1
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Baygar T, Ugur A, Karaca IR, Kilinc Y, Gultekin SE, Sarac N. Fabrication of a Biocompatible Nanoantimicrobial Suture for Rapid Wound Healing after Surgery. ACS OMEGA 2024; 9:22573-22580. [PMID: 38826546 PMCID: PMC11137723 DOI: 10.1021/acsomega.3c09484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 06/04/2024]
Abstract
Suture-associated infections on surgical sites are known to be related to the surface characteristics of the sutures. The present study aimed to fabricate a novel functional suture for surgical procedures and characterize its antioxidative, antimicrobial, and in vitro wound healing properties. St John's wort, Hypericum perforatum, extract (eHp), and biogenic silver nanoparticles (AgNPs) have been combined and used for coating the silk sutures. Antioxidant, antimicrobial capacity, and in vitro wound healing potential of the coated sutures have been examined. The morphological and microanalytical examination of the coated sutures was also performed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). According to the antioxidant activity tests, free radical scavenging and β-carotene linoleic acid tests revealed that the antioxidative potential of H. perforatum extract-AgNP combination (eHp-AgNP) at 10 mg/mL concentration was higher than those of positive controls, ascorbic acid and α-tocopherol. Coating the sutures with eHp-AgNP resulted in a remarkable inhibition activity of the sutures against Staphylococcus aureus, which is a pathogenic member of human microbiota. When compared with the control groups, it was investigated that coating the sutures with eHp-AgNP stimulated the cell migration of the fibroblasts to heal the artificial wound. Due to their beneficial effects, the eHp-AgNP-coated silk sutures might be a potential antibacterial and wound healing accelerator for surgical approaches.
Collapse
Affiliation(s)
- Tuba Baygar
- Material
Research Laboratory, Research Laboratories Center, Mugla Sitki Kocman University, Mugla 48000, Turkey
| | - Aysel Ugur
- Faculty
of Dentistry, Department of Basic Sciences, Section of Medical Microbiology, Gazi University, Ankara 06500, Turkey
| | - Inci Rana Karaca
- Faculty
of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara 06500, Turkey
| | - Yeliz Kilinc
- Faculty
of Dentistry, Department of Oral and Maxillofacial Surgery, Gazi University, Ankara 06500, Turkey
| | - Sibel Elif Gultekin
- Faculty
of Dentistry, Department of Basic Sciences, Department of Oral Pathology, Gazi University, Ankara 06500, Turkey
| | - Nurdan Sarac
- Department
of Biology, Faculty of Science, Mugla Sitki
Kocman University, Mugla 48000, Turkey
| |
Collapse
|
3
|
Yakoubi A, Dhafer CEB. Advanced Plasmonic Nanoparticle-Based Techniques for the Prevention, Detection, and Treatment of Current COVID-19. PLASMONICS (NORWELL, MASS.) 2022; 18:311-347. [PMID: 36588744 PMCID: PMC9786532 DOI: 10.1007/s11468-022-01754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Coronavirus is an ongoing global pandemic caused by severe acute respiratory syndrome coronavirus 2. Coronavirus disease 2019 known as COVID-19 is the worst pandemic since World War II. The outbreak of COVID-19 had a significant repercussion on the health, economy, politics, and environment, making coronavirus-related issues more complicated and becoming one of the most challenging pandemics of the last century with deadly outcomes and a high rate of the reproduction number. There are thousands of different types - or variants - of COVID circulating across the world. Viruses mutate all the time; it emphasizes the critical need for the designing of efficient vaccines to prevent virus infection, early and fast diagnosis, and effective antiviral and protective therapeutics. In this regard, the use of nanotechnology offers new opportunities for the development of novel strategies in terms of prevention, diagnosis, and treatment of COVID-19. This review presents an outline of the platforms developed using plasmonic nanoparticles in the detection, treatment, and prevention of SARS-CoV-2. We select the best strategies in each of these approaches. The properties of metallic plasmon NPs and their relevance in the development of novel point-of-care diagnosis approaches for COVID-19 are highlighted. Also, we discuss the current challenges and the future perspectives looking towards the clinical translation and the commercial aspects of nanotechnology and plasmonic NP-based diagnostic tools and therapy to fight COVID-19 pandemic. The article could be of significance for researchers dedicated to developing suitable plasmonic detection tools and therapy approaches for COVID-19 viruses and future pandemics.
