1
|
Leite CBG, Merkely G, Charles JF, Lattermann C. From Inflammation to Resolution: Specialized Pro-resolving Mediators in Posttraumatic Osteoarthritis. Curr Osteoporos Rep 2023; 21:758-770. [PMID: 37615856 DOI: 10.1007/s11914-023-00817-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
PURPOSE OF REVIEW To provide a comprehensive overview of the inflammatory response following anterior cruciate ligament (ACL) injury and to highlight the relationship between specialized pro-resolving mediators (SPMs) and inflammatory joint conditions, emphasizing the therapeutic potential of modulating the post-injury resolution of inflammation to prevent posttraumatic osteoarthritis (PTOA). RECENT FINDINGS The inflammatory response triggered after joint injuries such as ACL tear plays a critical role in posttraumatic osteoarthritis development. Inflammation is a necessary process for tissue healing, but unresolved or overactivated inflammation can lead to chronic diseases. SPMs, a family of lipid molecules derived from essential fatty acids, have emerged as active players in the resolution of inflammation and tissue repair. While their role in other inflammatory conditions has been studied, their relationship with PTOA remains underexplored. Proinflammatory mediators contribute to cartilage degradation and PTOA pathogenesis, while anti-inflammatory and pro-resolving mediators may have chondroprotective effects. Therapies aimed at suppressing inflammation in PTOA have limitations, as inflammation is crucial for tissue healing. SPMs offer a pro-resolving response without causing immunosuppression, making them a promising therapeutic option. The known onset date of PTOA makes it amenable to early interventions, and activating pro-resolving pathways may provide new possibilities for preventing PTOA progression. Harnessing the pro-resolving potential of SPMs may hold promise for preventing PTOA and restoring tissue homeostasis and function after joint injuries.
Collapse
Affiliation(s)
- Chilan B G Leite
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Gergo Merkely
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
| | - Julia F Charles
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian Lattermann
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, 20 Patriot Place Foxboro, Boston, MA, 02035, USA.
| |
Collapse
|
2
|
Liu WC, Yang YH, Wang YC, Chang WM, Wang CW. Maresin: Macrophage Mediator for Resolving Inflammation and Bridging Tissue Regeneration-A System-Based Preclinical Systematic Review. Int J Mol Sci 2023; 24:11012. [PMID: 37446190 DOI: 10.3390/ijms241311012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maresins are lipid mediators derived from omega-3 fatty acids with anti-inflammatory and pro-resolving properties, capable of promoting tissue regeneration and potentially serving as a therapeutic agent for chronic inflammatory diseases. The aim of this review was to systematically investigate preclinical and clinical studies on maresin to inform translational research. Two independent reviewers performed comprehensive searches with the term "Maresin (NOT) Review" on PubMed. A total of 137 studies were included and categorized into 11 human organ systems. Data pertinent to clinical translation were specifically extracted, including delivery methods, optimal dose response, and specific functional efficacy. Maresins generally exhibit efficacy in treating inflammatory diseases, attenuating inflammation, protecting organs, and promoting tissue regeneration, mostly in rodent preclinical models. The nervous system has the highest number of original studies (n = 25), followed by the cardiovascular system, digestive system, and respiratory system, each having the second highest number of studies (n = 18) in the field. Most studies considered systemic delivery with an optimal dose response for mouse animal models ranging from 4 to 25 μg/kg or 2 to 200 ng via intraperitoneal or intravenous injection respectively, whereas human in vitro studies ranged between 1 and 10 nM. Although there has been no human interventional clinical trial yet, the levels of MaR1 in human tissue fluid can potentially serve as biomarkers, including salivary samples for predicting the occurrence of cardiovascular diseases and periodontal diseases; plasma and synovial fluid levels of MaR1 can be associated with treatment response and defining pathotypes of rheumatoid arthritis. Maresins exhibit great potency in resolving disease inflammation and bridging tissue regeneration in preclinical models, and future translational development is warranted.
Collapse
Affiliation(s)
- Wen-Chun Liu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Hsin Yang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Yu-Chin Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
| | - Wei-Ming Chang
- School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chin-Wei Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, No. 250, Wuxing St., Taipei 110310, Taiwan
- Division of Periodontics, Department of Dentistry, Taipei Medical University Hospital, Taipei 110301, Taiwan
| |
Collapse
|
3
|
Teixeira-Santos L, Martins S, Sousa T, Albino-Teixeira A, Pinho D. The pro-resolving lipid mediator Maresin 1 ameliorates pain responses and neuroinflammation in the spared nerve injury-induced neuropathic pain: A study in male and female mice. PLoS One 2023; 18:e0287392. [PMID: 37347750 PMCID: PMC10286986 DOI: 10.1371/journal.pone.0287392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Specialized pro-resolving mediators (SPMs) have recently emerged as promising therapeutic approaches for neuropathic pain (NP). We evaluated the effects of oral treatment with the SPM Maresin 1 (MaR1) on behavioral pain responses and spinal neuroinflammation in male and female C57BL/6J mice with spared nerve injury (SNI)-induced NP. MaR1, or vehicle, was administered once daily, on post-surgical days 3 to 5, by voluntary oral intake. Sensory-discriminative and affective-motivational components of pain were evaluated with von Frey and place escape/avoidance paradigm (PEAP) tests, respectively. Spinal microglial and astrocytic activation were assessed by immunofluorescence, and the spinal concentration of cytokines IL-1β, IL-6, IL-10, and macrophage colony-stimulating factor (M-CSF) were evaluated by multiplex immunoassay. MaR1 treatment reduced SNI-induced mechanical hypersensitivity on days 7 and 11 in both male and female mice, and appeared to ameliorate the affective component of pain in males on day 11. No definitive conclusions could be drawn about the impact of MaR1 on the affective-motivational aspects of pain in female mice, since repeated suprathreshold mechanical stimulation of the affected paw in the dark compartment did not increase the preference of vehicle-treated SNI females for the light side, during the PEAP test session (a fundamental assumption for PAEP's validity). MaR1 treatment also reduced ipsilateral spinal microglial and astrocytic activation in both sexes and marginally increased M-CSF in males, while not affecting cytokines IL-1β, IL-6 and IL-10 in either sex. In summary, our study has shown that oral treatment with MaR1 (i) produces antinociception even in an already installed peripheral NP mouse model, and (ii) this antinociception may extend for several days beyond the treatment time-frame. These therapeutic effects are associated with attenuated microglial and astrocytic activation in both sexes, and possibly involve modulation of M-CSF action in males.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Sandra Martins
- Serviço de Patologia Clínica, Centro Hospitalar e Universitário São João (CHUSJ), Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
| | - Teresa Sousa
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - António Albino-Teixeira
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| | - Dora Pinho
- Departamento de Biomedicina–Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
- Centro de Investigação Farmacológica e Inovação Medicamentosa (MedInUP), Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Wang X, Botchway BOA, Zhang Y, Huang M, Liu X. Maresin1 can be a potential therapeutic target for nerve injury. Biomed Pharmacother 2023; 161:114466. [PMID: 36870281 DOI: 10.1016/j.biopha.2023.114466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Nerve injury significantly affects human motor and sensory function due to destruction of the integrity of nerve structure. In the wake of nerve injury, glial cells are activated, and synaptic integrity is destroyed, causing inflammation and pain hypersensitivity. Maresin1, an omega-3 fatty acid, is a derivative of docosahexaenoic acid. It has showed beneficial effects in several animal models of central and peripheral nerve injuries. In this review, we summarize the anti-inflammatory, neuroprotective and pain hypersensitivity effects of maresin1 in nerve injury and provide a theoretical basis for the clinical treatment of nerve injury using maresin1.
