemical properties and biological activities compared with inorganic Se and organic Se. The study was conducted to investigate the mainly biological activities of SeNPs by Lactobacillus casei ATCC 393 (L. casei 393). The results showed that L. casei 393 transformed sodium selenite to red SeNPs with the size of 50–80 nm, and accumulated them intracellularly. L. casei 393-SeNPs promoted the growth and proliferation of porcine intestinal epithelial cells (IPEC-J2), human colonic epithelial cells (NCM460), and human acute monocytic leukemia cell (THP-1)-derived macrophagocyte. L. casei 393-SeNPs significantly inhibited the growth of human liver tumor cell line-HepG2, and alleviated diquat-induced IPEC-J2 oxidative damage. Moreover, in vivo and in vitro experimental results showed that administration with L. casei 393-SeNPs protected against Enterotoxigenic Escherichia coli K88 (ETEC K88)-caused intestinal barrier dysfunction. ETEC K88 infection-associated oxidative stress (glutathione peroxidase activity, total superoxide dismutase activity, total antioxidant capacity, and malondialdehyde) was ameliorated in L. casei 393-SeNPs-treated mice. These findings suggest that L. casei 393-SeNPs with no cytotoxicity play a key role in maintaining intestinal epithelial integrity and intestinal microflora balance in response to oxidative stress and infection.
Collapse
Affiliation(s)
- Chunlan Xu
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Guo
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lei Qiao
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Li Ma
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yiyi Cheng
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Alexandra Roman
- The Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|