Collapse
Affiliation(s)
- Afef Yakoubi
- Laboratory of Hetero-organic Compounds and Nanostructured Materials, Chemistry Department, Faculty of Sciences Bizerte, University of Carthage, LR 18 ES11, 7021 Bizerte, Tunisia
| | - Cyrine El Baher Dhafer
- Chemistry Department College of Science, Jouf University, P.O Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
4
|
Jamshaid H, Mishra R, Hussain U, Rajput AW, Tichy M, Muller M. Natural Fiber Based Antibacterial, Wound Healing Surgical Sutures by the Application of Herbal Antimicrobial Compounds. JOURNAL OF NATURAL FIBERS 2022; 19:9531-9546. [DOI: 10.1080/15440478.2021.1988798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Affiliation(s)
- Hafsa Jamshaid
- Faculty of Textile Engineering, National Textile University, Faisalabad, Pakistan
| | - Rajesh Mishra
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| | - Uzair Hussain
- Faculty of Textile Engineering, National Textile University, Faisalabad, Pakistan
| | - Abdul Waqar Rajput
- Department of Textile Engineering, Bzu College of Textile Engineering, Multan, Pakistan
| | - Martin Tichy
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Muller
- Faculty of Engineering, Czech University of Life Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Ma J, Jiang L, Liu G. Cell membrane-coated nanoparticles for the treatment of bacterial infection. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1825. [PMID: 35725897 DOI: 10.1002/wnan.1825] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Despite the enormous success of antibiotics in antimicrobial therapy, the rapid emergence of antibiotic resistance and the complexity of the bacterial infection microenvironment make traditional antibiotic therapy face critical challenges against resistant bacteria, antitoxin, and intracellular infections. Consequently, there is a critical need to design antimicrobial agents that target infection microenvironment and alleviate antibiotic resistance. Cell membrane-coated nanoparticles (CMCNPs) are biomimetic materials that can be obtained by wrapping the cell membrane vesicles directly onto the surface of the nanoparticles (NPs) through physical means. Incorporating the biological functions of cell membrane vesicles and the superior physicochemical properties of NPs, CMCNPs have shown great promise in recent years for targeting infections, neutralizing bacterial toxins, and designing bacterial infection vaccines. This review highlights topics where CMCNPs present great value in advancing the treatment of bacterial infections, including drug delivery, detoxification, and vaccination. Lastly, we discuss the future hurdles and prospects of translating this technique into clinical practice, providing a comprehensive review of the technological developments of CMCNPs in the treatment of bacterial infections. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Jiaxin Ma
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lai Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gang Liu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
6
|
Basov A, Dzhimak S, Sokolov M, Malyshko V, Moiseev A, Butina E, Elkina A, Baryshev M. Changes in Number and Antibacterial Activity of Silver Nanoparticles on the Surface of Suture Materials during Cyclic Freezing. NANOMATERIALS 2022; 12:nano12071164. [PMID: 35407282 PMCID: PMC9000594 DOI: 10.3390/nano12071164] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 11/23/2022]
Abstract
This article presents the results of the 10-fold cyclic freezing (−37.0 °C) and thawing (0.0 °C) effect on the number and size range of silver nanoparticles (AgNPs). AgNPs were obtained by the cavitation-diffusion photochemical reduction method and their sorption on the fiber surface of various suture materials, perlon, silk, and catgut, was studied. The distribution of nanoparticles of different diameters before and after the application of the cyclic freezing/thawing processes for each type of fibers studied was determined using electron microscopy. In general, the present study demonstrates the effectiveness of using the technique of 10-fold cyclic freezing. It is applicable to increase the absolute amount of AgNPs on the surface of the suture material with a simultaneous decrease in the size dispersion. It was also found that the application of the developed technique leads to the overwhelming predominance of nanoparticles with 1 to 15 nm diameter on all the investigated fibers. In addition, it was shown that after the application of the freeze/thaw method, the antibacterial activity of silk and catgut suture materials with AgNPs was significantly higher than before their treatment by cyclic freezing.