Collapse
Affiliation(s)
- Xichen Wang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China; Bupa Cromwell Hospital, London, UK
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
5
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
6
|
Ji RR. Specialized Pro-Resolving Mediators as Resolution Pharmacology for the Control of Pain and Itch. Annu Rev Pharmacol Toxicol 2023; 63:273-293. [PMID: 36100219 DOI: 10.1146/annurev-pharmtox-051921-084047] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Specialized pro-resolving mediators (SPMs), including resolvins, protectins, and maresins, are endogenous lipid mediators that are synthesized from omega-3 polyunsaturated fatty acids during the acute phase or resolution phase of inflammation. Synthetic SPMs possess broad safety profiles and exhibit potent actions in resolving inflammation in preclinical models. Accumulating evidence in the past decade has demonstrated powerful analgesia of exogenous SPMs in rodent models of inflammatory, neuropathic, and cancer pain. Furthermore, endogenous SPMs are produced by sham surgery and neuromodulation (e.g., vagus nerve stimulation). SPMs produce their beneficial actions through multiple G protein-coupled receptors, expressed by immune cells, glial cells, and neurons. Notably, loss of SPM receptors impairs the resolution of pain. I also highlight the emerging role of SPMs in the control of itch. Pharmacological targeting of SPMs or SPM receptors has the potential to lead to novel therapeutics for pain and itch as emerging approaches in resolution pharmacology.
Collapse
Affiliation(s)
- Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, and Departments of Neurobiology and Cell Biology, Duke University Medical Center, Durham, North Carolina, USA;
| |
Collapse
|
7
|
Varma M, Kaur A, Bhandari R, Kumar A, Kuhad A. Major depressive disorder (mdd): emerging immune targets at preclinical level. Expert Opin Ther Targets 2023; 27:479-501. [PMID: 37334668 DOI: 10.1080/14728222.2023.2225216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Major depressive disorder is a mental health disorder that is characterized by a persistently low mood and loss of interest. MDD is affecting over 3.8% of the global population as a major health problem. Its etiology is complex, and involves the interaction between a number of factors, including genetic predisposition and the presence of environmental stresses. AREAS COVERED The role of the immune and inflammatory systems in depression has been gaining interest, with evidence suggesting the potential involvement of pro-inflammatory molecules like TNF, interleukins, prostaglandins, and other cytokines, among others, has been put forth. Along with this, the potential of agents, from NSAIDs to antibiotics, are being evaluated in therapy for depression. The current review will discuss emerging immune targets at the preclinical level. EXPERT OPINION With increasing evidence to show that immune and inflammatory mediators are implicated in MDD, increasing research toward their potential as drug targets is encouraged. At the same time, agents acting on these mediators and possessing anti-inflammatory potential are also being evaluated as future therapeutic options for MDD, and increasing focus toward non-conventional drugs which can act through these mechanisms is important as regards the future prospects of the use of anti-inflammatory agents in depression.
Collapse
Affiliation(s)
- Manasi Varma
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Arshpreet Kaur
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ranjana Bhandari
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Ashwani Kumar
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| | - Anurag Kuhad
- UGC-Centre of Advanced Study, University Institute of Pharmaceutical Sciences, Chandigarh, India
| |
Collapse
|
8
|
Maresin 2 is an analgesic specialized pro-resolution lipid mediator in mice by inhibiting neutrophil and monocyte recruitment, nociceptor neuron TRPV1 and TRPA1 activation, and CGRP release. Neuropharmacology 2022; 216:109189. [PMID: 35820471 DOI: 10.1016/j.neuropharm.2022.109189] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/15/2022]
Abstract
Maresin-2 (MaR2) is a specialized pro-resolution lipid mediator (SPM) that reduces neutrophil recruitment in zymosan peritonitis. Here, we investigated the analgesic effect of MaR2 and its mechanisms in different mouse models of pain. For that, we used the lipopolysaccharide (LPS)-induced mechanical hyperalgesia (electronic version of the von Frey filaments), thermal hyperalgesia (hot plate test) and weight distribution (static weight bearing), as well as the spontaneous pain models induced by capsaicin (TRPV1 agonist) or AITC (TRPA1 agonist). Immune cell recruitment was determined by immunofluorescence and flow cytometry while changes in the pro-inflammatory mediator landscape were determined using a proteome profiler kit and ELISA after LPS injection. MaR2 treatment was also performed in cultured DRG neurons stimulated with capsaicin or AITC in the presence or absence of LPS. The effect of MaR2 on TRVP1- and TRPA1-dependent CGRP release by cultured DRG neurons was determined by EIA. MaR2 inhibited LPS-induced inflammatory pain and changes in the cytokine landscape as per cytokine array assay. MaR2 also inhibited TRPV1 and TRPA1 activation as observed by a reduction in calcium influx in cultured DRG neurons, and the number of flinches and time spent licking the paw induced by capsaicin or AITC. In corroboration, MaR2 reduced capsaicin- and AITC-induced CGRP release by cultured DRG neurons and immune cell recruitment to the paw skin close the CGRP+ fibers. In conclusion, we show that MaR2 is an analgesic SPM that acts by targeting leukocyte recruitment, nociceptor TRPV1 and TRPA1 activation, and CGRP release in mice.
