1
|
Qian S, Xu R. Environmentally friendly synthesis of gelatin hydrogel nanoparticles for gastric cancer treatment, bisphenol A sensing and nursing applications: Fabrication, characterization and ANN modeling. Heliyon 2024; 10:e38834. [PMID: 39654704 PMCID: PMC11625131 DOI: 10.1016/j.heliyon.2024.e38834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
This study presents a dual application approach for the environmentally friendly synthesis of gelatin hydrogel nanoparticles with potential applications in gastric cancer treatment, bisphenol A (BPA) sensing, and nursing. Gelatin hydrogel nanoparticles were synthesized using a green and freeze-drying method, avoiding the use of toxic chemicals and solvents. The nanoparticles showed excellent biocompatibility and promising potential for drug delivery system (DDS) in gastric cancer treatment. The controlled release of anticancer drugs from the gelatin nanoparticles was showed, highlighting their potential in targeted therapy. Additionally, the gelatin hydrogel nanoparticles were explored for BPA sensing. BPA is a widely used chemical known for its adverse effects on human health. The gelatin nanoparticles showed high selectivity and sensitivity towards BPA detection, making them suitable for environmental monitoring and health applications using scanning electron microscope (SEM). Also, in this study, an artificial neural network (ANN) was used to estimate the release of docetaxel (%) at 72 h, the release of paclitaxel (%) at 72 h, tensile strength with sample (wt%), and porosity (%) in broader ranges than the experimental samples. The environmentally friendly synthesis of gelatin hydrogel nanoparticles presented in this study offers a versatile platform with dual applications in gastric cancer treatment and sensing of harmful chemicals. The obtained results show the potential of these nanoparticles for innovative therapeutic and diagnostic strategies in healthcare and environmental monitoring. The study showed the development of sustainable and multifunctional nanomaterials for various biomedical applications. The modeling of the neural network predictions shows that increasing the sample (wt%) and porosity (%) leads to an increase in the release of docetaxel (%) at 72 h, the release of paclitaxel (%) at 72 h, and tensile strength. As porosity decreases, the release of docetaxel increases, and the release of paclitaxel and tensile strength also increase. Additionally, the prediction errors of the ANN in this study were evaluated using linear regression, showing acceptable error rates compared to the target results obtained from the experimental tests.
Collapse
Affiliation(s)
- Sun Qian
- Gastroenterology Department II, Jinan people's Hospital Affiliated to Shandong First Medical University, 001 Xuehu Street, Changshao North Road, Laiwu District, Jinan City, 271100, China
| | - Ruiyan Xu
- College of Health, Binzhou Polytechnical College, No.919, Yellow River 12th Road, Binzhou, 256603, China
| |
Collapse
|
2
|
Han YS, Jang JH, Lee WS, Oh JS, Lee EJ, Yoon BE. Regulation of astrocyte activity and immune response on graphene oxide-coated titanium by electrophoretic deposition. Front Bioeng Biotechnol 2023; 11:1261255. [PMID: 37854881 PMCID: PMC10579947 DOI: 10.3389/fbioe.2023.1261255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: Astrocytes play crucial role in modulating immune response in the damaged central nervous system. Numerous studies have investigated the relationship between immune responses in astrocytes and brain diseases. However, the potential application of nanomaterials for alleviating neuroinflammation induced by astrocytes remains unexplored. Method: In this study, we utilized electrophoretic deposition (EPD) to coat graphene oxide (GO) onto titanium (Ti) to enhance the bioactivity of Ti. Results: We confirmed that GO-Ti could improve cell adhesion and proliferation of astrocytes with upregulated integrins and glial fibrillary acidic protein (GFAP) expression. Moreover, we observed that astrocytes on GO-Ti exhibited a heightened immune response when exposed to lipopolysaccharide (LPS). Although pro-inflammatory cytokines increased, anti-inflammatory cytokines and brain-derived neurotrophic factors involved in neuroprotective effects were also augmented through nuclear localization of the yes-associated protein (YAP) and nuclear factor kappa B (NF-κB). Discussion: Taken together, GO-Ti could enhance the neuroprotective function of astrocytes by upregulating the expression of anti-inflammatory cytokines and neuroprotective factors with improved cell adhesion and viability. Consequently, our findings suggest that GO-Ti has the potential to induce neuroprotective effects by regulating cell activity.
Collapse
Affiliation(s)
- Yong-Soo Han
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
| | - Jun-Hwee Jang
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Won-Seok Lee
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| | - Jun-Sung Oh
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Eun-Jung Lee
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, College of Science and Technology, Dankook University, Cheonan, Republic of Korea
- Nano-Bio Medical Science, Graduate School, Dankook University, Cheonan, Republic of Korea
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
3
|
Chremos A, Horkay F. Coexistence of Crumpling and Flat Sheet Conformations in Two-Dimensional Polymer Networks: An Understanding of Aggrecan Self-Assembly. PHYSICAL REVIEW LETTERS 2023; 131:138101. [PMID: 37832020 DOI: 10.1103/physrevlett.131.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7. The flat sheet behavior (d_{f}=2) emerges in 2D polymer networks having more branching points at large length scales; however, it coexists with crumpling conformations at intermediate length scales, a feature found in scattering profiles of aggrecan solutions. Our findings bridge the long-standing gap between theories and simulations of polymer sheets.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
4
|
Utkan G, Yumusak G, Tunali BC, Ozturk T, Turk M. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. ACS OMEGA 2023; 8:31188-31200. [PMID: 37663476 PMCID: PMC10468768 DOI: 10.1021/acsomega.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 09/05/2023]
Abstract
Despite the huge and efficient functionalities of reduced graphene oxide (RGO) for bioengineering applications, the use of harsh chemicals and unfavorable techniques in their production remains a major challenge. Microbial production of reduced graphene oxide (RGO) using specific bacterial strains has gained interest as a sustainable and efficient method. The reduction of GO to RGO by selected bacterial strains was achieved through their enzymatic activities and resulted in the removal of oxygen functional groups from GO, leading to the formation of RGO with enhanced structural integrity. The use of microorganisms offers a sustainable approach, utilizing renewable carbon sources and mild reaction conditions. This study investigates the production of RGO using three different bacterial strains: Lactococcus lactis (L. Lactis), Lactobacillus plantarum (L. plantarum), and Escherichia coli (E. coli) and evaluates its toxicity for safe utilization. The aim is to assess the quality of the produced RGO and evaluate its toxicity for potential applications. Thus, this study focused on the microbial production of reduced graphene oxides well as the investigation of their cellular interactions. Graphite-derived graphene oxide was used as a starting material and microbially reduced GO products were characterized using the FTIR, Raman, XRD, TGA, and XPS methods to determine their physical and chemical properties. FTIR shows that the epoxy and some of the alkoxy and carboxyl functional groups were reduced by E. coli and L. lactis, whereas the alkoxy groups were mostly reduced by L. plantarum. The ID/IG ratio from Raman spectra was found as 2.41 for GO. A substantial decrease in the ratio as well as defects was observed as 1.26, 1.35, and 1.46 for ERGO, LLRGO, and LPRGO after microbial reduction. The XRD analysis also showed a significant reduction in the interlayer spacing of the GO from 0.89 to 0.34 nm for all the reduced graphene oxides. TGA results showed that reduction of GO with L. lactis provided more reduction than other bacteria and formed a structure closer to graphene. Similarly, analysis with XPS showed that L lactis provides the most effective reduction with a C/O ratio of 3.70. In the XPS results obtained with all bacteria, it was observed that the C/O ratio increased because of the microbial reduction. Toxicity evaluations were performed to assess the biocompatibility and safety of the produced RGO. Cell viability assays were conducted using DLD-1 and CHO cell lines to determine the potential cytotoxic effects of RGO produced by each bacterial strain. Additionally, apoptotic, and necrotic responses were examined to understand the cellular mechanisms affected by RGO exposure. The results indicated that all the RGOs have concentration-dependent cytotoxicity. A significant amount of cell viability of DLD-1 cells was observed for L. lactis reduced graphene oxide. However, the highest cell viability of CHO cells was observed for L. plantarum reduced graphene oxide. All reduced graphene oxides have low apoptotic and necrotic responses in both cell lines. These findings highlight the importance of considering the specific bacterial strain used in RGO production as it can influence the toxicity and cellular response of the resulting RGO. The toxicity and cellular response to the final RGO can be affected by the particular bacterial strain that is employed to produce it. This information will help to ensure that RGO is used safely in a variety of applications, including tissue engineering, drug delivery systems, and biosensors, where comprehension of its toxicity profile is essential.
Collapse
Affiliation(s)
- Guldem Utkan
- SUNUM
Nanotechnology Research Center,Sabanci University, Istanbul 34956,Turkey
| | - Gorkem Yumusak
- Department
of Metallurgical and Materials Engineering, Faculty of Engineering, Marmara University, Istanbul 34722,Turkey
| | - Beste Cagdas Tunali
- Department
of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale 71450,Turkey
| | - Tarik Ozturk
- Food
Institute, Marmara Research Center, TUBITAK, Kocaeli 41470,Turkey
| | - Mustafa Turk
- Department
of Bioengineering, Faculty of Engineering, Kirikkale University, Kirikkale 71450,Turkey
| |
Collapse
|
5
|
Teimoorian M, Mirzaie M, Tashakkorian H, Gholinia H, Alaghemand H, Pournajaf A, Ghorbanipour R. Effects of adding functionalized graphene oxide nanosheets on physical, mechanical, and anti-biofilm properties of acrylic resin: In vitro- experimental study. Dent Res J (Isfahan) 2023; 20:37. [PMID: 37180695 PMCID: PMC10166752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/28/2022] [Accepted: 12/18/2022] [Indexed: 05/16/2023] Open
Abstract
Background Polymethyl methacrylate resin is widely used in orthodontic treatments. Graphene oxide (GO) has reactive functional groups on its surface that facilitate binding to various materials such as polymers, biomolecules, DNA, and proteins. This study aimed to investigate the impact of adding functionalized GO nanosheets on the physical, mechanical, cytotoxicity, and anti-biofilm properties of acrylic resin. Materials and Methods In this experimental study, fifty samples (for each test) were divided into groups of 10, in the form of acrylic resin discs with concentrations of 0, 0.25, 0.5, 1, and 2 weight percentage (wt%) of functionalized GO nanosheets and also the control group. Samples were evaluated in terms of physical properties (surface hardness, surface roughness, compressive strength, fracture toughness, and flexural strength), anti-biofilm properties (On four groups of micro-organisms, including Streptococcus mutans, Streptococcus sanguis, Staphylococcus aureus, and Candida albicans), and cytotoxicity. Data were analyzed using SPSS software version 22, descriptive statistics, one-way analysis of variance test, and Tukey post hoc test. The significance level was considered P < 0.05. Results No significant difference was observed between the different groups with weight percentages of 0.25, 0.5, 1, and 2% nano GO (nGO) and the control group (without nGO) in terms of surface roughness and toughness. However, compressive strength, three-point flexural strength, and surface hardness showed significant differences between the groups. Furthermore, the degree of cytotoxicity increased by increasing the weight percentage of nano-GO. Conclusion The addition of functionalized nGO in appropriate concentrations to polymethyl methacrylate can improve the anti-bacterial and anti-fungal biofilm properties without changing or increasing their physical and mechanical properties.