Collapse
Affiliation(s)
- Alexander Basov
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, 4 Mitrofan Sedina St., 350063 Krasnodar, Russia; (A.B.); (V.M.)
- Department of Radiophysics and Nanothechnology, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (S.D.); (M.S.); (M.B.)
| | - Stepan Dzhimak
- Department of Radiophysics and Nanothechnology, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (S.D.); (M.S.); (M.B.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 41 Chekhov Ave., 344006 Rostov-on-Don, Russia
| | - Mikhail Sokolov
- Department of Radiophysics and Nanothechnology, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (S.D.); (M.S.); (M.B.)
| | - Vadim Malyshko
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, 4 Mitrofan Sedina St., 350063 Krasnodar, Russia; (A.B.); (V.M.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 41 Chekhov Ave., 344006 Rostov-on-Don, Russia
| | - Arkadii Moiseev
- Department of Organization and Support of Scientific Activities, Kuban State Agrarian University, 13 Kalinina St., 350004 Krasnodar, Russia;
| | - Elena Butina
- Department of Technology of Fats, Cosmetics, Commodity Science, Processes and Devices, Kuban State Technological University, 2 Moscow St., 350072 Krasnodar, Russia;
| | - Anna Elkina
- Department of Radiophysics and Nanothechnology, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (S.D.); (M.S.); (M.B.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 41 Chekhov Ave., 344006 Rostov-on-Don, Russia
- Correspondence: ; Tel.: +7-918-068-83-81
| | - Mikhail Baryshev
- Department of Radiophysics and Nanothechnology, Kuban State University, 149 Stavropolskaya St., 350040 Krasnodar, Russia; (S.D.); (M.S.); (M.B.)
- Laboratory of Problems of Stable Isotope Spreading in Living Systems, Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, 41 Chekhov Ave., 344006 Rostov-on-Don, Russia
- Department of Technology of Fats, Cosmetics, Commodity Science, Processes and Devices, Kuban State Technological University, 2 Moscow St., 350072 Krasnodar, Russia;
| |
Collapse
|
7
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
8
|
Jummaat F, Yahya EB, Khalil H.P.S. A, Adnan AS, Alqadhi AM, Abdullah CK, A.K. AS, Olaiya NG, Abdat M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers (Basel) 2021; 13:633. [PMID: 33672526 PMCID: PMC7923797 DOI: 10.3390/polym13040633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Biopolymers have gained tremendous attention in many daily life applications, including medical applications, in the past few years. Obstetrics and gynecology are two fields dealing with sensitive parts of the woman's body and her newborn baby, which are normally associated with many issues such as toxicity, infections, and even gene alterations. Medical professions that use screening, examination, pre, and post-operation materials should benefit from a better understanding of each type of material's characteristics, health, and even environmental effects. The underlying principles of biopolymer-based materials for different obstetric and gynecologic applications may discover various advantages and benefits of using such materials. This review presents the health impact of conventional polymer-based materials on pregnant women's health and highlights the potential use of biopolymers as a safer option. The recent works on utilizing different biopolymer-based materials in obstetric and gynecologic are presented in this review, which includes suture materials in obstetric and gynecologic surgeries, cosmetic and personal care products, vaginal health, and drug delivery; as well as a wound dressing and healing materials. This review highlights the main issues and challenges of biopolymers in obstetric and gynecologic applications.
Collapse
Affiliation(s)
- Fauziah Jummaat
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | - Esam Bashir Yahya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Abdul Khalil H.P.S.