Collapse
|
9
|
Emre C, Arroyo-García LE, Do KV, Jun B, Ohshima M, Alcalde SG, Cothern ML, Maioli S, Nilsson P, Hjorth E, Fisahn A, Bazan NG, Schultzberg M. Intranasal delivery of pro-resolving lipid mediators rescues memory and gamma oscillation impairment in App NL-G-F/NL-G-F mice. Commun Biol 2022; 5:245. [PMID: 35314851 PMCID: PMC8938447 DOI: 10.1038/s42003-022-03169-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Sustained microglial activation and increased pro-inflammatory signalling cause chronic inflammation and neuronal damage in Alzheimer’s disease (AD). Resolution of inflammation follows neutralization of pathogens and is a response to limit damage and promote healing, mediated by pro-resolving lipid mediators (LMs). Since resolution is impaired in AD brains, we decided to test if intranasal administration of pro-resolving LMs in the AppNL-G-F/NL-G-F mouse model for AD could resolve inflammation and ameliorate pathology in the brain. A mixture of the pro-resolving LMs resolvin (Rv) E1, RvD1, RvD2, maresin 1 (MaR1) and neuroprotectin D1 (NPD1) was administered to stimulate their respective receptors. We examined amyloid load, cognition, neuronal network oscillations, glial activation and inflammatory factors. The treatment ameliorated memory deficits accompanied by a restoration of gamma oscillation deficits, together with a dramatic decrease in microglial activation. These findings open potential avenues for therapeutic exploration of pro-resolving LMs in AD, using a non-invasive route. Intranasal administration of pro-resolving lipid mediators improves memory deficits and reduce microglial activation in a mouse model for Alzheimer’s disease, suggesting a future therapy.
Collapse
Affiliation(s)
- Ceren Emre
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Luis E Arroyo-García
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.,Faculty of Medicine, PHENIKAA University, Hanoi, 12116, Vietnam.,PHENIKAA Research and Technology Institute (PRATI), A&A Green Phoenix Group JSC, No.167 Hoang Ngan, Trung Hoa, Cau Giay, Hanoi, 11313, Vietnam
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Makiko Ohshima
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Silvia Gómez Alcalde
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Megan L Cothern
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - André Fisahn
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
10
|
Maresin-1 and Inflammatory Disease. Int J Mol Sci 2022; 23:ijms23031367. [PMID: 35163291 PMCID: PMC8835953 DOI: 10.3390/ijms23031367] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammation is an essential action to protect the host human body from external, harmful antigens and microorganisms. However, an excessive inflammation reaction sometimes exceeds tissue damage and can disrupt organ functions. Therefore, anti-inflammatory action and resolution mechanisms need to be clarified. Dietary foods are an essential daily lifestyle that influences various human physiological processes and pathological conditions. Especially, omega-3 fatty acids in the diet ameliorate chronic inflammatory skin diseases. Recent studies have identified that omega-3 fatty acid derivatives, such as the resolvin series, showed strong anti-inflammatory actions in various inflammatory diseases. Maresin-1 is a derivative of one of the representative omega-3 fatty acids, i.e., docosahexaenoic acid (DHA), and has shown beneficial action in inflammatory disease models. In this review, we summarize the detailed actions of maresin-1 in immune cells and inflammatory diseases.
Collapse
|
11
|
Sun Z, Meng P, Su C, Ji S, Gao Y, Wang H, Tian J, Li C. PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor disorder associated with neuropathic pain model. Toxicol Appl Pharmacol 2021; 429:115698. [PMID: 34428447 DOI: 10.1016/j.taap.2021.115698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 01/11/2023]
Abstract
In view of postsynaptic density 95kDA (PSD95) tethers neuronal NO synthase (nNOS) to N-methyl-d-aspartate receptor (NMDAR), the PSD95-nNOS complex represents a therapeutic target of neuropathic pain. This study therefore sought to explore the ability of PCC-0105002, a novel PSD95-nNOS small molecule inhibitor, to alter pain sensitivity in rodent neuropathic pain models. Firstly, the IC50 of PCC-0105002 for PSD95 and NOS1 binding activity was determined using an Alpha Screen assay kit. Then, we examined the effects of PCC-0105002 in the mouse formalin test and in the rat spinal nerve ligation (SNL) model, and explored the ability of PCC-0105002 to mediate analgesia and to effect motor coordination in a rota-rod test. Moreover, the mechanisms whereby PCC-0105002 mediates analgesia was explored via western blotting, Golgi staining, and co-immunoprecipitation experiments in dorsal horn. The outcomes indicated that PCC-0105002 exhibited dose-dependent attenuation of phase II pain-associated behaviors in the formalin test. The result indicated that PCC-0105002 disrupted the PSD95-nNOS interaction with IC50 of 1.408 μM. In the SNL model, PCC-0105002 suppressed mechanical allodynia, thermal hyperalgesia, and abnormal dorsal horn wide dynamic range neuron discharge. PCC-0105002 mediated an analgesic effect comparable to that of MK-801, while it was better able to enhance motor coordination as compared with MK-801. Moreover, PCC-0105002 altered signaling downstream of NMDAR and thus functionally and structurally attenuating synaptic plasticity through respective regulation of the NR2B/GluR1/CaMKIIα and Rac1/RhoA pathways. These findings suggest that the novel PSD95-nNOS inhibitor PCC-0105002 is an effective agent for alleviating neuropathic pain, and that it produces fewer motor coordination-associated side effects than do NMDAR antagonists.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Ping Meng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Shengmin Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
12
|
Chávez-Castillo M, Ortega Á, Cudris-Torres L, Duran P, Rojas M, Manzano A, Garrido B, Salazar J, Silva A, Rojas-Gomez DM, De Sanctis JB, Bermúdez V. Specialized Pro-Resolving Lipid Mediators: The Future of Chronic Pain Therapy? Int J Mol Sci 2021; 22:ijms221910370. [PMID: 34638711 PMCID: PMC8509014 DOI: 10.3390/ijms221910370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic pain (CP) is a severe clinical entity with devastating physical and emotional consequences for patients, which can occur in a myriad of diseases. Often, conventional treatment approaches appear to be insufficient for its management. Moreover, considering the adverse effects of traditional analgesic treatments, specialized pro-resolving lipid mediators (SPMs) have emerged as a promising alternative for CP. These include various bioactive molecules such as resolvins, maresins, and protectins, derived from ω-3 polyunsaturated fatty acids (PUFAs); and lipoxins, produced from ω-6 PUFAs. Indeed, SPMs have been demonstrated to play a central role in the regulation and resolution of the inflammation associated with CP. Furthermore, these molecules can modulate neuroinflammation and thus inhibit central and peripheral sensitizations, as well as long-term potentiation, via immunomodulation and regulation of nociceptor activity and neuronal pathways. In this context, preclinical and clinical studies have evidenced that the use of SPMs is beneficial in CP-related disorders, including rheumatic diseases, migraine, neuropathies, and others. This review integrates current preclinical and clinical knowledge on the role of SPMs as a potential therapeutic tool for the management of patients with CP.