Collapse
Affiliation(s)
- Mehran Teimoorian
- Student Research Committee, Faculty of Dentistry, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Maysam Mirzaie
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Hamed Tashakkorian
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Hemmat Gholinia
- Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Homayoon Alaghemand
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Reza Ghorbanipour
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| |
Collapse
|
6
|
Krasteva N, Georgieva M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022; 14:pharmaceutics14061213. [PMID: 35745786 PMCID: PMC9227901 DOI: 10.3390/pharmaceutics14061213] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a global health problem responsible for 10% of all cancer incidences and 9.4% of all cancer deaths worldwide. The number of new cases increases per annum, whereas the lack of effective therapies highlights the need for novel therapeutic approaches. Conventional treatment methods, such as surgery, chemotherapy and radiotherapy, are widely applied in oncology practice. Their therapeutic success is little, and therefore, the search for novel technologies is ongoing. Many efforts have focused recently on the development of safe and efficient cancer nanomedicines. Nanoparticles are among them. They are uniquewith their properties on a nanoscale and hold the potential to exploit intrinsic metabolic differences between cancer and healthy cells. This feature allows them to induce high levels of toxicity in cancer cells with little damage to the surrounding healthy tissues. Graphene oxide is a promising 2D material found to play an important role in cancer treatments through several strategies: direct killing and chemosensitization, drug and gene delivery, and phototherapy. Several new treatment approaches based on nanoparticles, particularly graphene oxide, are currently under research in clinical trials, and some have already been approved. Here, we provide an update on the recent advances in nanomaterials-based CRC-targeted therapy, with special attention to graphene oxide nanomaterials. We summarise the epidemiology, carcinogenesis, stages of the CRCs, and current nanomaterials-based therapeutic approaches for its treatment.
Collapse
Affiliation(s)
- Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| | - Milena Georgieva
- Institute of Molecular Biology “Acad. R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (N.K.); (M.G.); Tel.: +359-889-577-074 (N.K.); +359-896-833-604 (M.G.)
| |
Collapse
|
7
|
Principles and Biomedical Application of Graphene Family Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:3-22. [DOI: 10.1007/978-981-16-4923-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Burdanova MG, Kharlamova MV, Kramberger C, Nikitin MP. Applications of Pristine and Functionalized Carbon Nanotubes, Graphene, and Graphene Nanoribbons in Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3020. [PMID: 34835783 PMCID: PMC8626004 DOI: 10.3390/nano11113020] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022]
Abstract
This review is dedicated to a comprehensive description of the latest achievements in the chemical functionalization routes and applications of carbon nanomaterials (CNMs), such as carbon nanotubes, graphene, and graphene nanoribbons. The review starts from the description of noncovalent and covalent exohedral modification approaches, as well as an endohedral functionalization method. After that, the methods to improve the functionalities of CNMs are highlighted. These methods include the functionalization for improving the hydrophilicity, biocompatibility, blood circulation time and tumor accumulation, and the cellular uptake and selectivity. The main part of this review includes the description of the applications of functionalized CNMs in bioimaging, drug delivery, and biosensors. Then, the toxicity studies of CNMs are highlighted. Finally, the further directions of the development of the field are presented.
Collapse
Affiliation(s)
- Maria G. Burdanova
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Department of Physics, Moscow Region State University, Very Voloshinoy Street, 24, 141014 Mytishi, Russia
| | - Marianna V. Kharlamova
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
- Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/BC/2, 1060 Vienna, Austria
| | - Christian Kramberger
- Faculty of Physics, University of Vienna, Strudlhofgasse 4, 1090 Vienna, Austria;
| | - Maxim P. Nikitin
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskii Pereulok 9, 141700 Dolgoprudny, Russia;
| |
Collapse
|
9
|
Liu G, Yang L, Chen G, Xu F, Yang F, Yu H, Li L, Dong X, Han J, Cao C, Qi J, Su J, Xu X, Li X, Li B. A Review on Drug Delivery System for Tumor Therapy. Front Pharmacol 2021; 12:735446. [PMID: 34675807 PMCID: PMC8524443 DOI: 10.3389/fphar.2021.735446] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, with the development of nanomaterials, the research of drug delivery systems has become a new field of cancer therapy. Compared with conventional antitumor drugs, drug delivery systems such as drug nanoparticles (NPs) are expected to have more advantages in antineoplastic effects, including easy preparation, high efficiency, low toxicity, especially active tumor-targeting ability. Drug delivery systems are usually composed of delivery carriers, antitumor drugs, and even target molecules. At present, there are few comprehensive reports on a summary of drug delivery systems applied for tumor therapy. This review introduces the preparation, characteristics, and applications of several common delivery carriers and expounds the antitumor mechanism of different antitumor drugs in delivery carriers in detail which provides a more theoretical basis for clinical application of personalized cancer nanomedicine in the future.
Collapse
Affiliation(s)
- Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Huaxin Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Lingne Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingjing Han
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Jingyu Qi
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Junzhe Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaohui Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaoxia Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China.,Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Amin F, Rahman S, Khurshid Z, Zafar MS, Sefat F, Kumar N. Effect of Nanostructures on the Properties of Glass Ionomer Dental Restoratives/Cements: A Comprehensive Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6260. [PMID: 34771787 PMCID: PMC8584882 DOI: 10.3390/ma14216260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022]
Abstract
Overall perspective of nanotechnology and reinforcement of dental biomaterials by nanoparticles has been reported in the literature. However, the literature regarding the reinforcement of dental biomaterials after incorporating various nanostructures is sparse. The present review addresses current developments of glass ionomer cements (GICs) after incorporating various metallic, polymeric, inorganic and carbon-based nanostructures. In addition, types, applications, and implications of various nanostructures incorporated in GICs are discussed. Most of the attempts by researchers are based on the laboratory-based studies; hence, it warrants long-term clinical trials to aid the development of suitable materials for the load bearing posterior dentition. Nevertheless, a few meaningful conclusions are drawn from this substantial piece of work; they are as follows: (1) most of the nanostructures are likely to enhance the mechanical strength of GICs; (2) certain nanostructures improve the antibacterial activity of GICs against the cariogenic bacteria; (3) clinical translation of these promising outcomes are completely missing, and (4) the nanostructured modified GICs could perform better than their conventional counterparts in the load bearing posterior dentition.
Collapse
Affiliation(s)
- Faiza Amin
- Science of Dental Materials Department, Dow Dental College, Dow University of Health Sciences, Karachi 74200, Pakistan;
| | - Sehrish Rahman
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad 44000, Pakistan
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford BD7 1DP, UK;
| | - Naresh Kumar
- Science of Dental Materials Department, Dr. Ishrat Ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi 74200, Pakistan; (S.R.); (N.K.)
| |
Collapse
|
11
|
Tirumala MG, Anchi P, Raja S, Rachamalla M, Godugu C. Novel Methods and Approaches for Safety Evaluation of Nanoparticle Formulations: A Focus Towards In Vitro Models and Adverse Outcome Pathways. Front Pharmacol 2021; 12:612659. [PMID: 34566630 PMCID: PMC8458898 DOI: 10.3389/fphar.2021.612659] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 08/05/2021] [Indexed: 12/18/2022] Open
Abstract
Nanotoxicology is an emerging field employed in the assessment of unintentional hazardous effects produced by nanoparticles (NPs) impacting human health and the environment. The nanotoxicity affects the range between induction of cellular stress and cytotoxicity. The reasons so far reported for these toxicological effects are due to their variable sizes with high surface areas, shape, charge, and physicochemical properties, which upon interaction with the biological components may influence their functioning and result in adverse outcomes (AO). Thus, understanding the risk produced by these materials now is an important safety concern for the development of nanotechnology and nanomedicine. Since the time nanotoxicology has evolved, the methods employed have been majorly relied on in vitro cell-based evaluations, while these simple methods may not predict the complexity involved in preclinical and clinical conditions concerning pharmacokinetics, organ toxicity, and toxicities evidenced through multiple cellular levels. The safety profiles of nanoscale nanomaterials and nanoformulations in the delivery of drugs and therapeutic applications are of considerable concern. In addition, the safety assessment for new nanomedicine formulas lacks regulatory standards. Though the in vivo studies are greatly needed, the end parameters used for risk assessment are not predicting the possible toxic effects produced by various nanoformulations. On the other side, due to increased restrictions on animal usage and demand for the need for high-throughput assays, there is a need for developing and exploring novel methods to evaluate NPs safety concerns. The progress made in molecular biology and the availability of several modern techniques may offer novel and innovative methods to evaluate the toxicological behavior of different NPs by using single cells, cell population, and whole organisms. This review highlights the recent novel methods developed for the evaluation of the safety impacts of NPs and attempts to solve the problems that come with risk assessment. The relevance of investigating adverse outcome pathways (AOPs) in nanotoxicology has been stressed in particular.
Collapse
Affiliation(s)
- Mounika Gayathri Tirumala
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pratibha Anchi
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Susmitha Raja
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| |
Collapse
|
12
|
Liu L, Ma Q, Cao J, Gao Y, Han S, Liang Y, Zhang T, Song Y, Sun Y. Recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00087-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
In the last decade, graphene oxide-based nanomaterials, such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted more and more attention in the field of biomedicine. Due to the versatile surface functionalization, ultra-high surface area, and excellent biocompatibility of graphene oxide-based nanomaterials, which hold better promise for potential applications than among other nanomaterials in biomedical fields including drug/gene delivery, biomolecules detection, tissue engineering, especially in cancer treatment.
Results
Here, we review the recent progress of graphene oxide-based multifunctional nanomaterials for cancer treatment. A comprehensive and in-depth depiction of unique property of graphene oxide-based multifunctional nanomaterials is first interpreted, with particular descriptions about the suitability for applying in cancer therapy. Afterward, recently emerging representative applications of graphene oxide-based multifunctional nanomaterials in antitumor therapy, including as an ideal carrier for drugs/genes, phototherapy, and bioimaging, are systematically summarized. Then, the biosafety of the graphene oxide-based multifunctional nanomaterials is reviewed.
Conclusions
Finally, the conclusions and perspectives on further advancing the graphene oxide-based multifunctional nanomaterials toward potential and versatile development for fundamental researches and nanomedicine are proposed.
Graphic abstract
Collapse
|
13
|
Miyazawa T, Itaya M, Burdeos GC, Nakagawa K, Miyazawa T. A Critical Review of the Use of Surfactant-Coated Nanoparticles in Nanomedicine and Food Nanotechnology. Int J Nanomedicine 2021; 16:3937-3999. [PMID: 34140768 PMCID: PMC8203100 DOI: 10.2147/ijn.s298606] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Surfactants, whose existence has been recognized as early as 2800 BC, have had a long history with the development of human civilization. With the rapid development of nanotechnology in the latter half of the 20th century, breakthroughs in nanomedicine and food nanotechnology using nanoparticles have been remarkable, and new applications have been developed. The technology of surfactant-coated nanoparticles, which provides new functions to nanoparticles for use in the fields of nanomedicine and food nanotechnology, is attracting a lot of attention in the fields of basic research and industry. This review systematically describes these "surfactant-coated nanoparticles" through various sections in order: 1) surfactants, 2) surfactant-coated nanoparticles, application of surfactant-coated nanoparticles to 3) nanomedicine, and 4) food nanotechnology. Furthermore, current progress and problems of the technology using surfactant-coated nanoparticles through recent research reports have been discussed.