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - A. S. Adnan
- Management & Science University Medical Centre, University Drive, Off Persiaran Olahraga, Section 13, Shah Alam 40100, Malaysia
| | | | - C. K. Abdullah
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Atty Sofea A.K.
- Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya, Permatang Pauh 13700, Malaysia;
| | - N. G. Olaiya
- School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; (E.B.Y.); (C.K.A.); (N.G.O.)
| | - Munifah Abdat
- Department of Preventive and Public Health Dentistry, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
9
|
Ghedini E, Pizzolato M, Longo L, Menegazzo F, Zanardo D, Signoretto M. Which Are the Main Surface Disinfection Approaches at the Time of SARS-CoV-2? FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2020.589202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Among many guidelines issued by the World Health Organization to prevent contagion from novel coronavirus (SARS-CoV-2), disinfection of animate and inanimate surfaces has emerged as a key issue. One effective approach to prevent its propagation can be achieved by disinfecting air, skin, or surfaces. A thorough and rational application of an Environmental Protection Agent for disinfection of surfaces, as well as a good personal hygiene, including cleaning hands with appropriate products (e.g., 60–90% alcohol-based product) should minimize transmission of viral respiratory pathogens such as SARS-CoV-2. Critical issues, associated with the potential health hazard of chemical disinfectants and the ineffective duration of most of the treatments, have fostered the introduction of innovative and alternative disinfection approaches. The present review aims to provide an outline of methods currently used for inanimate surface disinfection with a look to the future and a focus on the development of innovative and effective disinfection approaches (e.g., metal nanoparticles, photocatalysis, self-cleaning, and self-disinfection) with particular focus on SARS-CoV-2. The research reviews are, usually, focused on a specific category of disinfection methods, and therefore they are limited. On the contrary, a panoramic review with a wider focus, as the one here proposed, can be an added value for operators in the sector and generally for the scientific community.
Collapse
|
10
|
Belda Marín C, Fitzpatrick V, Kaplan DL, Landoulsi J, Guénin E, Egles C. Silk Polymers and Nanoparticles: A Powerful Combination for the Design of Versatile Biomaterials. Front Chem 2020; 8:604398. [PMID: 33335889 PMCID: PMC7736416 DOI: 10.3389/fchem.2020.604398] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
Silk fibroin (SF) is a natural protein largely used in the textile industry but also in biomedicine, catalysis, and other materials applications. SF is biocompatible, biodegradable, and possesses high tensile strength. Moreover, it is a versatile compound that can be formed into different materials at the macro, micro- and nano-scales, such as nanofibers, nanoparticles, hydrogels, microspheres, and other formats. Silk can be further integrated into emerging and promising additive manufacturing techniques like bioprinting, stereolithography or digital light processing 3D printing. As such, the development of methodologies for the functionalization of silk materials provide added value. Inorganic nanoparticles (INPs) have interesting and unexpected properties differing from bulk materials. These properties include better catalysis efficiency (better surface/volume ratio and consequently decreased quantify of catalyst), antibacterial activity, fluorescence properties, and UV-radiation protection or superparamagnetic behavior depending on the metal used. Given the promising results and performance of INPs, their use in many different procedures has been growing. Therefore, combining the useful properties of silk fibroin materials with those from INPs is increasingly relevant in many applications. Two main methodologies have been used in the literature to form silk-based bionanocomposites: in situ synthesis of INPs in silk materials, or the addition of preformed INPs to silk materials. This work presents an overview of current silk nanocomposites developed by these two main methodologies. An evaluation of overall INP characteristics and their distribution within the material is presented for each approach. Finally, an outlook is provided about the potential applications of these resultant nanocomposite materials.