Collapse
Affiliation(s)
- Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Ángel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Lorena Cudris-Torres
- Programa de Psicología, Fundación Universitaria del Área Andina sede Valledupar, Valledupar 200001, Colombia;
| | - Pablo Duran
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Alexander Manzano
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Bermary Garrido
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Aljadis Silva
- Endocrine and Metabolic Diseases Research Center, School of Medicine, University of Zulia, Maracaibo 4004, Venezuela; (M.C.-C.); (Á.O.); (P.D.); (M.R.); (A.M.); (B.G.); (J.S.); (A.S.)
| | - Diana Marcela Rojas-Gomez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370035, Chile;
| | - Juan B. De Sanctis
- Institute of Molecular and Translational Medicine, Palacký University Olomouc, 77900 Olomouc, Czech Republic;
| | - Valmore Bermúdez
- Facultad de Ciencias de la Salud, Universidad Simón Bolívar, Barranquilla 080002, Colombia
- Correspondence:
| |
Collapse
|
13
|
Zaninelli TH, Fattori V, Verri WA. Harnessing Inflammation Resolution in Arthritis: Current Understanding of Specialized Pro-resolving Lipid Mediators' Contribution to Arthritis Physiopathology and Future Perspectives. Front Physiol 2021; 12:729134. [PMID: 34539449 PMCID: PMC8440959 DOI: 10.3389/fphys.2021.729134] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/12/2021] [Indexed: 12/26/2022] Open
Abstract
The concept behind the resolution of inflammation has changed in the past decades from a passive to an active process, which reflects in novel avenues to understand and control inflammation-driven diseases. The time-dependent and active process of resolution phase is orchestrated by the endogenous biosynthesis of specialized pro-resolving lipid mediators (SPMs). Inflammation and its resolution are two forces in rheumatic diseases that affect millions of people worldwide with pain as the most common experienced symptom. The pathophysiological role of SPMs in arthritis has been demonstrated in pre-clinical and clinical studies (no clinical trials yet), which highlight their active orchestration of disease control. The endogenous roles of SPMs also give rise to the opportunity of envisaging these molecules as novel candidates to improve the life quality of rhematic diseases patients. Herein, we discuss the current understanding of SPMs endogenous roles in arthritis as pro-resolutive, protective, and immunoresolvent lipids.
Collapse
Affiliation(s)
- Tiago H Zaninelli
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| | - Victor Fattori
- Vascular Biology Program, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA, United States
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Londrina State University, Londrina, Brazil
| |
Collapse
|
14
|
Lu J, Feng X, Zhang H, Wei Y, Yang Y, Tian Y, Bai L. Maresin-1 suppresses IL-1β-induced MMP-13 secretion by activating the PI3K/AKT pathway and inhibiting the NF-κB pathway in synovioblasts of an osteoarthritis rat model with treadmill exercise. Connect Tissue Res 2021; 62:508-518. [PMID: 32546009 DOI: 10.1080/03008207.2020.1780218] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Aim: Maresin-1 is a metabolite of docosahexaenoic acid (DHA) that has potential anti-inflammatory effects. To explore whether maresin-1 changes and has a therapeutic effect in osteoarthritis (OA) model rats undergoing treadmill exercise, we examined endogenous maresin-1 in a single-session treadmill experiment and OA model rats were treated with maresin-1, moreover, we examined the effects of maresin-1 on IL-1β induced rat fibroblast-like synoviocytes (FLSs) and possible mechanisms.Methods: In single-session treadmill experiment, 48 rats were randomly divided into 3 groups and performed three different intensities of exercise (15.2 m/min, 0°; 19.3 m/min, 5°; 26.8 m/min, 10°) for 60 min. Intra-articular lavage fluid (IALF) samples were harvested after 0, 2, and 4 h from each group (n = 4) and maresin-1 levels were evaluated by ELISA. Another 30 rats were treated with monosodium iodoacetate (MIA) to induce osteoarthritis and exogenous maresin-1 (MaR-1) and were divided into three groups (n = 10, OA: MIA, OAM: MIA+MaR1, and CG: control group). The level of injury was evaluated by OARSI and Mankin scores, and the levels of type II collagen and MMP13 were evaluated by immunohistochemistry. FLSs were obtained from the knee joint of SD rats, and the expression of MMP13 and activation of the PI3k/Akt and NF-κB p65 pathways in IL-1β-induced FLSs were evaluated by western blotting.Results: Maresin-1 levels were increased in IALF at 4 h after exercise, and type II collagen increased in cartilage and MMP13 decreased in the synovium after treatment with maresin-1 in MIA-induced osteoarthritis. The results of vitro experiment showed decreased MMP13, activation of the PI3k/Akt pathway, and suppression of the NF-κB p65 pathway upon treatment with maresin-1 in IL-1β-induced FLSs.Conclusions: The changes in maresin-1 in IALF, as seen in our single-section treadmill exercise, provides an explanation for the therapeutic effect of appropriate-strength treadmill exercise on osteoarthritis, and our experiments confirmed the therapeutic effect of maresin-1 both in vivo and in vitro.
Collapse
Affiliation(s)
- Jinghan Lu
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinyuan Feng
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - He Zhang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yingliang Wei
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yue Yang
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yicheng Tian
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lunhao Bai
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Leuti A, Fava M, Pellegrini N, Maccarrone M. Role of Specialized Pro-Resolving Mediators in Neuropathic Pain. Front Pharmacol 2021; 12:717993. [PMID: 34456731 PMCID: PMC8385637 DOI: 10.3389/fphar.2021.717993] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation and neuroinflammation are critical mechanisms in the generation of neuropathic pain that is experienced in several chronic diseases. The aberrant inflammation that triggers this pathophysiologic process can be tracked down to an exacerbated immune response, which establishes a vicious cycle and continuously recruits inflammatory cells by inducing chronic tissue damage. Recently, impairment of the cellular and molecular machinery orchestrated by specialized pro-resolving mediators (SPMs)-i.e., endogenous lipids termed resolvins, protectins, maresins, and lipoxins that confine the inflammatory cascades in space and time during the "resolution of inflammation"-has emerged as a crucial event in the derangement of the inflammatory homeostasis and the onset of chronic inflammation and pain. Indeed, a deviant inflammatory response that is not adequately controlled by the resolution network leads to the overproduction of pro-inflammatory eicosanoids that, opposite to SPMs, lead to neuropathic pain. Interestingly, in the last two decades convincing evidence has demonstrated that SPMs antagonize the in vivo activity of pro-inflammatory eicosanoids and, overall, exert potent anti-hyperalgesic effects in a number of pain-associated paradigms of disease, such as arthritis and chemotherapy-induced peripheral neuropathy, as well as in many experimental models of pain like mechanical allodynia, chemical pain, heat hypersensitivity and phase 1 and 2 inflammatory pain. Of note, accumulated evidence supports a synergy between SPMs and other signalling pathways, such as those mediated by transient receptor potential (TRP) channels and those triggered by opioid receptors, suggesting that the cascade of events where inflammation and pain perception take part might be ways more intricated than originally expected. Here, we aim at presenting a state-of-the-art view of SPMs, their metabolism and signalling, in the context of cellular and molecular pathways associated to neuropathic pain.