Collapse
Affiliation(s)
- Taiki Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| | - Mayuko Itaya
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Gregor C Burdeos
- Institute for Animal Nutrition and Physiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Kim S, Moriya S, Maruki S, Fukaminato T, Ogata T, Kurihara S. Adsorption and release on three-dimensional graphene oxide network structures. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201585. [PMID: 34084539 PMCID: PMC8150017 DOI: 10.1098/rsos.201585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
In this study, three-dimensional network architectures are constructed using nano-sized graphene oxide (nGO) as the building block. The cross-linking reaction of nGO is conducted in sub-micrometre water droplets in an emulsion system to control the size of the networks by restricting the reaction space. Two types of three-dimensional GO networks with different cross-linking lengths were constructed, and their methyl orange adsorption and release behaviours were investigated under external stimuli, such as thermal treatment, ultrasonic wave treatment and near-infrared light irradiation.
Collapse
Affiliation(s)
- Sunnam Kim
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sho Moriya
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sakura Maruki
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tuyoshi Fukaminato
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Tomonari Ogata
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Seiji Kurihara
- Department of Materials Science and Applied Chemistry, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
15
|
Bina A, Raissi H, Hashemzadeh H, Farzad F. Conjugation of a smart polymer to doxorubicin through a pH-responsive bond for targeted drug delivery and improving drug loading on graphene oxide. RSC Adv 2021; 11:18809-18817. [PMID: 35478640 PMCID: PMC9033485 DOI: 10.1039/d1ra02361f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Polymeric nanoparticles have emerged as efficient carriers for anticancer drug delivery because they can improve the solubility of hydrophobic drugs and also can increase the bio-distribution of drugs throughout the bloodstream. In this work, a computational study is performed on a set of new pH-sensitive polymer-drug compounds based on an intelligent polymer called poly(β-malic acid) (PMLA). The molecular dynamics (MD) simulation is used to explore the adsorption and dynamic properties of PMLA-doxorubicin (PMLA-DOX) interaction with the graphene oxide (GOX) surface in acidic and neutral environments. The PMLA is bonded to DOX through an amide bond (PMLA-ami-DOX) and a hydrazone bond (PMLA-hz-DOX) and their adsorption behavior is compared with free DOX. Our results confirm that the polymer-drug prodrug shows unique properties. Analysis of the adsorption behavior reveals that this process is spontaneous and the most stable complex with a binding energy of -1210.262 kJ mol-1 is the GOX/PMLA-hz-DOX complex at normal pH. On the other hand, this system has a great sensitivity to pH so that in an acidic environment, its interaction with GOX became weaker while such behavior is not observed for the PMLA-ami-DOX complex. The results obtained from this study provide accurate information about the interaction of the polymer-drug compounds and nanocarriers at the atomic level, which can be useful in the design of smart drug delivery systems.
Collapse
Affiliation(s)
- Ali Bina
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Heidar Raissi
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Hassan Hashemzadeh
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| | - Farzaneh Farzad
- Department of Chemistry, University of Birjand Birjand Iran +98 5632502064
| |
Collapse
|
16
|
Georgieva M, Gospodinova Z, Keremidarska-Markova M, Kamenska T, Gencheva G, Krasteva N. PEGylated Nanographene Oxide in Combination with Near-Infrared Laser Irradiation as a Smart Nanocarrier in Colon Cancer Targeted Therapy. Pharmaceutics 2021; 13:pharmaceutics13030424. [PMID: 33809878 PMCID: PMC8004270 DOI: 10.3390/pharmaceutics13030424] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anti-cancer therapies that integrate smart nanomaterials are the focus of cancer research in recent years. Here, we present our results with PEGylated nanographene oxide particles (nGO-PEG) and have studied their combined effect with near-infrared (NIR) irradiation on low and high invasive colorectal carcinoma cells. The aim is to develop nGO-PEG as a smart nanocarrier for colon cancer-targeted therapy. For this purpose, nGO-PEG nanoparticles' size, zeta potential, surface morphology, dispersion stability, aggregation, and sterility were determined and compared with pristine nGO nanoparticles (NPs). Our results show that PEGylation increased the particle sizes from 256.7 nm (pristine nGO) to 324.6 nm (nGO-PEG), the zeta potential from -32.9 to -21.6 mV, and wrinkled the surface of the nanosheets. Furthermore, nGO-PEG exhibited higher absorbance in the NIR region, as compared to unmodified nGO. PEGylated nGO demonstrated enhanced stability in aqueous solution, improved dispensability in the culture medium, containing 10% fetal bovine serum (FBS) and amended biocompatibility. A strong synergic effect of nGO-PEG activated with NIR irradiation for 5 min (1.5 W/cm-2 laser) was observed on cell growth inhibition of low invasive colon cancer cells (HT29) and their wound closure ability while the effect of NIR on cellular morphology was relatively weak. Our results show that PEGylation of nGO combined with NIR irradiation holds the potential for a biocompatible smart nanocarrier in colon cancer cells with enhanced physicochemical properties and higher biological compatibility. For that reason, further optimization of the irradiation process and detailed screening of nGO-PEG in combination with NIR and chemotherapeutics on the fate of the colon cancer cells is a prerequisite for highly efficient combined nanothermal and photothermal therapy for colon cancer.
Collapse
Affiliation(s)
- Milena Georgieva
- Institute of Molecular Biology “R. Tsanev”, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: (M.G.); (N.K.); Tel.: +359-896833604 (M.G.); +359-889577074 (N.K.)
| | - Zlatina Gospodinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Milena Keremidarska-Markova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd, 1164 Sofia, Bulgaria
| | - Trayana Kamenska
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
| | - Galina Gencheva
- Faculty of Chemistry and Pharmacy, Sofia University “St. Kliment Ohridski”, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Natalia Krasteva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria; (Z.G.); (M.K.-M.); (T.K.)
- Correspondence: (M.G.); (N.K.); Tel.: +359-896833604 (M.G.); +359-889577074 (N.K.)
| |
Collapse
|
17
|
Kumar VS, Mary YS, Pradhan K, Brahman D, Mary YS, Serdaroğlu G, Rad AS, Roxy M. Conformational analysis and quantum descriptors of two new imidazole derivatives by experimental, DFT, AIM, molecular docking studies and adsorption activity on graphene. Heliyon 2020; 6:e05182. [PMID: 33072922 PMCID: PMC7548447 DOI: 10.1016/j.heliyon.2020.e05182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 10/02/2020] [Indexed: 11/15/2022] Open
Abstract
1-[2-(2-hydroxy-3-methoxy-5-(4-methoxyphenylazo)benzaldeneamino)ethyl]-3-methyl-3H-imidazole (HMY) and 1-[2-(2-hydroxy-3-methoxy-5-(4-methylphenylazo)benzaldene amino)ethyl]-3-methyl-3H-imidazole (HMM) were synthesized and characterized using spectral analysis. Conformational analysis has been achieved using potential energy scan for different rotable bonds for obtaining the lowest energy conformer. Conformer with minimum energy is obtained along the dihedral angle N30-C31-C34-N37. QTAIM analysis gives nature and strength of hydrogen bonding interactions. UV-Vis, electrostatic potential and chemical descriptors are analyzed. Interaction of HMY and HMM with graphene is analyzed in terms of SERS activity. Chemical reactivity descriptors were investigated for graphene-drug systems. NLO activity of parent drugs and its graphene complexes show good activity. The wavenumber downshift of different modes is noted. Title molecules exhibit inhibitory activity against cytochrome C peroxidase. Interactions with graphene sheets are theoretically predicted for the title compounds.
Collapse
Affiliation(s)
- Veena S. Kumar
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Kerala, India
| | - Y. Sheena Mary
- Department of Physics, Fatima Mata National College(Autonomous), Kollam, Kerala, India
| | - Kiran Pradhan
- Department of Chemistry, St. Joseph's College, P.O. North Point, Dist. Darjeeling 734104, India
| | - Dhiraj Brahman
- Department of Chemistry, St. Joseph's College, P.O. North Point, Dist. Darjeeling 734104, India
| | - Y. Shyma Mary
- Department of Physics, Fatima Mata National College(Autonomous), Kollam, Kerala, India
| | - Goncagül Serdaroğlu
- Sivas Cumhuriyet University, Faculty of Education, Math. and Sci. Edu., 58140 Sivas TURKEY
| | - Ali Shokuhi Rad
- Department of Chemical Engineering, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - M.S. Roxy
- Department of Physics, SN College, Kollam, Research Centre, University of Kerala, Kerala, India
| |
Collapse
|
18
|
Malhotra N, Villaflores OB, Audira G, Siregar P, Lee JS, Ger TR, Hsiao CD. Toxicity Studies on Graphene-Based Nanomaterials in Aquatic Organisms: Current Understanding. Molecules 2020; 25:molecules25163618. [PMID: 32784859 PMCID: PMC7465277 DOI: 10.3390/molecules25163618] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Graphene and its oxide are nanomaterials considered currently to be very promising because of their great potential applications in various industries. The exceptional physiochemical properties of graphene, particularly thermal conductivity, electron mobility, high surface area, and mechanical strength, promise development of novel or enhanced technologies in industries. The diverse applications of graphene and graphene oxide (GO) include energy storage, sensors, generators, light processing, electronics, and targeted drug delivery. However, the extensive use and exposure to graphene and GO might pose a great threat to living organisms and ultimately to human health. The toxicity data of graphene and GO is still insufficient to point out its side effects to different living organisms. Their accumulation in the aquatic environment might create complex problems in aquatic food chains and aquatic habitats leading to debilitating health effects in humans. The potential toxic effects of graphene and GO are not fully understood. However, they have been reported to cause agglomeration, long-term persistence, and toxic effects penetrating cell membrane and interacting with cellular components. In this review paper, we have primarily focused on the toxic effects of graphene and GO caused on aquatic invertebrates and fish (cell line and organisms). Here, we aim to point out the current understanding and knowledge gaps of graphene and GO toxicity.
Collapse
Affiliation(s)
- Nemi Malhotra
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Oliver B. Villaflores
- Department of Biochemistry, Faculty of Pharmacy and Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1015, Philippines;
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Petrus Siregar
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
| | - Jiann-Shing Lee
- Department of Applied Physics, National Pingtung University, Pingtung 900391, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| | - Tzong-Rong Ger
- Department of Biomedical Engineering, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 320314, Taiwan;
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 320314, Taiwan
- Correspondence: (J.-S.L.); (T.-R.G.); (C.-D.H.)
| |
Collapse
|
19
|
Anti-Angiogenic and Anti-Proliferative Graphene Oxide Nanosheets for Tumor Cell Therapy. Int J Mol Sci 2020; 21:ijms21155571. [PMID: 32759830 PMCID: PMC7432113 DOI: 10.3390/ijms21155571] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Graphene oxide (GO) is a bidimensional novel material that exhibits high biocompatibility and angiogenic properties, mostly related to the intracellular formation of reactive oxygen species (ROS). In this work, we set up an experimental methodology for the fabrication of GO@peptide hybrids by the immobilization, via irreversible physical adsorption, of the Ac-(GHHPH)4-NH2 peptide sequence, known to mimic the anti-angiogenic domain of the histidine-proline-rich glycoprotein (HPRG). The anti-proliferative capability of the graphene-peptide hybrids were tested in vitro by viability assays on prostate cancer cells (PC-3 line), human neuroblastoma (SH-SY5Y), and human retinal endothelial cells (primary HREC). The anti-angiogenic response of the two cellular models of angiogenesis, namely endothelial and prostate cancer cells, was scrutinized by prostaglandin E2 (PGE2) release and wound scratch assays, to correlate the activation of inflammatory response upon the cell treatments with the GO@peptide nanocomposites to the cell migration processes. Results showed that the GO@peptide nanoassemblies not only effectively induced toxicity in the prostate cancer cells, but also strongly blocked the cell migration and inhibited the prostaglandin-mediated inflammatory process both in PC-3 and in HRECs. Moreover, the cytotoxic mechanism and the internalization efficiency of the theranostic nanoplatforms, investigated by mitochondrial ROS production analyses and confocal microscopy imaging, unraveled a dose-dependent manifold mechanism of action performed by the hybrid nanoassemblies against the PC-3 cells, with the detection of the GO-characteristic cell wrapping and mitochondrial perturbation. The obtained results pointed out to the very promising potential of the synthetized graphene-based hybrids for cancer therapy.