Collapse
Affiliation(s)
- Cristina Belda Marín
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Jessem Landoulsi
- Laboratoire de réactivité de surface (UMR CNRS 7197), Sorbonne Université, Paris, France
| | - Erwann Guénin
- Laboratory of Integrated Transformations of Renewable Matter (TIMR), Université de Technologie de Compiègne, ESCOM, Compiègne, France
| | - Christophe Egles
- Biomechanics and Bioengineering, CNRS, Université de Technologie de Compiègne, Compiègne, France
| |
Collapse
|
11
|
Effect of AuNPs and AgNPs on the Antioxidant System and Antioxidant Activity of Lavender ( Lavandula angustifolia Mill.) from In Vitro Cultures. Molecules 2020; 25:molecules25235511. [PMID: 33255548 PMCID: PMC7728155 DOI: 10.3390/molecules25235511] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 02/03/2023] Open
Abstract
The aim of this study was to determine the effect of gold and silver nanoparticles on the activity of antioxidant enzymes (ascorbate peroxidase (APX), superoxide dismutase (SOD), guaiacol peroxidase (POX), and catalase (CAT)), the free radical scavenging capacity, and the total polyphenol capacity of lavender (Lavandula angustifolia Mill.) cultivar “Munstead” propagated in vitro. In the experiment, fragments of lavender plants were cultivated in vitro on medium with the addition of 1, 2, 5, 10, 20, and 50 mg∙dm−3 of AgNPs or AuNPs (particle sizes 24.2 ± 2.4 and 27.5 ± 4.8 nm, respectively). It was found that the nanoparticles increase the activity of the antioxidant enzymes APX and SOD; however, the reaction depends on the NP concentration. The highest APX activity is found in plants propagated on media with 2 and 5 mg∙dm−3 of AgNPs. AuNPs significantly increase the APX activity when added to media with a concentration of 10 mg∙dm−3. The highest SOD activity is recorded at 2 and 5 mg∙dm−3 AgNP and AuNP concentrations. The addition of higher concentrations of nanoparticles to culture media results in a decrease in the APX and SOD activity. The addition of AuNPs to culture media at concentrations from 2 to 50 mg∙dm−3 increases the POX activity in comparison to its activity when AgNPs are added to the culture media. No significant influence of NPs on the increase in CAT activity was demonstrated. AgNPs and AuNPs increased the free radical scavenging capacity (ABTS•+). The addition of NPs at concentrations of 2 and 5 mg∙dm−3 increased the production of polyphenols; however, in lower concentrations it decreased their content in lavender tissues.
Collapse
|
12
|
Pollini M, Paladini F. Bioinspired Materials for Wound Healing Application: The Potential of Silk Fibroin. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3361. [PMID: 32751205 PMCID: PMC7436046 DOI: 10.3390/ma13153361] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022]
Abstract
Nature is an incredible source of inspiration for scientific research due to the multiple examples of sophisticated structures and architectures which have evolved for billions of years in different environments. Numerous biomaterials have evolved toward high level functions and performances, which can be exploited for designing novel biomedical devices. Naturally derived biopolymers, in particular, offer a wide range of chances to design appropriate substrates for tissue regeneration and wound healing applications. Wound management still represents a challenging field which requires continuous efforts in scientific research for definition of novel approaches to facilitate and promote wound healing and tissue regeneration, particularly where the conventional therapies fail. Moreover, big concerns associated to the risk of wound infections and antibiotic resistance have stimulated the scientific research toward the definition of products with simultaneous regenerative and antimicrobial properties. Among the bioinspired materials for wound healing, this review focuses attention on a protein derived from the silkworm cocoon, namely silk fibroin, which is characterized by incredible biological features and wound healing capability. As demonstrated by the increasing number of publications, today fibroin has received great attention for providing valuable options for fabrication of biomedical devices and products for tissue engineering. In combination with antimicrobial agents, particularly with silver nanoparticles, fibroin also allows the development of products with improved wound healing and antibacterial properties. This review aims at providing the reader with a comprehensive analysis of the most recent findings on silk fibroin, presenting studies and results demonstrating its effective role in wound healing and its great potential for wound healing applications.