Collapse
Affiliation(s)
- Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marina Fava
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy.,Faculty of Biosciences and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Niccolò Pellegrini
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
16
|
Li Y, Yang Y, Guo J, Guo X, Feng Z, Zhao X. Spinal NF-kB upregulation contributes to hyperalgesia in a rat model of advanced osteoarthritis. Mol Pain 2021; 16:1744806920905691. [PMID: 31971058 PMCID: PMC7040927 DOI: 10.1177/1744806920905691] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Knee osteoarthritis (OA) pain is the most common joint pain. Currently, dysfunction in the central nervous system rather than knee joint degeneration is considered to be the major cause of chronic knee OA pain; however, the underlying mechanism remains unknown. The aim of this study was to explore whether spinal NF-κB plays a critical role in chronic knee OA pain. In this study, we used a model induced by the intra-articular injection of monosodium iodoacetate. Spinal NF-κB and the phosphorylation and activation status of NF-κB p65/RelA (p-p65) were inhibited by the intrathecal injection of the inhibitor pyrrolidine dithiocarbamate in this model. After behavioral assessment, the knee was dissected for histopathology, and the spinal cord was dissected and examined for NF-κB, p-p65, and cytokine expression. Furthermore, the quantity and activity of neurons, astrocytes, and microglial cells and their colocalization with p-p65 in the spinal dorsal horn were investigated. Our findings included the following: (1) histology, the pathological changes in the joints of the knee OA model were basically consistent with knee OA patients; (2) the protein and transcription levels of NF-κB/p65 and p-p65 increased before day 14, appeared to decrease on day 21 and increased again on day 28, and the tendency of weight bearing was similar; (3) on days 21 and 28, the intrathecal injection of pyrrolidine dithiocarbamate markedly prevented the monosodium iodoacetate-induced reduction in the paw withdrawal threshold; (4) real-time polymerase chain reaction demonstrated that the expression of TNF-α and IL-33 was suppressed in the knee OA model by the intrathecal injection of pyrrolidine dithiocarbamate; and (5) immunofluorescence revealed that astrocytes were activated and that p-p65 was mainly increased in astrocytes. Our findings indicate that the spinal NF-κB/p65 pathway in astrocytes modulates neuroimmunity in rat model of intra-articular monosodium iodoacetate-induced advanced OA.
Collapse
Affiliation(s)
- Yunze Li
- Department of Pain Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.,Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yixin Yang
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinwan Guo
- Department of Anesthesiology, Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xuejiao Guo
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiying Feng
- Department of Pain Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuli Zhao
- Department of Pain Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
17
|
Wang Y, Leppert A, Tan S, van der Gaag B, Li N, Schultzberg M, Hjorth E. Maresin 1 attenuates pro-inflammatory activation induced by β-amyloid and stimulates its uptake. J Cell Mol Med 2020; 25:434-447. [PMID: 33225628 PMCID: PMC7810927 DOI: 10.1111/jcmm.16098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is the most common dementia, characterized by pathological accumulation of β‐amyloid (Aβ) and hyperphosphorylation of tau protein, together with a damaging chronic inflammation. The lack of effective treatments urgently warrants new therapeutic strategies. Resolution of inflammation, associated with beneficial and regenerative activities, is mediated by specialized pro‐resolving lipid mediators (SPMs) including maresin 1 (MaR1). Decreased levels of MaR1 have been observed in AD brains. However, the pro‐resolving role of MaR1 in AD has not been fully investigated. In the present study, human monocyte‐derived microglia (MdM) and a differentiated human monocyte cell line (THP‐1 cells) exposed to Aβ were used as models of AD neuroinflammation. We have studied the potential of MaR1 to inhibit pro‐inflammatory activation of Aβ and assessed its ability to stimulate phagocytosis of Aβ42. MaR1 inhibited the Aβ42‐induced increase in cytokine secretion and stimulated the uptake of Aβ42 in both MdM and differentiated THP‐1 cells. MaR1 was also found to decrease chemokine secretion and reduce the associated increase in the activation marker CD40. Activation of kinases involved in transduction of inflammation was not affected by MaR1, but the activity of nuclear factor (NF)‐κB was decreased. Our data show that MaR1 exerts effects that indicate a pro‐resolving role in the context of AD and thus presents itself as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Ying Wang
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Shuai Tan
- Department of Medicine, Clinical Pharmacology Group, Karolinska University Hospital, Solna, Sweden
| | - Bram van der Gaag
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| | - Nailin Li
- Department of Medicine, Clinical Pharmacology Group, Karolinska University Hospital, Solna, Sweden
| | - Marianne Schultzberg
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| | - Erik Hjorth
- Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
18
|
Teixeira-Santos L, Albino-Teixeira A, Pinho D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: Focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol Res 2020; 162:105280. [PMID: 33161139 DOI: 10.1016/j.phrs.2020.105280] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023]
Abstract
Neuropathic pain (NP) is a chronic condition that results from a lesion or disease of the nervous system, greatly impacting patients' quality of life. Current pharmacotherapy options deliver inadequate and/or insufficient responses and thus a significant unmet clinical need remains for alternative treatments in NP. Neuroinflammation, oxidative stress and their reciprocal relationship are critically involved in NP pathophysiology. In this context, new pharmacological approaches, aiming at enhancing the resolution phase of inflammation and/or restoring redox balance by targeting specific reactive oxygen species (ROS) sources, are emerging as potential therapeutic strategies for NP, with improved efficacy and safety profiles. Several reports have demonstrated that administration of exogenous specialized pro-resolving mediators (SPMs) ameliorates NP pathophysiology. Likewise, deletion or inhibition of the ROS-generating enzyme NADPH oxidase (NOX), particularly its isoforms 2 and 4, results in beneficial effects in NP models. Notably, SPMs also modulate oxidative stress and NOX also regulates neuroinflammation. By targeting neuroinflammatory and oxidative pathways, both SPMs analogues and isoform-specific NOX inhibitors are promising therapeutic strategies for NP.