Collapse
|
20
|
Quagliarini E, Di Santo R, Pozzi D, Tentori P, Cardarelli F, Caracciolo G. Mechanistic Insights into the Release of Doxorubicin from Graphene Oxide in Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1482. [PMID: 32751061 PMCID: PMC7466571 DOI: 10.3390/nano10081482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
Abstract
Liposomal doxorubicin (L-DOX) is a popular drug formulation for the treatment of several cancer types (e.g., recurrent ovarian cancer, metastatic breast cancer, multiple myeloma, etc.), but poor nuclear internalization has hampered its clinical applicability so far. Therefore, novel drug-delivery nanosystems are actively researched in cancer chemotherapy. Here we demonstrate that DOX-loaded graphene oxide (GO), GO-DOX, exhibits much higher anticancer efficacy as compared to its L-DOX counterpart if administered to cellular models of breast cancer. Then, by a combination of live-cell confocal imaging and fluorescence lifetime imaging microscopy (FLIM), we suggest that GO-DOX may realize its superior performances by inducing massive intracellular DOX release (and its subsequent nuclear accumulation) upon binding to the cell plasma membrane. Reported results lay the foundation for future exploitation of these new adducts as high-performance nanochemotherapeutic agents.
Collapse
Affiliation(s)
- Erica Quagliarini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy;
| | - Riccardo Di Santo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Daniela Pozzi
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Paolo Tentori
- Center for Nanotechnology Innovation@NEST (CNI@NEST), Istituto Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy;
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Francesco Cardarelli
- NEST Laboratory, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy;
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| |
Collapse
|
21
|
Li Q, Wang Z. Involvement of FAK/P38 Signaling Pathways in Mediating the Enhanced Osteogenesis Induced by Nano-Graphene Oxide Modification on Titanium Implant Surface. Int J Nanomedicine 2020; 15:4659-4676. [PMID: 32636624 PMCID: PMC7335313 DOI: 10.2147/ijn.s245608] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Titanium implants are widely used in dental and orthopedic medicine. Nevertheless, there is limited osteoinductive capability of titanium leading to a poor or delayed osseointegration, which might cause the failure of the implant therapy. Therefore, appropriate modification on the titanium surface for promoting osseointegration of existing implants is still pursued. PURPOSE Graphene oxide (GO) is a promising candidate to perform implant surface biofunctionalization for modulating the interactions between implant surface and cells. So the objective of this study was to fabricate a bioactive GO-modified titanium implant surface with excellent osteoinductive potential and further investigate the underlying biological mechanisms. MATERIALS AND METHODS The large particle sandblasting and acid etching (SLA, commonly used in clinical practice) surface as a control group was first developed and then the nano-GO was deposited on the SLA surface via an ultrasonic atomization spraying technique to create the SLA/GO group. Their effects on rat bone marrow mesenchymal stem cells (BMSCs) responsive behaviors were assessed in vitro, and the underlying biological mechanisms were further systematically investigated. Moreover, the osteogenesis performance in vivo was also evaluated. RESULTS The results showed that GO coating was fabricated on the titanium substrates successfully, which endowed SLA surface with the improved hydrophilicity and protein adsorption capacity. Compared with the SLA surface, the GO-modified surface favored cell adhesion and spreading, and significantly improved cell proliferation and osteogenic differentiation of BMSCs in vitro. Furthermore, the FAK/P38 signaling pathways were proven to be involved in the enhanced osteogenic differentiation of BMSCs, accompanied by the upregulated expression of focal adhesion (vinculin) on the GO coated surface. The enhanced bone regeneration ability of GO-modified implants when inserted into rat femurs was also observed and confirmed that the GO coating induced accelerated osseointegration and osteogenesis in vivo. CONCLUSION GO modification on titanium implant surface has potential applications for achieving rapid bone-implant integration through the mediation of FAK/P38 signaling pathways.
Collapse
Affiliation(s)
- Qingfan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People’s Republic of China
- Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai, People’s Republic of China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, People’s Republic of China
- Department of Oral Implant, School of Stomatology, Hospital of Stomatology, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
22
|
Bitounis D, Parviz D, Cao X, Amadei CA, Vecitis CD, Sunderland EM, Thrall BD, Fang M, Strano MS, Demokritou P. Synthesis and Physicochemical Transformations of Size-Sorted Graphene Oxide during Simulated Digestion and Its Toxicological Assessment against an In Vitro Model of the Human Intestinal Epithelium. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907640. [PMID: 32196921 PMCID: PMC7260083 DOI: 10.1002/smll.201907640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 05/05/2023]
Abstract
In the last decade, along with the increasing use of graphene oxide (GO) in various applications, there is also considerable interest in understanding its effects on human health. Only a few experimental approaches can simulate common routes of exposure, such as ingestion, due to the inherent complexity of the digestive tract. This study presents the synthesis of size-sorted GO of sub-micrometer- or micrometer-sized lateral dimensions, its physicochemical transformations across mouth, gastric, and small intestinal simulated digestions, and its toxicological assessment against a physiologically relevant, in vitro cellular model of the human intestinal epithelium. Results from real-time characterization of the simulated digestas of the gastrointestinal tract using multi-angle laser diffraction and field-emission scanning electron microscopy show that GO agglomerates in the gastric and small intestinal phase. Extensive morphological changes, such as folding, are also observed on GO following simulated digestion. Furthermore, X-ray photoelectron spectroscopy reveals that GO presents covalently bound N-containing groups on its surface. It is shown that the GO employed in this study undergoes reduction. Toxicological assessment of the GO small intestinal digesta over 24 h does not point to acute cytotoxicity, and examination of the intestinal epithelium under electron microscopy does not reveal histological alterations. Both sub-micrometer- and micrometer-sized GO variants elicit a 20% statistically significant increase in reactive oxygen species generation compared to the untreated control after a 6 h exposure.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| | - Carlo A. Amadei
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Elsie M. Sunderland
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford St Cambridge, MA 02138, USA
| | - Brian D. Thrall
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore
| | - Michael S. Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
23
|
Islam MS, Renner F, Azizighannad S, Mitra S. Direct incorporation of nano graphene oxide (nGO) into hydrophobic drug crystals for enhanced aqueous dissolution. Colloids Surf B Biointerfaces 2020; 189:110827. [PMID: 32028132 PMCID: PMC7160045 DOI: 10.1016/j.colsurfb.2020.110827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/22/2020] [Accepted: 01/25/2020] [Indexed: 01/14/2023]
Abstract
This paper reports the development of a successful anti-solvent method that incorporates colloidal nano scale graphene oxide (nGO) directly into hydrophobic drug crystals. The nGO dispersed in solution acted as nucleating sites for crystallization and were embedded into the drug crystals without altering its structure or physical properties such as melting point. Several composites of drugs Sulfamethoxazole and Griseofulvin were synthesized with nGO concentration ranging between 0.2 and 1.0 %. The presence of nGO dramatically enhanced the dissolution rate. The time needed to reach a 50 % release (T50) reduced from 42-14 min with the integration of 0.8 % nGO in SMZ, while in GF the reduction was from 44-27 min with 0.5 % nGO. Increased release rates are attributed to the presence of the hydrophilic nGO which hydrogen bond more so with the aqueous mediums. Therefore, the incorporation of nGO into poorly soluble drugs is an effective approach towards drug delivery and bioavailability improvement and opens a new approach to high performance drug delivery.
Collapse
Affiliation(s)
- Mohammad Saiful Islam
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Faradae Renner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Samar Azizighannad
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| |
Collapse
|
24
|
Lin L, Zhuang X, Huang R, Song S, Wang Z, Wang S, Cheng L, Zhu R. Size-Dependent Effects of Suspended Graphene Oxide Nanoparticles on the Cellular Fate of Mouse Neural Stem Cells. Int J Nanomedicine 2020; 15:1421-1435. [PMID: 32184596 PMCID: PMC7060781 DOI: 10.2147/ijn.s225722] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/01/2020] [Indexed: 01/19/2023] Open
Abstract
PURPOSE In this study, we aim to explore the effects of graphene oxide (GO), a derivative of graphene, nanoparticles of four different sizes on the cellular fate of mouse neural stem cells (mNSCs). METHODS GO NPs were characterized with transmission electron microscopy (TEM), scanning electron micrography (SEM), atomic force microscopy (AFM) and Raman Spectra analysis. The cytotoxic effects of the GO NPs of different sizes on the mNSCs were determined using CCK-8 assay, Annexin V-APC/ 7-AAD staining and EdU staining assays. We investigated the biological and the mechanisms of GO NPs on cells using immunofluorescence analysis and quantitative real-time PCR (qPCR). RESULTS The average hydrodynamic sizes of the GO NPs were 417 nm, 663 nm, 1047 nm, and 4651 nm, with a thickness of approximately 22.5 nm, 17.7 nm, 22.4 nm, and 13.4 nm, respectively. GO NPs of all sizes showed low cytotoxicity at a concentration of 20 μg/mL on the mNSCs. Immunostaining demonstrated that treatment with GO NPs, especially the 663 nm ones, enhanced the self-renewal ability of mNSCs in the absence of EGF and bFGF. Under differentiation medium conditions that are free of mitogenic factors, all the GO NPs, particularly the 4651 nm ones, increased the expression level of Tuj1 and GFAP. With regards to the migration ability, we found that 417 nm GO-NP-treated mNSCs migrated over a longer distance than the control group obviously. In addition, higher expression of Rap1, Vinculin and Paxillin was observed in the GO NP-treated groups compared to the control group. mRNA-Sequence analysis and Western blotting results suggested that the 4651 nm GO NPs triggered positive neuronal differentiation through phosphorylation of ERK1/2 by the downregulating of TRPC2. CONCLUSION GO NPs play an important role in the applications of inducing self-renewal and differentiation of mNSC, and are promising in the future for further studies.
Collapse
Affiliation(s)
- Lijuan Lin
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Xizhen Zhuang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Ruiqi Huang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Simin Song
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Zhaojie Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Shilong Wang
- Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| | - Rongrong Zhu
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, People’s Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, People’s Republic of China
| |
Collapse
|
25
|
Qi J, Chen Y, Xue T, Lin Y, Huang S, Cao S, Wang X, Su Y, Lin Z. Graphene oxide-based magnetic nanocomposites for the delivery of melittin to cervical cancer HeLa cells. NANOTECHNOLOGY 2020; 31:065102. [PMID: 31645027 DOI: 10.1088/1361-6528/ab5084] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Melittin (MEL), the primary active component of bee venom, has recently emerged as a promising cancer chemotherapeutic agent. However, the instability and rapid degradation of MEL is a significant challenge in practical therapeutic applications. In the present study, graphene oxide (GO)-based magnetic nanocomposites (PEG-GO-Fe3O4) were prepared and adopted as the drug delivery vehicles of MEL, and the anticancer effects of PEG-GO-Fe3O4/MEL complexes on human cervical cancer HeLa cells were studied. PEG-GO-Fe3O4 exhibited a series of unique physical and chemical properties resulting in multiple interactions with MEL, and ultimately the release of MEL. In vitro experiments showed that PEG-GO-Fe3O4/MEL not only distinctly enhanced the inhibition effect on HeLa cells, but also induced pore formation in the cell membrane that ultimately led to cell lysis. In this newly developed drug delivery system, PEGylated GO plays the role of a MEL protector while Fe3O4 nanoparticles act as magnetic responders; therefore active MEL can be released over a long period of time (up to 72 h) and maintain its inhibition effect on HeLa cells.