Collapse
Affiliation(s)
- Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| | - Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Caresilk S.r.l.s., Via Monteroni c/o Technological District DHITECH, 73100 Lecce, Italy
| |
Collapse
|
13
|
BAYGAR T. Characterization of silk sutures coated with propolis and biogenic silver nanoparticles (AgNPs); an eco-friendly solution with wound healing potential against surgical site infections (SSIs). Turk J Med Sci 2020; 50:258-266. [PMID: 31655520 PMCID: PMC7080367 DOI: 10.3906/sag-1906-48] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/09/2019] [Indexed: 01/09/2023] Open
Abstract
Background/aim Bacterial adherence to a suture material is one of the main causes of surgical site infections. An antibacterial suture material with enhanced wound healing function may protect the surgical site from infections. Thus, the present study aimed to investigate the synergistic effect of propolis and biogenic metallic nanoparticles when combined with silk sutures for biomedical use. Materials and methods Silver nanoparticle (AgNP) synthesis was carried out via a microbial-mediated biological route and impregnated on propolis-loaded silk sutures using an in situ process. Silk sutures fabricated with propolis and biosynthesized AgNPs (bioAgNP-propolis-coated sutures) were intensively characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The antibacterial characteristics of the bioAgNP-propolis-coated sutures were evaluated using the agar plate method. The biocompatibility of the bioAgNP-propolis- coated sutures was evaluated using 3T3 fibroblast cells, and their wound-healing potential was also investigated. Results BioAgNP-propolis-coated sutures displayed potent antibacterial activity against pathogenic gram-negative and gram-positive bacteria, Escherichia coli and Staphylococcus aureus, respectively. BioAgNP-propolis-coated silk sutures were found to be biocompatible with 3T3 fibroblast cell culture. In vitro wound healing scratch assay also demonstrated that the extract of bioAgNP-propolis-coated sutures stimulated the 3T3 fibroblasts’ cell proliferation. Conclusion Coating the silk sutures with propolis and biogenic AgNPs gave an effective antibacterial capacity to surgical sutures besides providing biocompatibility and wound healing activity.
Collapse
Affiliation(s)
- Tuba BAYGAR
- Research Laboratories Center, Muğla Sıtkı Koçman University, MuğlaTurkey
| |
Collapse
|
14
|
Xue B, Zhao L, Qin X, Qin M, Lai J, Huang W, Lei H, Wang J, Wang W, Li Y, Cao Y. Bioinspired Ice Growth Inhibitors Based on Self-Assembling Peptides. ACS Macro Lett 2019; 8:1383-1390. [PMID: 35651174 DOI: 10.1021/acsmacrolett.9b00610] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Antifreeze proteins (AFPs) are widely found in organisms living in subzero environments. Their strong ability to inhibit ice growth and recrystallization have inspired considerable bioinspired efforts to engineer artificial ice growth inhibitors for cryopreservation. However, it remains challenging to engineer biocompatible and cost-effective synthetic ice growth inhibitors to meet the increasing needs of cryoprotectants in biomedical research and industry. Here we report the design of artificial ice growth inhibitors based on self-assembling peptides. We demonstrate the importance of threonine residues as well as their spatial arrangement for effective ice binding. The engineered self-assembling ice growth inhibiting peptides show moderate ice inhibiting activity including suppression of ice growth rates and retardation of recrystallization of ice crystals. The applications of these peptides in cryopreservation of enzymes and cells were also demonstrated.