Collapse
Affiliation(s)
- Luísa Teixeira-Santos
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - António Albino-Teixeira
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| | - Dora Pinho
- Departamento de Biomedicina - Unidade de Farmacologia e Terapêutica, Faculdade de Medicina, Universidade do Porto, Portugal; MedInUP - Centro de Investigação Farmacológica e Inovação Medicamentosa, Universidade do Porto, Portugal.
| |
Collapse
|
19
|
Allen BL, Montague-Cardoso K, Simeoli R, Colas RA, Oggero S, Vilar B, McNaughton PA, Dalli J, Perretti M, Sher E, Malcangio M. Imbalance of proresolving lipid mediators in persistent allodynia dissociated from signs of clinical arthritis. Pain 2020; 161:2155-2166. [PMID: 32379221 PMCID: PMC7431142 DOI: 10.1097/j.pain.0000000000001908] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
ABSTRACT Rheumatoid arthritis-associated pain is poorly managed, often persisting when joint inflammation is pharmacologically controlled. Comparably, in the mouse K/BxN serum-transfer model of inflammatory arthritis, hind paw nociceptive hypersensitivity occurs with ankle joint swelling (5 days after immunisation) persisting after swelling has resolved (25 days after immunisation). In this study, lipid mediator (LM) profiling of lumbar dorsal root ganglia (DRG), the site of sensory neuron cell bodies innervating the ankle joints, 5 days and 25 days after serum transfer demonstrated a shift in specialised proresolving LM profiles. Persistent nociception without joint swelling was associated with low concentrations of the specialised proresolving LM Maresin 1 (MaR1) and high macrophage numbers in DRG. MaR1 application to cultured DRG neurons inhibited both capsaicin-induced increase of intracellular calcium ions and release of calcitonin gene-related peptide in a dose-dependent manner. Furthermore, in peritoneal macrophages challenged with lipopolysaccharide, MaR1 reduced proinflammatory cytokine expression. Systemic MaR1 administration caused sustained reversal of nociceptive hypersensitivity and reduced inflammatory macrophage numbers in DRG. Unlike gabapentin, which was used as positive control, systemic MaR1 did not display acute antihyperalgesic action. Therefore, these data suggest that MaR1 effects observed after K/BxN serum transfer relate to modulation of macrophage recruitment, more likely than to direct actions on sensory neurons. Our study highlights that, in DRG, aberrant proresolution mechanisms play a key role in arthritis joint pain dissociated from joint swelling, opening novel approaches for rheumatoid arthritis pain treatment.
Collapse
Affiliation(s)
- Benjamin L Allen
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | | | - Raffaele Simeoli
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
- Laboratory of Metabolic Biochemistry Unit, Department of Pediatric Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Romain A Colas
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Silvia Oggero
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Bruno Vilar
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Peter A McNaughton
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| | - Jesmond Dalli
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Mauro Perretti
- Barts and The London School of Medicine, The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Emanuele Sher
- Neuroscience Discovery, Lilly Research Centre, Eli Lilly and Company Ltd, Surrey, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Li C, Su C, Wang Z, Han R, Wang Y, Wang H, Tian J, Gao Y. WITHDRAWN: PCC-0105002, a novel small molecule inhibitor of PSD95-nNOS protein-protein interactions, attenuates neuropathic pain and corrects motor coordination-associated side effects in neuropathic pain model. Toxicol Appl Pharmacol 2020:115208. [PMID: 32828906 DOI: 10.1016/j.taap.2020.115208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 11/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Chunmei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Chunyu Su
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Zhezhe Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Rui Han
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yu Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Yonglin Gao
- School of Life Science, Yantai University, Yantai 264005, China.
| |
Collapse
|
21
|
Wang C, Yu S, Fretwurst T, Larsson L, Sugai J, Oh J, Lehner K, Jin Q, Giannobile W. Maresin 1 Promotes Wound Healing and Socket Bone Regeneration for Alveolar Ridge Preservation. J Dent Res 2020; 99:930-937. [PMID: 32384864 PMCID: PMC7338694 DOI: 10.1177/0022034520917903] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tooth extraction results in alveolar bone resorption and is accompanied by postoperative swelling and pain. Maresin 1 (MaR1) is a proresolving lipid mediator produced by macrophages during the resolution phase of inflammation, bridging healing and tissue regeneration. The aim of this study was to examine the effects of MaR1 on tooth extraction socket wound healing in a preclinical rat model. The maxillary right first molars of Sprague-Dawley rats were extracted, and gelatin scaffolds were placed into the sockets with or without MaR1. Topical application was also given twice a week until complete socket wound closure up to 14 d. Immediate postoperative pain was assessed by 3 scores. Histology and microcomputed tomography were used to assess socket bone fill and alveolar ridge dimensional changes at selected dates. The assessments of coded specimens were performed by masked, calibrated examiners. Local application of MaR1 potently accelerated extraction socket healing. Macroscopic and histologic analysis revealed a reduced soft tissue wound opening and more rapid re-epithelialization with MaR1 delivery versus vehicle on socket healing. Under micro-computed tomography analysis, MaR1 (especially at 0.05 μg/μL) stimulated greater socket bone fill at day 10 as compared with the vehicle-treated animals, resulting in less buccal plate resorption and a wider alveolar ridge by day 21. Interestingly, an increased ratio of CD206+:CD68+ macrophages was identified in the sockets with MaR1 application under immunohistochemistry and immunofluorescence analysis. As compared with the vehicle therapy, local delivery of MaR1 reduced immediate postoperative surrogate pain score panels. In summary, MaR1 accelerated extraction wound healing, promoted socket bone fill, preserved alveolar ridge bone, and reduced postoperative pain in vivo with a rodent preclinical model. Local administration of MaR1 offers clinical potential to accelerate extraction socket wound healing for more predictable dental implant reconstruction.
Collapse
Affiliation(s)
- C.W. Wang
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - S.H. Yu
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - T. Fretwurst
- Department of Oral and Craniomaxillofacial Surgery, Faculty of Medicine, Medical Center–University of Freiburg, Freiburg, Germany
| | - L. Larsson
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Periodontology, Institute of Odontology, University of Gothenburg, Goteborg, Sweden
| | - J.V. Sugai
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - J. Oh
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - K. Lehner
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Q. Jin
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, MI, USA
| | - W.V. Giannobile
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Mariqueo TA, Zúñiga-Hernández J. Omega-3 derivatives, specialized pro-resolving mediators: Promising therapeutic tools for the treatment of pain in chronic liver disease. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102095. [PMID: 32450460 DOI: 10.1016/j.plefa.2020.102095] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/02/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
Abstract
The main causes of liver injury are associated with inflammation and permanent damage. They can cause chronic liver disease (CLD), which is mainly related to viral hepatitis, alcohol consumption and non-alcoholic steatohepatitis, leading to fibrosis, cirrhosis and hepatocellular carcinoma. These conditions prevent the liver from working normally and make it begin to fail, which in turn may prompt a liver transplant. CLD and cirrhosis are the eleventh cause of death worldwide. At present, there are no approved pharmacological treatments to prevent, treat or resolve liver fibrosis. The prevalence of pain in the hepatic disease is elevated with ranges between 30% and 40%. Most of the pain drugs require hepatic function; therefore, the suitable control of pain is still a clinical challenge. Specialized pro-resolving mediators (SPM): lipoxins, resolvins, protectins and maresins, are potent endogenous molecules (nM concentrations) that modulate inflammatory body responses by reducing neutrophil infiltration, macrophage activity and pain sensitization. SPM have anti-inflammatory properties, stimulate tissue resolution, repair and regeneration, and exhibit anti-nociceptive actions. Furthermore, SPM were tried on different cellular, animal models and human observational data of liver injury, improving the pathogenesis of inflammation and fibrosis. In the present work, we will describe recent evidence that suggests that SPM can be used as a therapeutic option for CLD. Additionally, we will examine the role of SPM in the control of pain in pathologies associated with liver injury.