Collapse
Affiliation(s)
- Jinxia Qi
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Malta AFDO, Cortez DL, Romão DA, Pereira JECH, Velo MMDAC, Nascimento TRDL. Graphene Oxide Applications in Dentistry: Integrative Literature Review. JOURNAL OF HEALTH SCIENCES 2019. [DOI: 10.17921/2447-8938.2019v21n4p376-81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
AbstractGraphene and its derivatives, such as graphene oxide, represent the greatest potential materials in terms of biomaterials due to their excellent physical-chemical and biological properties. Thus, the present study has developed an integrative literature review in order to evaluate the capacity of graphene oxide to replace metal biomaterials currently used in Dentistry. For this purpose, LILACS, SciELO and PubMED databases were evaluated, with the following descriptors: graphene, biomaterials and Odontology, adapted for each database used. Firstly, the descriptors were searched separately and, later, the Boolean operator AND was used to define a search strategy. The articles were selected according to the following inclusion criteria: articles in Portuguese, English and Spanish, published and indexed in the databases, in the last ten years, with texts available in full and regarding the topic under study. A total of 14 scientific papers were found and 10 of them were selected for this review. After the critical reading of each article, it was possible to observe that graphene and its derivates present great biocompatibility, excellent mechanical, electrical and thermic properties, high flexibility, low density and a huge potential to be explored in health science. It is also important to highlight its potential application as a coating of metal biomaterials. Keywords: Biocompatible Materials. Materials Testing. Dentistry. ResumoO grafeno e seus derivados, como o óxido de grafeno, representam atualmente o maior potencial em termos de biomateriais, devido às suas excelentes propriedades físico-químicas e de biocompatibilidade. Assim, o presente estudo teve como premissa conduzir uma revisão integrativa da literatura de modo a verificar a capacidade do óxido de grafeno em substituir os biomateriais metálicos atualmente utilizados na Odontologia. Para isto, foram utilizadas as bases de dados Lilacs, SciELO e Pubmed, com os seguintes descritores: grafeno, biomateriais e Odontologia, adaptados para cada base de dados utilizada. Primeiramente, os descritores foram pesquisados isoladamente e, posteriormente, o operador booleano AND foi utilizado de modo a definir uma estratégia de busca. Os artigos foram selecionados de acordo com os critérios de inclusão: artigos em Português, Inglês e Espanhol, publicados e indexados nas referidas bases de dados, nos últimos dez anos, com texto disponível na íntegra e que retratassem a temática em estudo. Foram encontrados um total de 14 artigos científicos e, dez destes artigos foram selecionados para compor a revisão. A partir da leitura crítica de cada artigo, foi possível observar que o grafeno e seus derivados apresentam uma alta biocompatibilidade, notáveis propriedades mecânicas, elétricas e térmicas, alta flexibilidade, baixa densidade de massa e um enorme potencial a ser explorado para beneficiar a área da saúde. Deve-se, também, destacar sua potencial aplicação como revestimento de materiais metálicos implantáveis. Palavras-chave: Materiais Biocompatíveis. Teste de Materiais. Odontologia.
Collapse
|
27
|
Assali M, Almasri M, Kittana N, Alsouqi D. Covalent Functionalization of Graphene Sheets with Different Moieties and Their Effects on Biological Activities. ACS Biomater Sci Eng 2019; 6:112-121. [DOI: 10.1021/acsbiomaterials.9b01143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| | - Motasem Almasri
- Department of Biology & Biotechnology, Faculty of Science, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| | - Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| | - Deema Alsouqi
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus 00970, Palestine
| |
Collapse
|
28
|
Wierzbicki M, Jaworski S, Sawosz E, Jung A, Gielerak G, Jaremek H, Łojkowski W, Woźniak B, Stobiński L, Małolepszy A, Chwalibog A. Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. NANOSCALE RESEARCH LETTERS 2019; 14:320. [PMID: 31602544 PMCID: PMC6787127 DOI: 10.1186/s11671-019-3166-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/30/2019] [Indexed: 05/13/2023]
Abstract
Antibacterial surfaces coated with nanomaterials, including silver nanoparticles, are considered effective alternative antimicrobial agents that can be used instead of antibiotics and chemical agents. However, reports of the potential toxicity of these materials raise questions about the safety of their use in biomedical applications. The objective of this research was to reduce the human cell cytotoxicity of silver nanoparticle-coated polyurethane foils by complexing silver nanoparticles with graphene oxide. The antimicrobial activity of nanoplatforms coated with silver nanoparticles, graphene oxide and the composite of silver nanoparticles and graphene oxide was assessed with Salmonella enteritidis. Cytotoxicity was analysed by an analysis of the viability and morphology of human fibroblasts, human umbilical vein endothelial cells (HUVECs) and chicken embryo chorioallantoic membrane. Additionally, the synthesis level of inflammatory proteins was examined for fibroblasts cultured on different nanoplatforms. The nanoplatform coated with the silver nanoparticles and graphene oxide composite showed strongest antibacterial properties, although nanoplatforms coated with only silver nanoparticles or graphene oxide also resulted in decreased S. enteritidis growth. Furthermore, a nanoplatform coated with silver nanoparticles and graphene oxide composite showed limited immunological stimulation and significantly reduced cytotoxicity towards fibroblasts, HUVECs and chicken embryo chorioallantoic membrane in comparison to the nanoplatform coated only with silver nanoparticles, due to the higher stability of the nanomaterials in the nanocomposite.
Collapse
Affiliation(s)
- Mateusz Wierzbicki
- Institute of Biology, Department of Nanobiotechnology and Experiemntal Ecology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Sławomir Jaworski
- Institute of Biology, Department of Nanobiotechnology and Experiemntal Ecology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Ewa Sawosz
- Institute of Biology, Department of Nanobiotechnology and Experiemntal Ecology, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786, Warsaw, Poland
| | - Anna Jung
- Military Institute of Medicine, Szaserów 128, 04-141, Warsaw, Poland
| | - Grzegorz Gielerak
- Military Institute of Medicine, Szaserów 128, 04-141, Warsaw, Poland
| | - Henryk Jaremek
- Braster S.A., Cichy Ogród 7, 05-580, Ożarów Mazowiecki, Poland
| | - Witold Łojkowski
- Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw, Poland
| | - Bartosz Woźniak
- Institute of High Pressure Physics of the Polish Academy of Sciences, Sokołowska 29/37, 01-142, Warsaw, Poland
| | - Leszek Stobiński
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - Artur Małolepszy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870, Frederiksberg, Denmark
| |
Collapse
|
29
|
Xia M, Luo D, Dong J, Zheng M, Meng G, Wu J, Wei J. Graphene oxide arms oncolytic measles virus for improved effectiveness of cancer therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:408. [PMID: 31533779 PMCID: PMC6749703 DOI: 10.1186/s13046-019-1410-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/03/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Replication-competent oncolytic viruses (OVs) have been proven to be a potent anticancer weapon for clinical therapy. The preexisting neutralizing antibody in patients is a big challenge for oncolytic efficacy of OVs. Graphene oxide sheets (GOS) possess excellent biological compatibility and are easy to decorate for targeted delivery. METHODS We generated PEI-GOS-PEG-FA (Polyethyleneimine-Graphene oxide sheets-Polyethylene glycol-Folic acid). After intravenous injection, the distribution of PEI-GOS-PEG-FA in tumor-bearing mice was visualized by the IVIS Lumina XR system. Then, the oncolytic measles virus (MV-Edm) was coated with PEI-GOS-PEG-FA to form a viral-GOS complex (GOS/MV-Edm). The oncolytic effects of GOS/MV-Edm were investigated both in vitro and in vivo. RESULTS GOS/MV-Edm exhibited higher infectivity and enhanced oncolysis. In tumor-bearing mice, GOS/MV-Edm had significantly elevated viral replication within the tumor mass, and achieved an improved antitumor effect. Then, we confirmed that GOS/MV-Edm entered cancer cells via the folate receptor instead of CD46, a natural cognate receptor of MV-Edm. GOS/MV-Edm remained the infectivity in murine cells that lack CD46. Finally, we found that GOS/MV-Edm was effectively protected from neutralization in the presence of antiserum both in vitro and in vivo. In passively antiserum immunized tumor-bearing mice, the survival was remarkably improved with intravenous injection of GOS/MV-Edm. CONCLUSION Our findings demonstrate that GOS/MV-Edm displays significantly elevated viral replication within the tumor mass, leading to an improved antitumor effect in solid tumor mouse model. Our study provided a novel strategy to arm OVs for more efficient cancer therapy. That may become a promising therapeutic strategy for cancer patients.
Collapse
Affiliation(s)
- Mao Xia
- Department of Laboratory Medicine, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Dongjun Luo
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jie Dong
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Meihong Zheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China
| | - Gang Meng
- The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
30
|
Dong YZ, Kim JN, Choi HJ. Graphene Oxide and Its Inorganic Composites: Fabrication and Electrorheological Response. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2185. [PMID: 31284695 PMCID: PMC6651409 DOI: 10.3390/ma12132185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022]
Abstract
Composite particles associated with graphene oxide (GO) and inorganic materials provide the synergistic properties of an appropriate electrical conductivity of GO with the good dielectric characteristics of inorganic materials, making them attractive candidates for electrorheological (ER) materials. This review paper focuses on the fabrication mechanisms of GO/inorganic composites and their ER response when suspended in a non-conducting medium, including steady shear flow curves, dynamic yield stress, On-Off tests, and dynamic oscillation analysis. Furthermore, the morphologies of these composites, dielectric properties, and sedimentation of the ER fluids are covered.
Collapse
Affiliation(s)
- Yu Zhen Dong
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Joo Nyeon Kim
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea
| | - Hyoung Jin Choi
- Department of Polymer Science and Engineering, Inha University, Incheon 22212, Korea.
| |
Collapse
|
31
|
Croitoru A, Oprea O, Nicoara A, Trusca R, Radu M, Neacsu I, Ficai D, Ficai A, Andronescu E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E230. [PMID: 31151305 PMCID: PMC6631192 DOI: 10.3390/medicina55060230] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/25/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023]
Abstract
Background and objectives: In the last few years, graphene oxide has attracted much attention in biomedical applications due to its unique physico-chemical properties and can be used as a carrier for both hydrophilic and/or hydrophobic biomolecules. The purpose of this paper was to synthesize graphene oxide and to obtain multifunctional platforms based on graphene oxide as a nanocarrier loaded with few biologically active substances with anticancer, antimicrobial or anti-inflammatory properties such as gallic acid, caffeic acid, limonene and nutmeg and cembra pine essential oils. Materials and Methods: Graphene oxide was obtained according to the method developed by Hummers and further loaded with biologically active agents. The obtained platforms were characterized using FTIR, HPLC, TGA, SEM, TEM and Raman spectroscopy. Results: Gallic acid released 80% within 10 days but all the other biologically active agents did not release because their affinity for the graphene oxide support was higher than that of the phosphate buffer solution. SEM characterization showed the formation of nanosheets and a slight increase in the degree of agglomeration of the particles. The ratio I2D/IG for all samples was between 0.18 for GO-cembra pine and 0.27 for GO-limonene, indicating that the GO materials were in the form of multilayers. The individual GO sheets were found to have less than 20 µm, the thickness of GO was estimated to be ~4 nm and an interlayer spacing of about 2.12 Å. Raman spectroscopy indicated that the bioactive substances were adsorbed on the surface and no degradation occurred during loading. Conclusions: These findings encourage this research to further explore, both in vitro and in vivo, the biological activities of bioactive agents for their use in medicine.