Collapse
Affiliation(s)
- Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Lishan Zhao
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xuehua Qin
- College of Life Sciences and Health, Northeastern University, Shenyang 110169, People’s Republic of China
| | - Meng Qin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jiancheng Lai
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Wenmao Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Jianjun Wang
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
| |
Collapse
|
15
|
Development of a Novel Polymer-Based mRNA Coating for Surgical Suture to Enhance Wound Healing. COATINGS 2019. [DOI: 10.3390/coatings9060374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A therapeutic strategy to improve wound healing has become an increasingly important medical task due to the rising incidence of adiposity and type II diabetes as well as the proceeding population aging. In order to cope with the resulting burdens, new strategies to achieve rapid and complete wound healing must now be developed. Accordingly, the development of a bioactive wound dressing in the form of a messengerRNA (mRNA)-bearing poly(lactide-co-glycolide acid) (PLGA) coating on surgical suture is being pushed further with this study. Furthermore, the evaluation of the polymer-based transfection reagent Viromer RED has shown that it can be used for the transfection of eukaryotic cells: The mRNA gets properly complexed and translated into a functional protein. In addition, the mRNA-PLGA coating triggered the expression of the keratinocyte growth factor (KGF) in HaCat cells although KGF is not expressed under physiological conditions. Moreover, transfection via surgical sutures coated with mRNA does not affect the cell viability and a proinflammatory reaction in the transfected cells is not induced. These properties make the mRNA-PLGA coating very attractive for the in vivo application. For the future, this could mean that through the use of mRNA-coated sutures in surgical wound closure, cells in the wound area can be transfected directly, thus accelerating and improving wound healing.
Collapse
|
16
|
Querido MM, Aguiar L, Neves P, Pereira CC, Teixeira JP. Self-disinfecting surfaces and infection control. Colloids Surf B Biointerfaces 2019; 178:8-21. [PMID: 30822681 PMCID: PMC7127218 DOI: 10.1016/j.colsurfb.2019.02.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 12/27/2022]
Abstract
According to World Health Organization, every year in the European Union, 4 million patients acquire a healthcare associated infection. Even though some microorganisms represent no threat to healthy people, hospitals harbor different levels of immunocompetent individuals, namely patients receiving immunosuppressors, with previous infections, or those with extremes of age (young children and elderly), requiring the implementation of effective control measures. Public spaces have also been found an important source of infectious disease outbreaks due to poor or none infection control measures applied. In both places, surfaces play a major role on microorganisms' propagation, yet they are very often neglected, with very few guidelines about efficient cleaning measures and microbiological assessment available. To overcome surface contamination problems, new strategies are being designed to limit the microorganisms' ability to survive over surfaces and materials. Surface modification and/or functionalization to prevent contamination is a hot-topic of research and several different approaches have been developed lately. Surfaces with anti-adhesive properties, with incorporated antimicrobial substances or modified with biological active metals are some of the strategies recently proposed. This review intends to summarize the problems associated with contaminated surfaces and their importance on infection spreading, and to present some of the strategies developed to prevent this public health problem, namely some already being commercialized.
Collapse
Affiliation(s)
- Micaela Machado Querido
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| | - Lívia Aguiar
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Paula Neves
- National Institute of Health, Environmental Health Department, Porto, Portugal
| | - Cristiana Costa Pereira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal.
| | - João Paulo Teixeira
- National Institute of Health, Environmental Health Department, Porto, Portugal; EPIUnit - Institute of Public Health, University of Porto, Porto, Portugal
| |
Collapse
|
17
|
Chen S, Ge L, Gombart AF, Shuler FD, Carlson MA, Reilly DA, Xie J. Nanofiber-based sutures induce endogenous antimicrobial peptide. Nanomedicine (Lond) 2017; 12:2597-2609. [PMID: 28960168 DOI: 10.2217/nnm-2017-0161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The aim of this study was to develop nanofiber-based sutures capable of inducing endogenous antimicrobial peptide production. METHODS We used co-axial electrospinning deposition and rolling to fabricate sutures containing pam3CSK4 peptide and 25-hydroxyvitamin D3 (25D3). RESULTS The diameters and mechanical properties of the sutures were adjustable to meet the criteria of United States Pharmacopeia designation. 25D3 exhibited a sustained release from nanofiber sutures over 4 weeks. Pam3CSK4 peptide also showed an initial burst followed by a sustained release over 4 weeks. The co-delivery of 25D3 and pam3CSK4 peptide enhanced cathelicidin antimicrobial peptide production from U937 cells and keratinocytes compared with 25D3 delivery alone. In addition, the 25D3/pam3CSK4 peptide co-loaded nanofiber sutures did not significantly influence proliferation of keratinocytes, fibroblasts, or the monocytic cell lines U937 and HL-60. CONCLUSION The use of 25D3/pam3CSK4 peptide co-loaded nanofiber sutures could potentially induce endogenous antimicrobial peptide production and reduce surgical site infections.