Collapse
Affiliation(s)
- T A Mariqueo
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile
| | - J Zúñiga-Hernández
- Centro de Investigaciones Medicas, Escuela de Medicina, Universidad de Talca, Talca, Chile.
| |
Collapse
|
23
|
Tao X, Lee MS, Donnelly CR, Ji RR. Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics 2020; 17:886-899. [PMID: 32696274 PMCID: PMC7609770 DOI: 10.1007/s13311-020-00892-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The current crises in opioid abuse and chronic pain call for the development of nonopioid and nonpharmacological therapeutics for pain relief. Neuromodulation-based approaches, such as spinal cord stimulation, dorsal root ganglion simulation, and nerve stimulation including vagus nerve stimulation, have shown efficacy in achieving pain control in preclinical and clinical studies. However, the mechanisms by which neuromodulation alleviates pain are not fully understood. Accumulating evidence suggests that neuromodulation regulates inflammation and neuroinflammation-a localized inflammation in peripheral nerves, dorsal root ganglia/trigeminal ganglia, and spinal cord/brain-through neuro-immune interactions. Specialized proresolving mediators (SPMs) such as resolvins, protectins, maresins, and lipoxins are lipid molecules produced during the resolution phase of inflammation and exhibit multiple beneficial effects in resolving inflammation in various animal models. Recent studies suggest that SPMs inhibit inflammatory pain, postoperative pain, neuropathic pain, and cancer pain in rodent models via immune, glial, and neuronal modulations. It is noteworthy that sham surgery is sufficient to elevate resolvin levels and may serve as a model of resolution. Interestingly, it has been shown that the vagus nerve produces SPMs and vagus nerve stimulation (VNS) induces SPM production in vitro. In this review, we discuss how neuromodulation such as VNS controls pain via immunomodulation and neuro-immune interactions and highlight possible involvement of SPMs. In particular, we demonstrate that VNS via auricular electroacupuncture effectively attenuates chemotherapy-induced neuropathic pain. Furthermore, auricular stimulation is able to increase resolvin levels in mice. Thus, we propose that neuromodulation may control pain and inflammation/neuroinflammatioin via SPMs. Finally, we discuss key questions that remain unanswered in our understanding of how neuromodulation-based therapies provide short-term and long-term pain relief.
Collapse
Affiliation(s)
- Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Michael S Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Zhao D, Han DF, Wang SS, Lv B, Wang X, Ma C. Roles of tumor necrosis factor-α and interleukin-6 in regulating bone cancer pain via TRPA1 signal pathway and beneficial effects of inhibition of neuro-inflammation and TRPA1. Mol Pain 2020; 15:1744806919857981. [PMID: 31144562 PMCID: PMC6580714 DOI: 10.1177/1744806919857981] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Pain is one of the most common and distressing symptoms suffered by patients
with progression of bone cancer; however, the mechanisms responsible for
hyperalgesia are not well understood. The purpose of our current study was
to determine contributions of the sensory signaling pathways of inflammatory
tumor necrosis factor-α and interleukin-6 and downstream transient receptor
potential ankyrin 1 (TRPA1) to neuropathic pain induced by bone cancer. We
further determined whether influencing these pathways can improve bone
cancer pain. Methods Breast sarcocarcinoma Walker 256 cells were implanted into the tibia bone
cavity of rats to induce mechanical and thermal hyperalgesia. ELISA and
western blot analysis were used to examine (1) the levels of tumor necrosis
factor-α and interleukin-6 in dorsal root ganglion and (2) protein
expression of tumor necrosis factor-α and interleukin-6 receptors (TNFR1 and
IL-6R) and TRPA1 as well as intracellular signals (p38-MAPK and JNK). Results Tumor necrosis factor-α and interleukin-6 were elevated in the dorsal root
ganglion of bone cancer rats, and expression of TNFR1, IL-6R, and TRPA1 was
upregulated. In addition, inhibition of TNFR1 and IL-6R alleviated
mechanical and thermal hyperalgesia in bone cancer rats, accompanied with
downregulated TRPA1 and p38-MAPK and JNK. Conclusions We revealed specific signaling pathways leading to neuropathic pain during
the development of bone cancer, including tumor necrosis factor-α-TRPA1 and
interleukin-6-TRPA1 signal pathways. Overall, our data suggest that blocking
these signals is beneficial to alleviate bone cancer pain.
Collapse
Affiliation(s)
- Ding Zhao
- 1 Department of Orthopedics, First Hospital of Jilin University, Changchun, China
| | - Dong-Feng Han
- 2 Department of Emergency Medicine, First Hospital of Jilin University, Changchun, China
| | - Si-Si Wang
- 3 Department of Translational Medicine, First Hospital of Jilin University, Changchun, China
| | - Bing Lv
- 2 Department of Emergency Medicine, First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- 4 Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Chi Ma
- 5 Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
25
|
Giacobbe J, Benoiton B, Zunszain P, Pariante CM, Borsini A. The Anti-Inflammatory Role of Omega-3 Polyunsaturated Fatty Acids Metabolites in Pre-Clinical Models of Psychiatric, Neurodegenerative, and Neurological Disorders. Front Psychiatry 2020; 11:122. [PMID: 32180741 PMCID: PMC7059745 DOI: 10.3389/fpsyt.2020.00122] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/12/2020] [Indexed: 12/19/2022] Open
Abstract
Inflammation has been identified as one of the main pathophysiological mechanisms underlying neuropsychiatric and neurodegenerative disorders. Despite the role of inflammation in those conditions, there is still a lack of effective anti-inflammatory therapeutic strategies. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) can reduce depressive symptoms and exert anti-inflammatory action putatively by the production of distinct n-3 PUFA-derived metabolites, such as resolvins D (RvD) and E (RvE) series, maresins (MaR) and protectins (PD), which are collectively named specialized pro-resolving mediators (SPMs) and act as strong anti-inflammatory agents. In this review we summarize evidence showing the effects of treatment with those metabolites in pre-clinical models of psychiatric, neurodegenerative and neurological disorders. A total of 25 pre-clinical studies were identified using the PubMed database. Overall, RvD and RvE treatment improved depressive-like behaviors, whereas protectins and maresins ameliorated neurological function. On a cellular level, RvDs increased serotonin levels in a model of depression, and decreased gliosis in neurodegenerative disorders. Protectins prevented neurite and dendrite retraction and apoptosis in models of neurodegeneration, while maresins reduced cell death across all studies. In terms of mechanisms, all SPMs down-regulated pro-inflammatory cytokines. Resolvins activated mTOR and MAP/ERK signaling in models of depression, while resolvins and maresins activated the NF-κB pathway in models of neurodegeneration and neurological disorders. Our review indicates a potential promising approach for tailored therapy with n-3 PUFAs-derived metabolites in the treatment of psychiatric, neurodegenerative, and neurological conditions.