Collapse
Affiliation(s)
- Alexa Croitoru
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ovidiu Oprea
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Adrian Nicoara
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Roxana Trusca
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Mihai Radu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ionela Neacsu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Denisa Ficai
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Anton Ficai
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| | - Ecaterina Andronescu
- Academy of Romanian Scientists, Spl. Independenței 54, 50085 Bucharest, Romania.
- University Politehnica of Bucharest, Faculty of Applied Chemistry and Materials Science, Gh. Polizu St 1-7, 011061 Bucharest, Romania.
| |
Collapse
|
32
|
Sengupta B, Coleman J, Johnson J, Feng M. Graphene oxide as selective transporter of flavonols for physiological target DNA: A two-color fluorescence approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:192-198. [PMID: 30776721 PMCID: PMC6869337 DOI: 10.1016/j.saa.2019.02.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/17/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Our study determines the selectivity of graphene oxide (GO) to recognize its ligands (e.g. flavonoids) in facilitating the binding with their respective cellular targets. The polyhydroxy phenolic compounds, flavonoids, have a broad spectrum of therapeutic activities with high potency and low systemic toxicity. Despite the vast medicinal importance, their bioavailability is low. In this exploratory study, GO has been used as the transporter of three flavonols fisetin (3, 7, 3', 4'-OH flavone), quercetin (3, 5, 7, 3', 4'-OH flavone), and morin (3, 5, 7, 2', 4'-OH flavone) for the physiological target DNA. Calf thymus DNA is chosen as the model physiological target. Characterization of GO is performed using FTIR, Raman and dynamic light scattering (DLS) spectroscopy. The strong absorption peak at 1730 cm-1 indicated the presence of carbonyl groups (C=O) at the edges of GO. The presence of sp3 carbons due to oxidation of sp2 carbons in GO is further proved by Raman spectroscopy. DLS provided the average size of the GO particles to be ~9 μm. The dual luminescence behavior of the flavonols has been used in this study for the noninvasive sensing of the GO-flavonol and GO-flavonol-DNA interactions; as well as for the selectivity of GO for one flavonol over other in transferring the ligand to DNA. Furthermore, circular dichroism (CD) indicated that the optical activity of GO undergoes drastic change when conjugated with flavonols. Molecular modeling corroborated the findings from the binding studies. GO provides high promise as facilitators for drug delivery.
Collapse
Affiliation(s)
- Bidisha Sengupta
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA.
| | - Justin Coleman
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA
| | - John Johnson
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA
| | - Manliang Feng
- Department of Chemistry, Tougaloo College, 500 West County Line Road, Tougaloo, MS 39174, USA
| |
Collapse
|
33
|
Graphene Nanomaterials-Based Radio-Frequency/Microwave Biosensors for Biomaterials Detection. MATERIALS 2019; 12:ma12060952. [PMID: 30901965 PMCID: PMC6470802 DOI: 10.3390/ma12060952] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
In this paper, the advances in radio-frequency (RF)/microwave biosensors based on graphene nanomaterials including graphene, graphene oxide (GO), and reduced graphene oxide (rGO) are reviewed. From a few frontier studies, recently developed graphene nanomaterials-based RF/microwave biosensors are examined in-depth and discussed. Finally, the prospects and challenges of the next-generation RF/microwave biosensors for wireless biomedical applications are proposed.
Collapse
|
34
|
Aminated Graphene Oxide as a Potential New Therapy for Colorectal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3738980. [PMID: 31015889 PMCID: PMC6446092 DOI: 10.1155/2019/3738980] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/17/2018] [Accepted: 02/03/2019] [Indexed: 01/05/2023]
Abstract
Nanotechnology-based drug delivery systems for cancer therapy are the topic of interest for many researchers and scientists. Graphene oxide (GO) and its derivates are among the most extensively studied delivery systems of this type. The increased surface area, elevated loading capacity, and aptitude for surface functionalization together with the ability to induce reactive oxygen species make GO a promising tool for the development of novel anticancer therapies. Moreover, GO nanoparticles not only function as effective drug carriers but also have the potential to exert their own inhibitory effects on tumour cells. Recent results show that the functionalization of GO with different functional groups, namely, with amine groups, leads to increased reactivity of the nanoparticles. The last steers different hypotheses for the mechanisms through which this functionalization of GO could potentially lead to improved anticancer capacity. In this research, we have evaluated the potential of amine-functionalized graphene oxide nanoparticles (GO-NH2) as new molecules for colorectal cancer therapy. For the purpose, we have assessed the impact of aminated graphene oxide (GO) sheets on the viability of colon cancer cells, their potential to generate ROS, and their potential to influence cellular proliferation and survival. In order to elucidate their mechanism of action on the cellular systems, we have probed their genotoxic and cytostatic properties and compared them to pristine GO. Our results revealed that both GO samples (pristine and aminated) were composed of few-layer sheets with different particle sizes, zeta potential, and surface characteristics. Furthermore, we have detected increased cyto- and genotoxicity of the aminated GO nanoparticles following 24-hour exposure on Colon 26 cells. The last leads us to conclude that exposure of cancer cells to GO, namely, aminated GO, can significantly contribute to cancer cell killing by enhancing the cytotoxicity effect exerted through the induction of ROS, subsequent DNA damage, and apoptosis.
Collapse
|
35
|
Wu R, Zhao Q, Lu S, Fu Y, Yu D, Zhao W. Inhibitory effect of reduced graphene oxide-silver nanocomposite on progression of artificial enamel caries. J Appl Oral Sci 2018; 27:e20180042. [PMID: 30540069 PMCID: PMC6296285 DOI: 10.1590/1678-7757-2018-0042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/31/2018] [Indexed: 11/21/2022] Open
Abstract
The use of antimicrobial agents is an efficient method to prevent dental caries. Also, nanometric antibacterial agents with wide antibacterial spectrum and strong antibacterial effects can be applied for prevention of dental caries.
Collapse
Affiliation(s)
- Ruixue Wu
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| | - Qi Zhao
- The First Affiliated Hospital Of Hubei University Of Science And Technology, Xianning Central Hospital, Xianning, China
| | - Shushen Lu
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Yuanxiang Fu
- School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Dongsheng Yu
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| | - Wei Zhao
- Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Hospital of Stomatology, Guanghua School of Stomatology, Guangzhou, China
| |
Collapse
|
36
|
Ge Z, Yang L, Xiao F, Wu Y, Yu T, Chen J, Lin J, Zhang Y. Graphene Family Nanomaterials: Properties and Potential Applications in Dentistry. Int J Biomater 2018; 2018:1539678. [PMID: 30627167 PMCID: PMC6304494 DOI: 10.1155/2018/1539678] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/11/2018] [Accepted: 11/28/2018] [Indexed: 01/08/2023] Open
Abstract
Graphene family nanomaterials, with superior mechanical, chemical, and biological properties, have grabbed appreciable attention on the path of researches seeking new materials for future biomedical applications. Although potential applications of graphene had been highly reviewed in other fields of medicine, especially for their antibacterial properties and tissue regenerative capacities, in vivo and in vitro studies related to dentistry are very limited. Therefore, based on current knowledge and latest progress, this article aimed to present the recent achievements and provide a comprehensive literature review on potential applications of graphene that could be translated into clinical reality in dentistry.
Collapse
Affiliation(s)
- Ziyu Ge
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | - Yani Wu
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| | | | | | | | - Yanzhen Zhang
- Department of General Dentistry, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310052, China
| |
Collapse
|
37
|
Basu A, Upadhyay P, Ghosh A, Chattopadhyay D, Adhikary A. Folic-Acid-Adorned PEGylated Graphene Oxide Interferes with the Cell Migration of Triple Negative Breast Cancer Cell Line, MDAMB-231 by Targeting miR-21/PTEN Axis through NFκB. ACS Biomater Sci Eng 2018; 5:373-389. [DOI: 10.1021/acsbiomaterials.8b01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Arijita Basu
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Priyanka Upadhyay
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Avijit Ghosh
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| | - Arghya Adhikary
- Centre for Research in Nanoscience and Nanotechnology, University of Calcutta, JD-2, Sector
III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
38
|
Zhang H, Ba S, Mahajan D, Lee JY, Ye R, Shao F, Lu L, Li T. Versatile Types of DNA-Based Nanobiosensors for Specific Detection of Cancer Biomarker FEN1 in Living Cells and Cell-Free Systems. NANO LETTERS 2018; 18:7383-7388. [PMID: 30336066 DOI: 10.1021/acs.nanolett.8b03724] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Flap structure-specific endonuclease 1 (FEN1) is overexpressed in various types of human cancer cells and has been recognized as a promising biomarker for cancer diagnosis in the recent years. In order to specifically detect the abundance and activity of this cancer-overexpressed enzyme, different types of DNA-based nanodevices were created during our investigations. It is shown in our studies that these newly designed biosensors are highly sensitive and specific for FEN1 in living cells as well as in cell-free systems. It is expected that these nanoprobes could be useful for monitoring FEN1 activity in human cancer cells, and also for cell-based screening of FEN1 inhibitors as new anticancer drugs.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| | - Divyanshu Mahajan
- School of Biological Sciences , Nanyang Technological University , Singapore 637551
| | - Jasmine Yiqin Lee
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| | - Ruijuan Ye
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| | - Fangwei Shao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| | - Lei Lu
- School of Biological Sciences , Nanyang Technological University , Singapore 637551
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371
| |
Collapse
|
39
|
Sabzevari M, Cree DE, Wilson LD. Graphene Oxide-Chitosan Composite Material for Treatment of a Model Dye Effluent. ACS OMEGA 2018; 3:13045-13054. [PMID: 31458025 PMCID: PMC6644600 DOI: 10.1021/acsomega.8b01871] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/21/2018] [Indexed: 05/12/2023]
Abstract
Graphene oxide (GO) was cross-linked with chitosan to yield a composite (GO-LCTS) with variable morphology, enhanced surface area, and notably high methylene blue (MB) adsorption capacity. The materials were structurally characterized using thermogravimetric analysis and spectroscopic methods (X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and 13C solid-state NMR) to support that cross-linking occurs between the amine groups of chitosan and the -COOH groups of GO. Equilibrium swelling studies provide support for the enhanced structural stability of GO-cross-linked materials over the synthetic precursors. Scanning electron microscopy studies reveal the enhanced surface area and variable morphology of the cross-linked GO materials, along with equilibrium and kinetic uptake results with MB dye in aqueous media, revealing greater uptake of GO-LCTS composites over pristine GO. The monolayer uptake capacity (Q m; mg g-1) with MB reveals twofold variation for Q m, where GO-LCTS (402.6 mg g-1) > GO (286.9 mg g-1). The kinetic uptake profiles of MB follow a pseudo-second-order trend, where the GO composite shows more rapid uptake over GO. This study reveals that the sorption properties of GO are markedly improved upon formation of a GO-chitosan composite. The facile cross-linking strategy of GO reveals that its physicochemical properties are tunable and versatile for a wider field of application for contaminant removal, especially over multiple adsorption-desorption cycles when compared against pristine GO in its highly dispersed nanoparticle form.