Collapse
Affiliation(s)
- Shixuan Chen
- Department of Surgery-Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences & Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, China
| | - Adrian F Gombart
- Department of Biochemistry & Biophysics & Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Franklin D Shuler
- Department of Orthopedic Surgery, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Mark A Carlson
- Department of Surgery-General Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Debra A Reilly
- Department of Surgery-Plastic Surgery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant & Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
18
|
Preventing Surgical Site Infections Using a Natural, Biodegradable, Antibacterial Coating on Surgical Sutures. Molecules 2017; 22:molecules22091570. [PMID: 28925959 PMCID: PMC6151728 DOI: 10.3390/molecules22091570] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 12/02/2022] Open
Abstract
Surgical site infections (SSIs) are one of the most common nosocomial infections, which can result in serious complications after surgical interventions. Foreign materials such as implants or surgical sutures are optimal surfaces for the adherence of bacteria and subsequent colonization and biofilm formation. Due to a significant increase in antibiotic-resistant bacterial strains, naturally occurring agents exhibiting antibacterial properties have great potential in prophylactic therapies. The aim of this study was to develop a coating for surgical sutures consisting of the antibacterial substance totarol, a naturally occurring diterpenoid isolated from Podocarpustotara in combination with poly(lactide-co-glycolide acid) (PLGA) as a biodegradable drug delivery system. Hence, non-absorbable monofilament and multifilament sutures were coated with solutions containing different amounts and ratios of totarol and PLGA, resulting in a smooth, crystalline coating. Using an agar diffusion test (ADT), it became evident that the PLGA/totarol-coated sutures inhibited the growth of Staphylococcus aureus over a period of 15 days. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that the coated sutures were not cytotoxic to murine fibroblasts. Overall, the data indicates that our innovative, biodegradable suture coating has the potential to reduce the risk of SSIs and postoperative biofilm-formation on suture material without adverse effects on tissue.
Collapse
|
19
|
Guo Z, Chen G, Zeng G, Huang Z, Chen A, Hu L, Wang J, Jiang L. Cysteine-induced hormesis effect of silver nanoparticles. Toxicol Res (Camb) 2016; 5:1268-1272. [PMID: 30090430 PMCID: PMC6061518 DOI: 10.1039/c6tx00222f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/25/2016] [Indexed: 12/25/2022] Open
Abstract
The toxicity of silver nanoparticles (AgNPs) is widely exploited, but their hormesis effect has, so far, received little attention. This study reports the hormesis effect at low AgNPs concentrations of 0.34 mg L-1, with a 29.9% increase in bacterial viability compared with the control. Cysteine can induce a hormesis effect at a higher concentration. 12.5 mg L-1 cysteine induced a hormesis effect in the AgNP concentration range of 1.7-5.1 mg L-1. Results suggest that this cysteine-induced hormesis effect is concentration-dependent; the concentration that make sulfuration rate (ns/nAg) of 6.15 shows strong excitation to cells.
Collapse
Affiliation(s)
- Zhi Guo
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Guiqiu Chen
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Guangming Zeng
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Zhenzhen Huang
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Anwei Chen
- College of Resources and Environment , Hunan Agricultural University , Changsha 410128 , P.R. China
| | - Liang Hu
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Jiajia Wang
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| | - Longbo Jiang
- College of Environmental Science and Engineering , Hunan University , Changsha 410082 , P.R. China . ; ; ; Tel: +86 731 88822829
- Key Laboratory of Environmental Biology and Pollution Control (Hunan University) , Ministry of Education , Changsha 410082 , P.R. China
| |
Collapse
|