Collapse
Affiliation(s)
- Juliette Giacobbe
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Bonnie Benoiton
- Guy's King's and St. Thomas' School of Life Science and Medicine, King's College London, London, United Kingdom
| | - Patricia Zunszain
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Carmine M. Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Yin P, Wang S, Wei Y, Wang X, Zhang J, Yin X, Feng J, Zhu M. Maresin1 Decreased Microglial Chemotaxis and Ameliorated Inflammation Induced by Amyloid-β42 in Neuron-Microglia Co-Culture Models. J Alzheimers Dis 2020; 73:503-515. [PMID: 31796671 DOI: 10.3233/jad-190682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Shuang Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yafen Wei
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jingdian Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
27
|
Oh SH, Lee HY, Ki YJ, Kim SH, Lim KJ, Jung KT. Gabexate mesilate ameliorates the neuropathic pain in a rat model by inhibition of proinflammatory cytokines and nitric oxide pathway via suppression of nuclear factor-κB. Korean J Pain 2020; 33:30-39. [PMID: 31888315 PMCID: PMC6944363 DOI: 10.3344/kjp.2020.33.1.30] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND This study examined the effects of gabexate mesilate on spinal nerve ligation (SNL)-induced neuropathic pain. To confirm the involvement of gabexate mesilate on neuroinflammation, we focused on the activation of nuclear factor-κB (NF-κB) and consequent the expression of proinflammatory cytokines and inducible nitric oxide synthase (iNOS). METHODS Male Sprague-Dawley rats were used for the study. After randomization into three groups: the sham-operation group, vehicle-treated group (administered normal saline as a control), and the gabexate group (administered gabexate mesilate 20 mg/kg), SNL was performed. At the 3rd day, mechanical allodynia was confirmed using von Frey filaments, and drugs were administered intraperitoneally daily according to the group. The paw withdrawal threshold (PWT) was examined on the 3rd, 7th, and 14th day. The expressions of p65 subunit of NF-κB, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and iNOS were evaluated on the 7th and 14th day following SNL. RESULTS The PWT was significantly higher in the gabexate group compared with the vehicle-treated group (P < 0.05). The expressions of p65, proinflammatory cytokines, and iNOS significantly decreased in the gabexate group compared with the vehicle-treated group (P < 0.05) on the 7th day. On the 14th day, the expressions of p65 and iNOS showed lower levels, but those of the proinflammatory cytokines showed no significant differences. CONCLUSIONS Gabexate mesilate increased PWT after SNL and attenuate the progress of mechanical allodynia. These results seem to be involved with the anti-inflammatory effect of gabexate mesilate via inhibition of NF-κB, proinflammatory cytokines, and nitric oxide.
Collapse
Affiliation(s)
- Seon Hee Oh
- School of Medicine, Chosun University, Gwangju,
Korea
| | - Hyun Young Lee
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Young Joon Ki
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
| | - Sang Hun Kim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Kyung Joon Lim
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| | - Ki Tae Jung
- Department of Anesthesiology and Pain Medicine, Chosun University Hospital, Gwangju,
Korea
- Department of Anesthesiology and Pain Medicine, School of Medicine, Chosun University, Gwangju,
Korea
| |
Collapse
|
28
|
Fattori V, Pinho-Ribeiro FA, Staurengo-Ferrari L, Borghi SM, Rossaneis AC, Casagrande R, Verri WA. The specialised pro-resolving lipid mediator maresin 1 reduces inflammatory pain with a long-lasting analgesic effect. Br J Pharmacol 2019; 176:1728-1744. [PMID: 30830967 DOI: 10.1111/bph.14647] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 01/30/2019] [Accepted: 02/11/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Maresin 1 (MaR1) is a specialised pro-resolving lipid mediator with anti-inflammatory and analgesic activities. In this study, we addressed the modulation of peripheral and spinal cord cells by MaR1 in the context of inflammatory pain. EXPERIMENTAL APPROACH Mice were treated with MaR1 before intraplantar injection of carrageenan or complete Freund's adjuvant (CFA). Mechanical hyperalgesia was assessed using the electronic von Frey and thermal hyperalgesia using a hot plate. Spinal cytokine production and NF-κB activation were determined by ELISA and astrocytes and microglia activation by RT-qPCR and immunofluorescence. CGRP release by dorsal root ganglia (DRG) neurons was determined by EIA. Neutrophil and macrophage recruitment were determined by immunofluorescence, flow cytometry, and colorimetric methods. Trpv1 and Nav1.8 expression and calcium imaging of DRG neurons were determined by RT-qPCR and Fluo-4AM respectively. KEY RESULTS MaR1 reduced carrageenan- and CFA-induced mechanical and thermal hyperalgesia and neutrophil and macrophage recruitment proximal to CGRP+ fibres in the paw skin. Moreover, MaR1 reduced NF-κB activation, IL-1β and TNF-α production, and spinal cord glial cells activation. In the DRG, MaR1 reduced CFA-induced Nav1.8 and Trpv1 mRNA expression and calcium influx and capsaicin-induced release of CGRP by DRG neurons. CONCLUSIONS AND IMPLICATIONS MaR1 reduced DRG neurons activation and CGRP release explaining, at least in part, its analgesic and anti-inflammatory effects. The enduring analgesic and anti-inflammatory effects and also post-treatment activity of MaR1 suggest that specialised pro-resolving lipid mediators have potential as a new class of drugs for the treatment of inflammatory pain.
Collapse
Affiliation(s)
- Victor Fattori
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Felipe A Pinho-Ribeiro
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | | | - Sergio M Borghi
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Ana C Rossaneis
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Centre of Health Science, Londrina State University, Londrina, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Centre of Biological Sciences, Londrina State University, Londrina, Brazil
| |
Collapse
|