Collapse
Affiliation(s)
- Mina Sabzevari
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Duncan E. Cree
- Department
of Mechanical Engineering, University of
Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan S7N 5A9, Canada
| | - Lee D. Wilson
- Department
of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
40
|
Qiu J, Liu L, Zhu H, Liu X. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact Mater 2018; 3:341-346. [PMID: 29988418 PMCID: PMC6026326 DOI: 10.1016/j.bioactmat.2018.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/02/2022] Open
Abstract
Duo to their superior physicochemical properties, graphene and its derivatives (GDs), such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted extensive research interests around the world. In recent years, antibacterial activities of GDs have aroused wide concern and substantial works have been done. However, the underlying antibacterial mechanisms still remain controversial. Antibacterial activities of GDs vary with various factors, such as size, number of layers, oxygen-containing groups, and experimental surroundings. We assume that combination types between graphene oxide and substrate may affect the antibacterial activity. Therefore, in this work, GO was fixed on the titanium surface with three kinds of combination types including drop with gravitational effects (GO-D), electrostatic interaction (GO-APS) and electrophoretic deposition (GO-EPD), and the antibacterial activities in vitro were systematically investigated. Results showed that combination types affected the ability of GO for preventing Staphylococcus aureus (S. aureus) from gathering, sharpness of wrinkles or edges and reactive oxygen spices (ROS) levels. Once S. aureus are in the form of separation without aggregation, GO can effectively interact with them and kill them with sharp wrinkles or edges and high ROS levels. GO-EPD could effectively prevent S. aureus from gathering, own sharp wrinkles or edges and could generate higher ROS levels. As a result, GO-EPD exhibited optimal antibacterial activity against S. aureus, followed by GO-APS and GO-D.
Collapse
Affiliation(s)
- Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Normal University, Shanghai, 200234, China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
41
|
Shaheen F, Aziz MH, Fatima M, Khan MA, Ahmed F, Ahmad R, Ahmad MA, Alkhuraiji TS, Akram MW, Raza R, Ali SM. In Vitro Cytotoxicity and Morphological Assessments of GO-ZnO against the MCF-7 Cells: Determination of Singlet Oxygen by Chemical Trapping. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E539. [PMID: 30021935 PMCID: PMC6070898 DOI: 10.3390/nano8070539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/26/2018] [Accepted: 07/01/2018] [Indexed: 11/23/2022]
Abstract
Graphene-based materials have attracted considerable interest owing to their distinctive characteristics, such as their biocompatibility in terms of both their physical and intrinsic chemical properties. The use of nanomaterials with graphene as a biocompatible agent has increased due to an uptick in dedication from biomedical investigators. Here, GO-ZnO was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), ultraviolet-visible (UV-Vis) spectroscopy, energy dispersive X-ray analysis (EDAX), and Raman spectroscopy for structural, morphological, and elemental analysis. The toxic extent of GO-ZnO was noted by a methyl-thiazole-tetrazolium (MTT), while cellular morphology was observed towards the MCF-7 cells using an inverted microscope at magnification 40×. The cytotoxic effect of GO-ZnO investigated the cell viability reduction in a dose-dependent manner, as well as prompted the cell demise/destruction in an apoptotic way. Moreover, statistical analysis was performed on the experimental outcomes, with p-values < 0.05 kept as significant to elucidate the results. The generation of reactive oxygen species (ROS) demonstrated the potential applicability of graphene in tumor treatment. These key results attest to the efficacy of GO-ZnO nanocomposites as a substantial candidate for breast malignancy treatment.
Collapse
Affiliation(s)
- Fozia Shaheen
- Department of Physics, Government College (GC) University, Lahore 54000, Pakistan.
- National Synchrotron Radiation Laboratory, University of Science and Technology China (USTC), Hefei 230026, China.
| | - Muhammad Hammad Aziz
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
- School of Life Sciences, University of Science and Technology China (USTC), Hefei 230027, China.
| | - Mahvish Fatima
- Department of Physics, University of Lahore, 54000 Lahore, Pakistan.
| | - Muhammad Ajmal Khan
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Magnetic Materials and Application Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences (CAS), Ningbo 315201, China.
| | - Faisal Ahmed
- Department of Chemical Engineering, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Riaz Ahmad
- The Centre for Advanced Studies in Physics (CASP), Government College (GC) University, Church Road, Lahore 54000, Pakistan.
| | - Muhammad Ashfaq Ahmad
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Turki S Alkhuraiji
- King Abdulaziz City for Science and Technology-KACST, Nuclear Science Research Institute, P.O. BOX 6086, 11442 Riyadh, Saudi Arabia.
| | - Muhammad Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Rizwan Raza
- Department of Physics, COMSATS Institute of Information and Technology, Lahore 54000, Pakistan.
| | - Syed Mansoor Ali
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
42
|
Zhao C, Zeng Z, Qazvini NT, Yu X, Zhang R, Yan S, Shu Y, Zhu Y, Duan C, Bishop E, Lei J, Zhang W, Yang C, Wu K, Wu Y, An L, Huang S, Ji X, Gong C, Yuan C, Zhang L, Liu W, Huang B, Feng Y, Zhang B, Dai Z, Shen Y, Wang X, Luo W, Oliveira L, Athiviraham A, Lee MJ, Wolf JM, Ameer GA, Reid RR, He TC, Huang W. Thermoresponsive Citrate-Based Graphene Oxide Scaffold Enhances Bone Regeneration from BMP9-Stimulated Adipose-Derived Mesenchymal Stem Cells. ACS Biomater Sci Eng 2018; 4:2943-2955. [PMID: 30906855 PMCID: PMC6425978 DOI: 10.1021/acsbiomaterials.8b00179] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Effective bone tissue engineering is important to overcome the unmet clinical challenges as more than 1.6 million bone grafts are done annually in the United States. Successful bone tissue engineering needs minimally three critical constituents: osteoprogenitor cells, osteogenic factors, and osteoinductive/osteoconductive scaffolds. Osteogenic progenitors are derived from multipotent mesenchymal stem cells (MSCs), which can be prepared from numerous tissue sources, including adipose tissue. We previously showed that BMP9 is the most osteogenic BMP and induces robust bone formation of immortalized mouse adipose-derived MSCs entrapped in a citrate-based thermoresponsive hydrogel referred to as PPCNg. As graphene and its derivatives emerge as promising biomaterials, here we develop a novel thermosensitive and injectable hybrid material by combining graphene oxide (GO) with PPCNg (designated as GO-P) and characterize its ability to promote bone formation. We demonstrate that the thermoresponsive behavior of the hybrid material is maintained while effectively supporting MSC survival and proliferation. Furthermore, GO-P induces early bone-forming marker alkaline phosphatase (ALP) and potentiates BMP9-induced expression of osteogenic regulators and bone markers as well as angiogenic factor VEGF in MSCs. In vivo studies show BMP9-transduced MSCs entrapped in the GO-P scaffold form well-mineralized and highly vascularized trabecular bone. Thus, these results indicate that GO-P hybrid material may function as a new biocompatible, injectable scaffold with osteoinductive and osteoconductive activities for bone regeneration.
Collapse
Affiliation(s)
- Chen Zhao
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Zongyue Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Nader Taheri Qazvini
- Institute for Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Xinyi Yu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Ruyi Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Shujuan Yan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yi Shu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yunxiao Zhu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Chongwen Duan
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Elliot Bishop
- Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States
| | - Jiayan Lei
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Wenwen Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Laboratory Medicine and Clinical Diagnostics, The Affiliated University-Town Hospital of Chongqing Medical University, 55 Daxuecheng Zhonglu, Chongqing 401331, China
| | - Chao Yang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ke Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Ying Wu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Immunology and Microbiology, Beijing University of Chinese Medicine, 11 N. Third Ring Road E., Beijing 100029, China
| | - Liping An
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Shifeng Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Xiaojuan Ji
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Cheng Gong
- Department of General Surgery, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Chengfu Yuan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Biochemistry and Molecular Biology, China Three Gorges University School of Medicine, 8 Daxue Road, Yichang 443002, China
| | - Linghuan Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wei Liu
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Huang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Yixiao Feng
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China.,Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Bo Zhang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Key Laboratory of Orthopaedic Surgery of Gansu Province and the Department of Orthopaedic Surgery, The Second Hospital of Lanzhou University, 82 Cuiyingmen, Lanzhou 730030, China
| | - Zhengyu Dai
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Chongqing Hospital of Traditional Chinese Medicine, 35 Jianxin East Road, Chongqing 400021, China
| | - Yi Shen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Orthopaedic Surgery, Xiangya Second Hospital of Central South University, 139 Renmin Road, Changsha 410011, China
| | - Xi Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China
| | - Leonardo Oliveira
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Aravind Athiviraham
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Michael J Lee
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Jennifer Moriatis Wolf
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Surgery, Feinberg School of Medicine, Northwestern University, 420 East Superior Street, Chicago, Illinois 60616, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Department of Surgery, Laboratory of Craniofacial Biology and Development, Section of Plastic Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue MC6035, Chicago, Illinois 60637, United States.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue MC 3079, Chicago, Illinois 60637, United States.,Ministry of Education Key Laboratory of Diagnostic Medicine and School of Laboratory Medicine, The Affiliated Hospitals of Chongqing Medical University, 1 Medical College Road, Chongqing 400016, China.,Center for Advanced Regenerative Engineering (CARE), 2145 Sheridan Road, Evanston, IL 60208, United States
| | - Wei Huang
- Departments of Orthopedic Surgery, Nephrology, Cardiology, Clinical Laboratory Medicine, and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Chongqing 400016, China
| |
Collapse
|
43
|
Banerjee AN. Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 2018; 8:20170056. [PMID: 29696088 PMCID: PMC5915658 DOI: 10.1098/rsfs.2017.0056] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Abstract
Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.
Collapse
Affiliation(s)
- Arghya Narayan Banerjee
- School of Mechanical Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan-Si 712-749, South Korea
| |
Collapse
|
44
|
Yang JW, Hsieh KY, Kumar PV, Cheng SJ, Lin YR, Shen YC, Chen GY. Enhanced Osteogenic Differentiation of Stem Cells on Phase-Engineered Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12497-12503. [PMID: 29601178 DOI: 10.1021/acsami.8b02225] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Graphene oxide (GO) has attracted significant interest as a template material for multiple applications due to its two-dimensional nature and established functionalization chemistries. However, for applications toward stem cell culture and differentiation, GO is often reduced to form reduced graphene oxide, resulting in a loss of oxygen content. Here, we induce a phase transformation in GO and demonstrate its benefits for enhanced stem cell culture and differentiation while conserving the oxygen content. The transformation results in the clustering of oxygen atoms on the GO surface, which greatly improves its ability toward substance adherence and results in enhanced differentiation of human mesenchymal stem cells toward the osteogenic lineage. Moreover, the conjugating ability of modified GO strengthened, which was examined by auxiliary osteogenic growth peptide conjugation. Overall, our work demonstrates GO's potential for stem cell applications while maintaining its oxygen content, which could enable further functionalization and fabrication of novel nano-biointerfaces.
Collapse
Affiliation(s)
| | | | - Priyank V Kumar
- Optical Materials Engineering Laboratory , ETH Zurich , Zurich 8092 , Switzerland
| | | | | | | | | |
Collapse
|
45
|
Priante F, Salim M, Ottaviano L, Perrozzi F. XPS study of graphene oxide reduction induced by (100) and (111)-oriented Si substrates. NANOTECHNOLOGY 2018; 29:075704. [PMID: 29260737 DOI: 10.1088/1361-6528/aaa320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The reduction of graphene oxide (GO) has been extensively studied in literature in order to let GO partially recover the properties of graphene. Most of the techniques proposed to reduce GO are based on high temperature annealing or chemical reduction. A new procedure, based on the direct reduction of GO by etched Si substrate, was recently proposed in literature. In the present work, we accurately investigated the Si-GO interaction with x-ray photoelectron spectroscopy. In order to avoid external substrate oxidation factors we used EtOH as the GO solvent instead of water, and thermal annealing was carried out in UHV. We investigated the effect of Si(100), Si(111) and Au substrates on GO, to probe the role played by both the substrate composition and substrate orientation during the reduction process. A similar degree of GO reduction was observed for all samples but only after thermal annealing, ruling out the direct reduction effect of the substrate.
Collapse
Affiliation(s)
- F Priante
- Dipartimento di Scienze Fisiche e Chimiche (DSFC), Università dell'Aquila, Via Vetoio 10, I-67100 L'Aquila, Italy
| | | | | | | |
Collapse
|
46
|
Zare-Zardini H, Taheri-Kafrani A, Amiri A, Bordbar AK. New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci Rep 2018; 8:586. [PMID: 29330486 PMCID: PMC5766508 DOI: 10.1038/s41598-017-18938-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022] Open
Abstract
In this study, Rh2-treated graphene oxide (GO-Rh2), lysine-treated highly porous graphene (Gr-Lys), arginine-treated Gr (Gr-Arg), Rh2-treated Gr-Lys (Gr-Lys-Rh2) and Rh2-treated Gr-Arg (Gr-Arg-Rh2) were synthesized. MTT assay was used for evaluation of cytotoxicity of samples on ovarian cancer (OVCAR3), breast cancer (MDA-MB), Human melanoma (A375) and human mesenchymal stem cells (MSCs) cell lines. The percentage of apoptotic cells was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. The hemolysis and blood coagulation activity of nanostructures were performed. Interestingly, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2 were more active against cancer cell lines in comparison with their cytotoxic activity against normal cell lines (MSCs) with IC50 values higher than 100 μg/ml. The results of TUNEL assay indicates a significant increase in the rates of TUNEL positive cells by increasing the concentrations of nanomaterials. Results were also shown that aggregation and changes of RBCs morphology were occurred in the presence of GO, GO-Rh2, Gr-Arg, Gr-Lys, Gr-Arg-Rh2, and Gr-Lys-Rh2. Note that all the samples had effect on blood coagulation system, especially on PTT. All nanostrucure act as antitumor drug so that binding of drugs to a nostructures is irresolvable and the whole structure enter to the cell as a drug.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - Ahmad Amiri
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | | |
Collapse
|
47
|
Choi JR, Yong KW, Choi JY, Nilghaz A, Lin Y, Xu J, Lu X. Black Phosphorus and its Biomedical Applications. Theranostics 2018; 8:1005-1026. [PMID: 29463996 PMCID: PMC5817107 DOI: 10.7150/thno.22573] [Citation(s) in RCA: 187] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/14/2017] [Indexed: 12/22/2022] Open
Abstract
Black phosphorus (BP), also known as phosphorene, has attracted recent scientific attention since its first successful exfoliation in 2014 owing to its unique structure and properties. In particular, its exceptional attributes, such as the excellent optical and mechanical properties, electrical conductivity and electron-transfer capacity, contribute to its increasing demand as an alternative to graphene-based materials in biomedical applications. Although the outlook of this material seems promising, its practical applications are still highly challenging. In this review article, we discuss the unique properties of BP, which make it a potential platform for biomedical applications compared to other 2D materials, including graphene, molybdenum disulphide (MoS2), tungsten diselenide (WSe2) and hexagonal boron nitride (h-BN). We then introduce various synthesis methods of BP and review its latest progress in biomedical applications, such as biosensing, drug delivery, photoacoustic imaging and cancer therapies (i.e., photothermal and photodynamic therapies). Lastly, the existing challenges and future perspective of BP in biomedical applications are briefly discussed.
Collapse
Affiliation(s)
- Jane Ru Choi
- Food, Nutrition and Health Programs, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Kar Wey Yong
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Jean Yu Choi
- School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, United Kingdom
| | - Azadeh Nilghaz
- Food, Nutrition and Health Programs, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yang Lin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Xiaonan Lu
- Food, Nutrition and Health Programs, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
48
|
Riaz MA, McKay G, Saleem J. 3D graphene-based nanostructured materials as sorbents for cleaning oil spills and for the removal of dyes and miscellaneous pollutants present in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:27731-27745. [PMID: 29098585 DOI: 10.1007/s11356-017-0606-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Oil spills over seawater and dye pollutants in water cause economic and environmental damage every year. Among various methods to deal oil spill problems, the use of porous materials has been proven as an effective strategy. In recent years, graphene-based porous sorbents have been synthesized to address the shortcomings associated with conventional sorbents such as their low uptake capacity, slow sorption rate, and non-recyclability. This article reviews the research undertaken to control oil spillage using three-dimensional (3D) graphene-based materials. The use of these materials for removal of dyes and miscellaneous environmental pollutants from water is explored and the application of various multifunctional 3D oil sorbents synthesized by surface modification technique is presented. The future prospects and limitations of these materials as sorbents are also discussed.
Collapse
Affiliation(s)
- Muhammad Adil Riaz
- Department of Chemical & Biomolecular Engineering, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Gordon McKay
- Division of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Junaid Saleem
- Division of Sustainability, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| |
Collapse
|
49
|
Fong YT, Chen CH, Chen JP. Intratumoral Delivery of Doxorubicin on Folate-Conjugated Graphene Oxide by In-Situ Forming Thermo-Sensitive Hydrogel for Breast Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E388. [PMID: 29135959 PMCID: PMC5707605 DOI: 10.3390/nano7110388] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 11/03/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022]
Abstract
By taking advantage of the pH-sensitive drug release property of graphene oxide (GO) after intracellular uptake, we prepared folic acid (FA)-conjugated GO (GOFA) for targeted delivery of the chemotherapeutic drug doxorubicin (DOX). GOFA-DOX was further encapsulated in an injectable in-situ forming thermo-sensitive hyaluronic acid-chitosan-g-poly(N-isopropylacrylamide) (HACPN) hydrogel for intratumoral delivery of DOX. As the degradation time of HACPN could be extended up to 3 weeks, intratumoral delivery of GOFA-DOX/HACPN could provide controlled and targeted delivery of DOX through slow degradation HACPN and subsequent cellular uptake of released GOFA-DOX by tumor cells through interactions of GOFA with folate receptors on the tumor cell's surface. GOFA nano-carrier and HACPN hydrogel were first characterized for the physico-chemical properties. The drug loading experiments indicated the best preparation condition of GOFA-DOX was by reacting 0.1 mg GOFA with 2 mg DOX. GOFA-DOX showed pH-responsive drug release with ~5 times more DOX released at pH 5.5 than at pH 7.4 while only limited DOX was released from GOFA-DOX/HACPN at pH 7.4. Intracellular uptake of GOFA by endocytosis and release of DOX from GOFA-DOX in vitro could be confirmed from transmission electron microscopic and confocal laser scanning microscopic analysis with MCF-7 breast cancer cells. The targeting effect of FA was revealed when intracellular uptake of GOFA was blocked by excess FA. This resulted in enhanced in vitro cytotoxicity as revealed from the lower half maximal inhibitory concentration (IC50) value of GOFA-DOX (7.3 μg/mL) compared with that of DOX (32.5 μg/mL) and GO-DOX (10 μg/mL). The flow cytometry analysis indicated higher apoptosis rates for cells treated with GOFA-DOX (30%) compared with DOX (8%) and GO-DOX (11%). Animal studies were carried out with subcutaneously implanted MCF-7 cells in BALB/c nude mice and subject to intratumoral administration of drugs. The relative tumor volumes of control (saline) and GOFA-DOX/HACPN groups at day 21 were 2.17 and 1.79 times that at day 0 with no significant difference. In comparison, the relative tumor volumes of treatment groups at the same time were significantly different at 1.02, 0.67 and 0.48 times for DOX, GOFA-DOX and GOFA-DOX/HACPN groups, respectively. The anti-tumor efficacy was also supported by images from an in vivo imaging system (IVIS) using MCF-7 cells transfected with luciferase (MCF-7/Luc). Furthermore, tissue biopsy examination and blood analysis indicated that intratumoral delivery of DOX using GOFA-DOX/HACPN did not elicit acute toxicity. Taken together, GOFA-DOX/HACPN could be deemed as a safe and efficient intratumoral drug delivery system for breast cancer therapy.
Collapse
Affiliation(s)
- Yi Teng Fong
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Linkou, Kwei-San, Taoyuan 33305, Taiwan.
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Kwei-San, Taoyuan 33302, Taiwan.
- Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
50
|
Youssef Z, Vanderesse R, Colombeau L, Baros F, Roques-Carmes T, Frochot C, Wahab H, Toufaily J, Hamieh T, Acherar S, Gazzali AM. The application of titanium dioxide, zinc oxide, fullerene, and graphene nanoparticles in photodynamic therapy. Cancer Nanotechnol 2017; 8:6. [PMID: 29104699 PMCID: PMC5648744 DOI: 10.1186/s12645-017-0032-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/06/2017] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles (NPs) have been shown to have good ability to improve the targeting and delivery of therapeutics. In the field of photodynamic therapy (PDT), this targeting advantage of NPs could help ensure drug delivery at specific sites. Among the commonly reported NPs for PDT applications, NPs from zinc oxide, titanium dioxide, and fullerene are commonly reported. In addition, graphene has also been reported to be used as NPs albeit being relatively new to this field. In this context, the present review is organized by these different NPs and contains numerous research works related to PDT applications. The effectiveness of these NPs for PDT is discussed in detail by collecting all essential information described in the literature. The information thus assembled could be useful in designing new NPs specific for PDT and/or PTT applications in the future.
Collapse
Affiliation(s)
- Zahraa Youssef
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Régis Vanderesse
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine-CNRS, UMR 7375, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Ludovic Colombeau
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Francis Baros
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Thibault Roques-Carmes
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Céline Frochot
- Laboratoire Réactions et Génie des Procédés, Université de Lorraine-CNRS, UMR 7274, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Habibah Wahab
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Joumana Toufaily
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beyrouth, Lebanon
| | - Tayssir Hamieh
- Laboratory of Materials, Catalysis, Environment and Analytical Methods, Faculty of Sciences I, Lebanese University, Campus Rafic Hariri, Beyrouth, Lebanon
| | - Samir Acherar
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine-CNRS, UMR 7375, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
| | - Amirah Mohd Gazzali
- Laboratoire de Chimie Physique Macromoléculaire, Université de Lorraine-CNRS, UMR 7375, 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|